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Abstract—Language Technology is an essential component
of many Cyber-Physical Systems (CPSs) because specialized
linguistic knowledge is indispensable to prevent fatal errors. We
present the case of automatic identification of implant terms. The
need of an automatic identification of implant terms spurs from
safety reasons because patients who have an implant may or
may be not submitted to Magnetic Resonance Imaging (MRI).
Normally, MRI scans are safe. However, in some cases an MRI
scan may not be recommended. It is important to know if a
patient has an implant, because MRI scanning is incompatible
with some implants. At present, the process of ascertain whether
a patient could be at risk is lengthy, manual, and based on
the specialized knowledge of medical staff. We argue that this
process can be sped up, streamlined and become safer by sieving
through patients’ medical records. In this paper, we explore how
to discover implant terms in electronic medical records (EMRs)
written in Swedish with an unsupervised approach. To this aim
we use BERT, a state-of-the-art deep learning algorithm based on
pre-trained word embeddings. We observe that BERT discovers
a solid proportion of terms that are indicative of implants.

I. INTRODUCTION

Domain-specific terminology extraction is an important task
in a number of areas, such as knowledge base construction
[1], ontology induction [2] or taxonomy creation [3].

We present experiments on an underexplored type of ter-
minology extraction that we call “focused terminology extrac-
tion”. With this expression we refer to terms or to a nomen-
clature that represent a specific semantic field. The automatic
identification and extraction of this kind of nomenclature are
a common need in many domains, e.g. medicine, dentistry,
chemistry, aeronautics, engineering and the like.

In these experiments, we explore focused terminology re-
lated to the semantic field of terms that indicate or suggest
the presence of implants in electronic medical records (EMRs)
written in Swedish. More specifically, the aim of our exper-
iments is to investigate whether it is possible to discover
implant terms or implant-related words unsupervisely, i.e.
without any labelled or annotated data. Results are evaluated

by two domain experts. This task is part of an ongoing project
at Linköping University Hospital, Sweden.

Implant terms are domain-specific words indicating artificial
artefacts that replace or complement parts of the human body.
Common implants are devices such as ‘pacemaker’, ‘shunt’,
‘codman’, ‘prosthesis’ or ‘stent’. The need of an automatic
identification of implant terms spurs from safety reasons
because patients who have an implant may or may be not
submitted to MRI scans. Magnetic resonance imaging (MRI) is
very safe and most people are able to benefit from it. However,
in some cases an MRI scan may not be recommended. Before
having an MRI scan, the following conditions must be verified:
(a) metal in the body and (b) being pregnant or breastfeeding.
It is important to know if a patient has an implant, because
MRI-scanning is incompatible with some implants (e.g. the
‘pulmonary artery catheter’) or maybe partially compatible
with some of them (e.g. the ‘mitraclip’).

Unsafe implants must be considered before MRI-scanning,
as they may be contraindicative, while conditional implants
can be left in the patient’s body, if conditions are appropriately
accounted for. One of the safety measures in MRI-clinics is to
ask patients whether they have or have had an implant. This
routine is not completely reliable, because a patient (especially
if elderly) might have forgotten about the presence of implants
in the body. When a patient has or is suspected to have an
implant, the procedure of recognition and acknowledgement is
manual, laborious and involves quite many human experts with
specialized knowledge. The workflow of the current procedure
is shown in Figure 1 and described in [4].

Even if implants have been removed, metallic or electronic
parts (like small electrodes or metallic clips) may have been
overlooked and left in situ, without causing harm to patient’s
health before the MRI. Normally, referring physicians may
be aware of the limitation of specific implants, and prior to
an MRI-examination, they should go through the patient’s
medical history by reading EMRs. EMRs are digital doc-



Fig. 1. Current workflow [4]

uments, but the information they contain is not structured
or organized in a way that makes it trivial to find implant
terms quickly and efficiently. This downside can be addressed
by automatically trying to identify implant terms in EMRs
based on their contextual usage, e.g. using word embeddings.
In our experiments, we use BERT (Bidirectional Encoder
Representations from Transformers) [5], which is the state-
of-the art in computational linguistics and deep learning. The
aim is to find as many validated instances of implant-related
words as possible in free-text EMRs.

II. RELATED WORK

Focused terminology extraction refers to mentions of a rel-
atively small number of technical terms. From a semantic
perspective, focused terminology extraction is challenging
because the task implies the unsupervised discovery of a
handful of specialized terms scattered in millions of words
across unstructured textual documents, such as EMRs. EMRs
are written by physicians who typically use a wide range
of medical sublanguages that are not only based on regular
medical jargon, but also include unpredictable word-shortening
and abbreviations, spelling variants of the same word (in-
cluding typos!), numbers, and the like. What is more, these
sublanguages vary across hospitals and clinics.

Focused terminology extraction is still underexplored. Little
work exists on this task, although its usefulness in real-world
applications is extensive. Recent studies exist however on med-
ical synonym discovery. For instance, [6] compare eight neural
models on the task of finding disorder synonyms in English
clinical free text. In their evaluation, ELMO models perform
moderately better than the other models. In the experiments
presented here we build on research carried out at Linköping
University in close cooperation with Linköping University
Hospital. [7] started this exploration and relied on Word2Vec.
In his experiments, which were carried out on a small portion

of EMRs, out of the 500 terms, 340 (68%) were considered
relevant. For the same task, [8] used BERT, which currently
guarantees unchallenged performances in many NLP tasks.
The results presented in [8] show that out of the 148 evaluated
terms, 68 (46%) were assessed to be clearly indicative of im-
plants in their given context; 27 words (18%) were assessed to
be possibly indicative of implants in the contexts they appeared
in, and 53 words (36%) were considered non-indicative and
not related to implants. It must be noticed that the results by
[7] and by [8] are not directly comparable between them nor
with our own experiments because different data samples and
different evaluation methods were used. In our experiments,
we build on these two previous experiences and apply BERT
to a large EMR corpus that includes two clinics, neurosurgery
and cardiology. We have already presented some preliminary
results in [9].

III. DATA: ELECTRONIC MEDICAL RECORDS

The data used in our experiments is the text of EMRs from two
very different clinics at Linköping University Hospital, namely
the cardiology clinic and the neurosurgery clinic. These EMRs
span over the latest five years and amount to about 1 million
EMRs, when taken individually, and about 48000 when groped
by unique patient (the breakdown is shown in Table I). EMRs
vary greatly in length, from just a few words to hundreds of
words. From this data, two subcorpora have been created, one
called “cardio” and the other called “neuro”. The two corpora
used in these experiments have not yet been fully anonymised,
therefore we are unable to release them at the time of this
publication. However, we will distribute secondary linguistic
data, such as automatically created wordlists on the project
website.

IV. METHOD: BERT
Previous methods to represent features as vectors have been
unable to capture the context of individual words in the



TABLE I
NUMBER OF WORDS AND EMRS PER CLINIC

Clinics Words SingleEMRs GroupedEMRs
Cardiology 45 780 055 664 821 34 044
Neurology 25 440 484 314 669 14 526
Total 71 220 539 979 490 48 088

texts, sometimes leading to a poor representation of natural
language. When using a traditional text classifier, one of the
simplest ways to represent text is to use bag-of-words (BOW),
where each word (feature) in the text is stored together with
their relative frequency, ignoring the position of the word
in the sentence and in the text. A more advanced way to
represent features is by using word embeddings, where each
feature is mapped to a vector of numbers. The pioneer of
this approach was a method called Word2Vec [10]. How-
ever, one limitation of this or of similar approaches was the
mono-directionality of the system that could read only one
side of the surrounding context. A big leap forward was
achieved with BERT (Bidirectional Encoder Representations
from Transformers), which uses a multi-headed self-attention
mechanism to create deep bidirectional feature representations,
able to model the whole context of all words in a sequence.
Bidirectional refers to the ability of simultaneously learning
left and right word context. Up to BERT, bidirectionality could
be achieved only by modeling two separate networks for each
direction that would later be combined, as in [11]. A BERT
model uses a transfer learning approach, where it is pre-trained
on a large amount of data. After learning deep bidirectional
representations from unlabelled text, BERT can be further
fine-tuned for several downstream tasks.

In these experiments, we relied on PyTorch (an open source
machine learning framework1) [12] and used the Huggingface
transformers library for BERT [13] available and ready to use2.

A. Swedish BERT

1) Pre-Trained Model: The pre-trained BERT model used
in these experiments is the bert-base-swedish-cased released
by The National Library of Sweden [14]3. To provide a
representative BERT model for the Swedish language, the
model was trained on approximately 15-20 gigabyte of text
(200M sentences, 3000M tokens) from a range of genres and
text types including books, news, and internet forums. The
model was trained with the same hyperparameters as first
published by Google and corresponded to the size of Google’s
base version of BERT with 12 so-called transformer blocks
(number of encoder layers), 768 hidden units, 12 attention
heads and 110 million parameters.

A BERT model has a predefined vocabulary. This vocabu-
lary is a set of words known to the model and it is used to
tokenize words. A token can in this case be a common word,
a common subpart of a word or a single letter. Each object

1https://pytorch.org/
2https://huggingface.co/transformers/
3https://github.com/Kungbib/swedish-bert-models

in the vocabulary of the model has a known embedding. To
use the model for finding the embedding of a new word the
model was used to tokenize the word, which means that it
would try to rebuild the word using as few tokens from the
vocabulary as possible. The pre-trained BERT-model used in
this study had a vocabulary of 50325 words. Pre-trained model
hyperparameters are listed in Table II.

TABLE II
PRE-TRAINING PARAMETERS

Hyperparemeter Dimensions/Value
Dropout 0.1
Hidden Activation GELU
Hidden Size 768
Embedding Size 512
Attentional Heads 12
Hidden Layers 12
Forward Size 3072
Vocabulary Size 50325
Trainable Parameters 11 · 107

2) Fine-Tuning the Pre-Trained Model: The model was
fine-tuned using the Adam algorithm with default values for
its hyperparameters as indicated by [15]. The pre-processed
EMRs and the pre-trained model were fed into a Python script.

TABLE III
PARAMETERS USED FOR FINE-TUNING

Hyperparameter Dimension/Value
Epochs 3
Batch Size 32
Block Size 64
Learning Rate 5e− 5

The model was trained for three epochs with MLM (Masked
Language Model), a train batch size of 32, a 5e-5 learning rate
and a block size of 64 (see Table III). These decisions were
made partly based on the original BERT paper [5] and partly
on [16]. The hyper-parameters not mentioned here were set to
the default value. The fine-tuning took approximately 15 hours
per clinic to complete using the computing resources shown
in Table IV.

TABLE IV
DETAILS OF COMPUTING RESOURCES

Label Description
CPU Intel Xeon - 12x(E5-2620 v3)
GPU NVIDIA Quadro M4000

[8GB(VRAM)|20GB(Shared)]
Clock Speed 2.40GHz
Memory (RAM) 40GB

3) Discovering Contextually-Similar Implant Terms: We
used the MRI-safety handbook (SMRlink) publicly available
at the hospital website to automatically create a glossary of
implant or implant-related terms. In these experiments, we use
a version of the glossary containing 753 terms. With the 753



terms, queries were created. Here we present the results of a
BERT model built using 15 queries for each term.

The queries were subsequently used to find words with
similar contextual features in the corpus. This was done using
the scikit-learn implementation of the KD-Tree algorithm [17].
Storing the vector values over a million sentences, and their
values in relation to each other inside the KD-Tree is extremely
memory-intensive. In order to speed up this process, the data
was split into chunks which were mapped onto separate KD-
Trees. Each individual KD-Tree was used to generate results
for all queries and then the most contextually similar words
and sentences across all of the chunks were selected for the
final results. The results used in this paper were generated
with chunks of 50000 tokenized sentences clustered together
in each KD-Tree. A total of 4636 terms were discovered by
BERT in this way.

B. Evaluation

To judge whether a term –without any context– is relevant and
indicative of implants or other objects that could be harmful
during an MRI-scan, special domain knowledge is required. In
some cases, it may be obvious that a term indicates an implant.
In other cases, it may be less obvious due to very specific-
domain language, abbreviations, and other domain-related,
or even clinic-related, ways of writing EMRs or describing
certain phenomena. For this reason, a manual evaluation of
BERT discoveries was carried out by two MRI-physicists from
the Radiology clinic at Linköping University Hospital, who
assessed independently the set of 4636 terms discovered by
BERT.

The two MRI-physicists, received an excel file containing
the list of terms to be assessed and short instructions. They
were instructed to judge whether the term can give an indi-
cation that the patient has or has had an implant. They were
asked to use the following ratings on a three-degree scale:
Y = yes, it gives me an indication that the patient has or
has had an implant; N = No, it DOES NOT give me any
indication that the patient has or has had an implant; U =
unsure, the term could or could not give me an indication
of an implant, but I cannot decide without more context. The
inter-rater agreement was then computed on their judgement
to understand how indicative BERT terms are to professionals.
Results are presented in the next section.

V. RESULTS

We measured the inter-rater agreement between the two
MRI-physicists by using percentage (i.e. the proportion of
agreed upon documents in relation to the whole without chance
correction), the classic unweighted Cohen’s kappa [18] and
Krippendorff’s alpha [19] to get a straightforward indication
of the raters’ tendencies.

Cohen’s kappa assumes independence of the two coders and
is based on the assumption that “if coders were operating by
chance alone, we would get a separate distribution for each
coder” [20]. This assumption intuitively fits our expectations.
Krippendorff’s alpha is similar to Cohen’s kappa, but it also

takes into account the extent and the degree of disagreement
between raters [20].

TABLE V
INTER-RATER AGREEMENT ON 4636 BERT TERMS

Terms Percentage Cohen’s Krippendorff’s
Kappa Alpha

4 636 75% 0.575 0.573

TABLE VI
BREAKDOWN BY RATER

Rater Y N U
Rater-1 1 426 (30.8%) 2 701 (58.2%) 509 (11%)
Rater-2 1 321 (28.5%) 2 395 (51.5%) 920 (20%)

Fig. 2. Breakdown: concordant/discordant assessments by the two raters.

Tables V and VI show the breakdown of the inter-rater
agreement of the 4636 terms discovered by BERT. Overall, the
values in Table V shows that both kappa and alpha coefficients
are approx. 0.57, and both these values indicate a “moderate”
agreement according to the magnitude scale for kappa [21],
and the alpha range [22]. The moderate agreement between
the two domain experts may suggest that selective experience
and/or expertise could play a role in recognizing implant
terms (see Table VI), and BERT terms can contribute in
alerting professionals about the presence of implants that could
otherwise be overlooked. Essentially, BERT helped discover
23.5% of positive implant terms on which the two raters agree.
This percentage was far beyond our expectation and we think
it is encouraging since the BERT model presented in this paper
is a pre-study. The raters agree on 3475 terms, of which 1088



Fig. 3. BERT terms contextually similar to ‘codman’ (lowercase, center). The graph must be read anti-clockwise, starting from ’Codman’ (capitalized). The
length of the edges represents the distance of a term from the query term at the center. The figure shows that BERT can capture a wide variety of terms
indicative of implants including the misspelled ’Cordman’.

are indicative implant terms (approx. 23.5%), 2163 terms are
not indicative of implants, and for 224 terms the raters were
“unsure”. They disagreed on 1161 terms. This means that
BERT helped discover 75% of terms on which the two raters
are concordant (i.e. 1088+2163+224), and 25% on which they
are discordant (see Figure 2). Out of the 1088 indicative BERT
terms, about 900 were not in the glossary. Therefore these
BERT terms make a useful addition to glossary expansion.
Out of 2163 non-indicative BERT terms, about 2000 were not
in the glossary, which means that the level of noise in the
automatically created glossary is relatively small.

VI. DISCUSSION

Undeniably the domain expertise is of fundamental importance
for the refinement of the model, since the model sieve through

extremely noisy textual data. The domain-expert evaluation
has helped us identify what kind of irrelevant words the model
retrieves. Error analysis indicates that families of irrelevant
words were not filtered out during preprocessing. For instance:
misspelled words in Swedish (e.g. abltaion and in English (e.g.
achive), first name person noun (e.g. Ann-Christin) and general
medical terms (e.g. epidural). The next step is then to filter
out semantic families of words that create noise in the results.

Although EMRs are noisy texts, BERT successfully discov-
ers a good portion of useful implant terms. Figure 3 shows
BERT terms that are contextually similar to the term ‘codman’
and give an intuitive idea of the relations between the terms.
Codman is the product name of an implant4. Figure 3 must

4https://www.jnjmedicaldevices.com/en-US/codman-pumps/patient-support



be read anti-clockwise starting from capitalized ‘Codman’,
which is the most contextually similar term to ‘codman’.
The most distant similar term is a mispelled version of
the same word, i.e. ‘Cordman’. Identifying misspellings or
unpredictable abbreviations that abound in noisy texts like
EMRs is certainly a benefit. In the same figure, we can see
that BERT returns useful terms, such as the many variations
of the word ‘ventil’ and ‘shunt’, but also terms that signal the
presence of implant, but are not implant names, e.g. ‘coil’. The
raters agreed unanimously that all the terms in Figure 3 were
terms indicative of implants with the exception of ‘hostmaskin’
(en: cough assist machine) that was assessed by both as non
indicative of implants.

VII. CONCLUSION

In this paper we presented results of a BERT model for
focused terminology extraction. The model is fully automated
and was devised to discover terms indicative of implants in
EMRs. Although the task is challenging, manual evaluation
reveals that the approach is rewarding, since a solid number of
indicative terms were discovered by BERT. These discoveries
will be used to further refine the model in future. What is
more, we have started the annotation of EMRs to create a
supervised classification model that can identify patients who
are MRI-incompatible, patients who are MRI-compatible and
finally patients who are in the grey zone, i.e. cases that must
be further investigated by MRI physicists. This annotation is
manual and it is a painstakingly time-consuming work that
can be carried out only by MRI experts. We are going to help
our experts by highlighting the implant terms discovered by
BERT in the EMRs themselves, so that the annotation can be
sped up. The creation of annotated resources is a fundamental
step to train or to evaluate advanced AI-based models.
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