

Iterative Development of an Information-

Providing Dialogue System

by

Pontus Johansson

Department of Computer and Information Science

Linköping University

SE-581 83 Linköping, Seden

Linköping 2001

A B S T R A C T

Abstract

A functional prototype of a dialogue system with a natural language

interface was implemented for the Nokia Mediaterminal. The prototype

was developed from a generic dialogue system framework called MALIN.

The purpose of this rapid prototyping approach is to establish what kind

and amount of work that needs to be carried out in order to customize a

dialogue system based on the MALIN framework for the chosen domain.

The method used is developed for dialogue system construction, and

utilizes an iterative approach where conceptual design and

implementation are viewed as two distinct steps carried out in parallel.

The empirical basis for the design and implementation is a dialogue

collection and a corpus provided by the domain knowledge base content.

Domain knowledge base content is detailed information about one week

of television programmes represented in a relational database.

The prototype is confined to allow for single utterances dealing with

simple task requests. That is, dialogue management is allowed for

designwise, but is not implemented, in order to incorporate it in

subsequent iterations. The design and implementation resulted in a

modularized system, in which the individual components can be

exchanged and/or modified without having to rewrite the whole system.

The experiences of the design and implementation work results in

suggestions for future research, and a suggestion for a new system

architecture that allows for increased portability, scalability, and

A B S T R A C T

transportability. These aspects are accounted for from two perspectives:

the linguistic aspect and the domain aspect.

A C K N O W L E D G E M E N T S

Acknowledgements

I would like to thank my advisors Lena Strömbäck and Arne Jönsson for

their support. They have guided me, answered questions, and provided

me with useful comments on my work.

Lars Degerstedt has patiently discussed Java coding in general and the

MALIN system in particular, which has been very helpful for my work.

Håkan Johansson has also been a great help with Lisp and the chart

parser.

Magnus Lindwall, Magnus Henriksson, and Roberto Barriga have helped

me with the techniqualities of setting up the MySQL database, for which I

am grateful.

I would also like to thank Martin Wiman for testing the first version of

the grammar rules, thus helping me extend the project corpus, and for

acting as my opponent in the defence of this thesis.

Finally, I would also like to thank Cissi for her support, patience, and

useful comments on the draft.

Linköping, 2001-07-03

Pontus Johansson

T A B L E O F C O N T E N T S

Table of Contents

1 INTRODUCTION...1

1.1 Background.. 1
1.1.1 Nokia Home Communications ... 2
1.1.2 Natural Language Processing Laboratory 3

1.2 Purpose... 4

1.3 Overview... 4

2 RELATED RESEARCH ..7

2.1 Preliminaries .. 7

2.2 Dialogue Systems ... 9
2.2.1 Natural Language Interfaces.. 11
2.2.2 Linguistic Coverage... 13
2.2.3 Domain Coverage ... 15
2.2.4 System Architecure and Modularization.................................... 16

2.3 Feature Structures and Unification.....................................19

2.4 Grammar Formalisms and Parsing.....................................21
2.4.1 Context-Free Grammar.. 21
2.4.2 Unification-Based Formalism.. 23
2.4.3 Chart Parsing.. 24
2.4.4 Lexicon and Grammar ... 26

2.5 Representing and Retrieving Knowledge 27
2.5.1 Relational Databases ... 27
2.5.2 Reasoning About Domain Knowledge...................................... 28
2.5.3 Temporal Reasoning... 29

2.6 Natural Language Generation ... 30

3 PROBLEM STATEMENT ..33

3.1 The Linguistic Aspect .. 34

T A B L E O F C O N T E N T S

3.2 The Domain Aspect ... 35

3.3 Course of Action... 36

4 THE MALIN FRAMEWORK...37

4.1 The MALIN System Architecture.. 37

4.2 The Chart Parser Flexchart ...41

5 THE TV-PROGRAMME DIALOGUE SYSTEM43

5.1 Method ... 43

5.2 Corpus Work .. 46
5.2.1 Introduction Phrases .. 47
5.2.2 Query Phrases .. 48
5.2.3 Temporal Phrases.. 50
5.2.4 Looking for Answers .. 50
5.2.5 Updating the Corpus .. 51

5.3 Design .. 52
5.3.1 Knowledge Representation.. 53
5.3.2 Modularization... 55

5.4 Implementation.. 56
5.4.1 The Parser Module.. 56
5.4.2 The Dialogue Manager Module .. 60
5.4.3 The Domain Knowledge Manager Module 62
5.4.4 The Database ... 66
5.4.5 The Response Manager .. 68

5.5 The System Flow: An Example.. 69

6 RESULTS...73

6.1 Linguistic Results .. 73
6.1.1 The Sub-Language and Its Representation 73
6.1.2 Robustness ... 75
6.1.3 Natural Language Extensibility ... 75

6.2 Domain Results.. 76
6.2.1 The Domain and Its Representation.. 77
6.2.2 Portability ... 78
6.2.3 Scalability .. 80

7 DISCUSSION ..81

7.1 The Linguistic Aspect ...81
7.1.1 The Sub-Language and Its Representation 82

T A B L E O F C O N T E N T S

7.1.2 Robustness ... 86
7.1.3 Natural Language Extensibility ... 87

7.2 The Domain Aspect ... 89
7.2.1 The Domain and Its Representation.. 89
7.2.2 Portability ... 93
7.2.3 Scalability .. 94

7.3 Implementation Issues... 95
7.3.1 Transportability ... 95
7.3.2 Modularization... 96

8 CONCLUSION AND FUTURE RESEARCH99

8.1 Conclusions .. 99

8.2 Future Research .. 101
8.2.1 General Issues.. 101
8.2.2 Suggestions for a New Architecture... 102

9 REFERENCES..107

APPENDIX A: GLOSSARY...113

APPENDIX B: SQL STATE-MENTS.....................................119

APPENDIX C: SAMPLE DIALOGUE COLLECTION.......129

F I G U R E S A N D T A B L E S I N D E X

Figures and Tables
Index

Figure 1 Generic dialogue system architecture. .. 16

Figure 2 A simple feature structure with atomic values, represented in an

attribute-value matrix... 19

Figure 3 A feature structure containing a substructure. 19

Figure 4 The feature structure represented as a Directed Acyclic Graph

(DAG). ... 20

Figure 5 The feature structure represented as an equation. ‘0’ is a

reference to the top of the structure. .. 20

Figure 6 Unification of two feature structures.. 21

Figure 7 Sample context-free grammar.. 22

Figure 8 A parse tree generated from a context-free grammar. 22

Figure 9 Extending context-free grammar with PATR unification

constraints. From Hansen (1998, p. 2).. 23

Figure 10 Communicative acts. ... 29

Figure 11 The architecture of the LINLIN-based CARS dialogue system. 38

Figure 12 The conceptual design of the MALIN framework (from Flycht-

Eriksson, 2000). .. 39

Figure 13 An OPM for the question "How fast is a Volvo 850" (from

Flycht-Eriksson, 2001)... 40

Figure 14 The system development work chart for the first iteration.

From Degerstedt and Jönsson (2001, p. 2). 45

F I G U R E S A N D T A B L E S I N D E X

Figure 15 Conceptual design of the System architecture. 55

Figure 16 Lexicon entry for the title "Friends"... 58

Figure 17 Sample grammar rules... 59

Figure 18 OPM delivered by the chart parser for query "Which channel

is Friends on tonight?" .. 60

Figure 19 The OPM structure. .. 61

Figure 20 Example query. .. 62

Figure 21 SQL template with highlighted variable fields. 66

Figure 22 Relationships for the television database. 67

Figure 23 Message string template for Query Template 5. 69

Figure 24 The returned string from the chart parser. 70

Figure 25 Example OPM updated with the Temporal Reasoner. 71

Figure 26 SQL statement for the example OPM. 72

Figure 27 System output for the example query... 72

Figure 28 The connection between domain representation, sub-language

representation and dialogue system... 89

Figure 29 A new system architecture for the television tableau domain.

... 103

Table 1 Classification of dialogue complexity range. From Allen et al

(2001b). .. 10

Table 2 Relationship between context-free grammars, parse trees, feature

structures, DAGs and unification.. 24

Table 3 The components of an utterance from the corpus...................... 50

Table 4 Examples of question types in the corpus. 51

Table 5 Objects and Properties in the television system........................... 54

Table 6 Constituents and sub-phrases of an example utterance. 59

F I G U R E S A N D T A B L E S I N D E X

Table 7 Properties representation of temporal frame-adverbials............. 63

Table 8 Matching between OPMs and query templates............................ 65

I N T R O D U C T I O N

1 Introduction

"The only source of knowledge is experience."

-- Albert Einstein

1 . 1 B A C K G R O U N D

As the amount of information technology in our casual home

environment increases, there is a growing demand for efficient

interaction and ease-of-use. Many of today's households have an

Internet connection and various entertainment technologies that

utilize it. It is expected that various machines and information systems

in the “e-home” environment will be further integrated in the near

future.

This thesis is a part of the MIINA (Multimodal Interaction for

Information Appliances) project. MIINA is a joint project between

the Natural Language Processing group at Department of Computer

and Information Science, Linköping University, and Nokia Home

Communications. The project aims to investigate and develop

multimodal interaction systems for the future “e-home”. Specifically,

set of tasks that relates to the management of information for the

household is to be investigated. The long-term vision is to integrate

the systems within a common e-home framework. The approach

taken in the MIINA project is that a fruitful research strategy will start

1

I N T R O D U C T I O N

from specific examples, and work towards a common framework,

instead of trying to develop such a framework in a top-down fashion.

A specific example is the integration of Internet and digital television,

which is the topic of this thesis.

More information about the MIINA project and its goals is available

at: http://www.ida.liu.se/~nlplab/miina/.

1 . 1 . 1 N O K I A H O M E C O M M U N I C A T I O N S

Nokia Home Communications (NHC) is part of Nokia Ventures

Organization, employs 560 people and is headquartered in Sweden. NHC

works with information technology and entertainment – coined

“infotainment” – for households. Main product development sites are

located in Sweden, Finland and the US, with a well-established worldwide

sales organization. The staff in Linköping is made up of 300 people from

some 20 countries. These employees, who are specialists in a broad range

of fields, form networks through which they work in close cooperation

with colleagues around the world. The goal of NHC is to establish an

open standard for home entertainment based on open Internet

technologies.

Recently NHC released the Nokia Mediaterminal, a system that integrates

Internet and digital television into one module. This technology makes it

possible to seamlessly surf the Internet, watch TV, read and send e-mail,

play music, and chat by using a remote control. The end user of the

Mediaterminal is a private person in a household who uses the

Mediaterminal on a casual basis. Since the target group for the

Mediaterminal thus is very large and versatile, and the amount of

information available to the user is vast, there is an increasing demand of

usability on the interface for television programme queries. Usability and

ease-of-use are design aspects stressed by Nokia in general, and NHC in

2

I N T R O D U C T I O N

particular. It is desirable to develop a system that allows a wide range of

users to extract relevant, correct and manageable information efficiently –

without them having to learn a formal query language. To come to terms

with this a natural language interface to a database, containing information

about television programmes, has been suggested. The vision is that the

user should be able to ask questions about television programmes,

channels, categories, and starting times in natural language; and get

tailored, relevant, correct and manageable information back from the

system.

1 . 1 . 2 N A T U R A L L A N G U A G E P R O C E S S I N G

L A B O R A T O R Y

At the University of Linköping there is a research group for natural

language processing working at the Natural Language Processing

Laboratory (NLPLAB). NLPLAB is affiliated with the Department of

Computer and Information Science, Division for Human-Centered

Systems that works on natural language processing and related areas of

Computational Linguistics and Cognitive Science. The group was formed

in 1986. The research conducted within NLPLAB is spanning both

theoretical and applied areas of natural language processing. One of the

main areas is focused on the development of dialogue systems.

NLPLAB has developed a range of software systems and modules.

Among them is a unification-based chart parser that is used to analyze

text. There also exists a rule-based dialogue system framework, which

manages dialogues between a user and background system.

More information can be found at the NLPLAB Web site at:

http://www.ida.liu.se/~nlplab/.

3

I N T R O D U C T I O N

1 . 2 P U R P O S E

The problem space for this thesis is typed human-computer

interaction with a dialogue system with a natural language interface.

The domain is television programmes and tableaus for a

Mediaterminal/digital television box.

The aim of this thesis is two fold. First, it is to explore how much and

what kind of work that needs to be done when customizing a generic

dialogue system framework to a new natural language, a new domain,

and a new computational platform. A second aim is to implement a

functional dialogue system prototype with a natural language interface

to demonstrate the use of this interaction technique for the Nokia

Mediaterminal.

A functional prototype is to be designed and implemented, and the

experiences drawn from the development provide the answers to the

questions posed in this thesis. The research questions are further

developed in chapter 3 Problem Statement.

1 . 3 O V E R V I E W

This thesis report is outlined as follows:

Chapter 2 Related Research gives an account of the theoretical

framework relevant for this thesis. It deals with dialogue systems,

feature structures, grammar formalisms and parsing, knowledge

representation and natural language generation.

Chapter 3 Problem Statement develops the purpose stated above

into two main aspects and poses the questions this thesis aims to

answer.

4

I N T R O D U C T I O N

Chapter 4 The MALIN Framework gives a description of the generic

dialogue system framework that has been developed at the NLPLAB

at the University of Linköping.

Chapter 5 The TV-Programme Dialogue System gives a detailed

account for the procedure of building the prototype. It covers the

corpus work, the design stage and the implementation stage. The

chapter is concluded with a clarifying example run of the system.

Chapter 6 Results describes the results of the system development.

Chapter 7 Discussion discusses the results and provides the answers

to the questions stated in chapter 3 Problem Statement. Suggestions

of how to improve the extensibility and functionality are given.

In chapter 8 Conclusion, a summary of this thesis contributions is

made, as well as guidelines for future research. This chapter also

includes a suggestion of a new system architecture that can be

employed for the next version of the dialogue system prototype.

A glossary consisting of terms, concepts, and abbrevations is found in

Appendix A for easy reference.

5

R E L A T E D R E S E A R C H

2 Related Research

This chapter gives an account of the state of the art of the theoretical

research carried out in the fields relevant to this thesis. Section 2.1

Preliminaries defines a few key concepts and terms. In section 2.2

Dialogue Systems a brief introduction to dialogue systems is presented.

Two important concepts for parsing and knowledge reasoning are then

described. Section 2.3 Feature Structures and Unification deals with

feature structures and unification, while section 2.4 Grammar Formalisms

and Parsing describes the grammar formalisms that form the basis for

chart parsing, which is also described. Then an overview of some terms in

the field of representing and retrieving various kinds of knowledge

follows in section 2.5 Representing and Retrieving Knowledge. Finally,

natural language generation is described in section 2.6 Natural Language

Generation.

2 . 1 P R E L I M I N A R I E S

In order to make the rest of this thesis coherent, a few key concepts need

to be explained, and clarified:

This thesis deals with aspects of Language Technology, and not Speech

Technology. Speech technology refers to language processing on the level of

Phonology and Phonetics and is founded in Acoustics, Electrical

Engineering and Computer Science. Language technology is the process of

analyzing textual input in terms of syntax, morphology, and semantics.

7

R E L A T E D R E S E A R C H

The foundations for this lie in Computational Linguistics, Psychology and

Computer Science. The systems described herein are dialogue systems

that are limited to the processing of written – or typed – interaction

(Jurafsky & Martin, 2000).

An utterance is a generic term referring to any mode of communication.

That is, an utterance may be typed or signed for example (Russel &

Norvig, 1995).

A dialogue is a joint activity between two entities (e.g. a user and a

computer system). What makes dialogues different from other types of

discourse is that they are concerned with grounding and turn-taking.

Grounding is to establish a base of mutual understanding, or common

ground, well enough for the current purposes. In the case of dialogues,

this often attributes to confirmation of understanding of a conversational

counterpart’s utterance. Turn-taking in a dialogue can be strict (no

interruption is allowed) or flexible. For the purpose of this thesis, the

interaction is typed on a keyboard, and the system described herein

enforces strict turn-taking (i.e. interruptions and parallel utterances are not

allowed). A dialogue system allowing spoken interaction requires more

advanced concepts (e.g. incremental speech recognition and parsing for

flexible turn-taking) (Clark, 1996).

Natural language refers to human languages that can be written and/or

spoken (e.g. English, Swedish and Latin), whereas formal languages are

rigidly defined and artificial (e.g. Logic, Java, SQL and Lisp). (Jurafsky &

Martin).

Domain is an area of knowledge, for which a specific system is developed.

A genre is a type of discourse with certain specific features and content.

Sub-language is the set of a natural language that is used within a genre

(Jurafsky & Martin).

8

R E L A T E D R E S E A R C H

2 . 2 D I A L O G U E S Y S T E M S

The general definition of a dialogue system (sometimes called a

conversational system) is, according to Allen et. al (1998), a computer

system with a natural language interface that allows the user to

communicate in his or her natural language, and involves more or less

complex dialogues.

The range of complexity in dialogue systems is wide. Dialogue system

complexity can be classified as shown in Table 1:

9

R E L A T E D R E S E A R C H

Table 1 Classification of dialogue complexity range. From Allen et al (2001b).

Technique

Used

Example Task Task

Complexity

Dialogue

Phenomena

handled

Finite-state

Script

Long-distance

dialing
least complex

User answers

questions

Frame-based Getting train

timetable

information

User asks

questions, simple

clarifications by

system

Sets of Contexts Travel booking

agent

Shifts between

predetermined

topics

Plan-based

Models

Kitchen design

consultant

Dynamically

generated topic

structures,

collaborative

negotiation sub-

dialogues

Agent-based

Models

Disaster relief

management

most

complex

Different

modalities (e.g.

planned world and

actual world)

To put things in context: most dialogue systems constructed to date dwell

in the first two regions. Furthermore, the gap between theoretical (i.e.

non-implemented) dialogue systems and existing implemented dialogue

1 0

R E L A T E D R E S E A R C H

systems is vast. There are several capabilities that dialogue systems of

various complexities should feature according to various literature

sources: interpretation, handling tasks, requests, initiative turn-taking,

focus and dialogue history handling, domain knowledge reasoning,

response generation etc. There are to the author’s knowledge very few

implemented dialogue systems to date that feature all the capabilities

above. It can therefore seem that dialogue systems of little complexity are

hardly worth the name dialogue systems, at least not in the sense that the

word “dialogue” is normally used. Also, since there is a separation

between language technology and speech technology, the term dialogue

system is sometimes denoting spoken, and sometimes written, and

sometimes multimodal, interaction. Henceforth, a dialogue system refers

to a computer system that interacts with users through natural language

interpretation and generation, where the user is not restrained to use pre-

defined commands. The modality may be spoken, written, typed or even

signed, but for the purpose of this thesis only typed interaction is

discussed.

There are several other classifications available on dialogue systems and

their capabilities, but for the purpose of this thesis the classification in

Table 1 should be sufficient.

2 . 2 . 1 N A T U R A L L A N G U A G E I N T E R F A C E S

Jacobs and Rau (1988) claim that natural language interfaces are “making

the task of communicating with the information source easier, allowing a

system to respond to a range of inputs, possibly from inexperienced users,

and to produce more customized output.” (p. 85).

A natural language interface places no constraints on the user, since he or

she can provide the system with any string of words. A system with no

constraints requires error handling (Norman, 1988). Allen et al (1998)

1 1

R E L A T E D R E S E A R C H

suggest that a dialogue system that does not constrain the user has as a

goal to expand the user’s option in the interaction. Watt (1968, in

Jönsson, 1993) defines a system as habitable if the user never feels that he

or she is restrained by prohibited sentences in the interaction. A delicate

problem when building a dialogue system is to design a habitable system

with limited coverage even so (see section 2.2.2 Linguistic Coverage).

Recently, natural language interfaces for relational databases have

emerged. According to Androutsopoulos et al (1994), the main

advantages with natural language interfaces for database information

retrieval are:

� Natural language is not an artificial language, and requires no

training from a native speaker. The user does not have to spend

time learning to use a new interaction technique.

� Natural language is a better medium for handling anaphora and

elliptical expressions, and is suitable for dialogue systems.

� Natural language is better for questions dealing with negations and

universal quantifications.

Experiments show that natural language interfaces for database

information retrieval seem to be better in queries where data from many

tables need to be combined, and in queries that are not similar to the ones

that users encounter during training sessions (Bell & Rowe, 1992). A

conclusion drawn from this is that the use of natural language interfaces is

an effective method of interaction for casual users, who have no wish or

ability to learn an artificial querying language, such as SQL. Natural

language interfaces are suitable for users performing question-and-answer

tasks, in a restricted domain (Androutsopoulos et al, 1994).

1 2

R E L A T E D R E S E A R C H

2 . 2 . 2 L I N G U I S T I C C O V E R A G E

As mentioned in section 2.2.1 Natural Language Interfaces, it is desirable

that a dialogue system with a natural language interface is habitable. Even

though Jönsson (1993) approves of, and recommend habitable systems,

he stresses the importance of not having the system mimicking general

human conversation. The main reason for this is that it is too slow, and

that it can provide the user with an erroneous model of the system’s

capabilities (Jönsson, 1997). Androutsopoulos et al (1994) agree and claim

that the user could be misled by the system’s ability to process language,

and assume that the system possesses intelligence. In contrast, the work

of Allen et al (1998), aims to build dialogue systems that mimic human

conversation, but in a specialized domain.

It is not feasible to regard a dialogue system as a general-purpose system.

The reasons for this are two: First, the linguistic component of a system

that would allow unrestricted natural language dialogues would be

massive. It would require a very tedious configuration phase, and require a

lot of computational power. Second, the knowledge base for a system

with an unrestricted domain would require even more work and power,

and chances are that the bulk of such a system would not be used

(Jönsson, 1993). Each specific application has its own requirements.

Identifying the system’s domain, end users, and type of task(s) are

therefore essential. Allen et al (1998; 2001b) bring up the notion of

practical dialogues. A practical dialogue is focused on accomplishing a

concrete and well-defined task, such as task-oriented dialogues,

information-seeking dialogues and command/control dialogues. The

distinction between full natural language, and the sub-language of a

practical dialogue is important to make, since the effort and system

requirements required to model them differ. This is concluded in The

Practical Dialogue Hypothesis (Allen et. al, 1998): “The conversational

1 3

R E L A T E D R E S E A R C H

competence required for practical dialogues, while still complex, is

significantly simpler to achieve than general human conversational

competence.” (p. 2).

Depending on the complexity of the task, the syntactic and semantic

approach can be more or less detailed. The system should handle the level

of complexity of the sub-language associated with the task.

The sub-language of a specific task is described in a project corpus. The

corpus is a set of texts that are representative in respect to genre and

domain, and that have been gathered for the purpose of system

development. According to Kelley (1983, in Jönsson, 1993) only those

phenomena actually occurring in the corpus need to be considered when

deciding on linguistic coverage. The catch to this is that the corpus needs

to be rather large in order to account for every action taken by every

potential user.

According to The Principle of Compositionality1, the meaning of a sentence

is the summary of the meanings of its parts. Not only does the

meaning of the individual words contribute; the ordering, grouping

and relations between them also bear meaning for the sentence as a

whole. To illustrate the need for making allowance for word order,

consider the following example: The sentences “I eat what I see” and

“I see what I eat” contain the same words, but their meanings are

different due to the ordering of the words. Ignoring the word

ordering, and treat them as identical “bags of words”, would make

them mean the same thing, (Jurafsky & Martin, 2000).

1 According to Jurafsky and Martin (2000) the principle of compositionality is normally referred to Frege, but

that there appears to be little reason for this ascription. Janssen (1997, in Jurafsky & Martin) discusses this topic

in more detail.

1 4

R E L A T E D R E S E A R C H

2 . 2 . 3 D O M A I N C O V E R A G E

Deciding how to analyze the syntax and semantics of natural language

depends on the complexity of the task at hand. Simple information

extraction tasks may only require identification of a few keywords, while

more advanced tasks require full syntax and extensive semantics.

Knowledge engineering is present in all systems where domain-specific

issues exist. Cowie and Lehnert (1996) stresses that the knowledge

coverage decision is very important, since this can help avoiding

“knowledge engineering bottlenecks”. As mentioned in the previous

section, a dialogue system with a very large – or unrestricted – knowledge

base requires extensive knowledge engineering. This takes time and effort

to perform. There is a power in what Cowie and Lehnert call “shallow

knowledge”, which is a term developed to describe a methodological

approach to remove knowledge engineering bottlenecks, and thus

minimizing the required knowledge engineering. To minimize a system’s

knowledge engineering, Cowie and Lehnert refer to minimizing the effort

associated with knowledge acquisition. To use shallow knowledge in

information extraction systems means that ad hoc-rules are specified, and

bound to the domain. This approach has been criticized, since it implies

loss of generality. Still, Cowie and Lehnert justify it since “shallow

knowledge is so cheap to acquire that it is cost-effective to treat it as a

disposable artifact […] and we need not worry about knowledge

engineering bottlenecks.” (p. 86). In comparison with other pieces of

overhead associated with constructing computer systems (such as code

optimization, documentation and user interface design) the cost of the

shallow knowledge approach becomes rather small.

1 5

R E L A T E D R E S E A R C H

2 . 2 . 4 S Y S T E M A R C H I T E C U R E A N D

M O D U L A R I Z A T I O N

Researchers generally agree upon the need to modularize dialogue systems

(Allen et al; 1998; 2001a; 2001b; Degerstedt & Jönsson, 2001; McRoy et

al, 1999; Flycht-Eriksson & Jönsson, 2000, among others). The exact

layout of the modules varies depending on the system. A module has a

specific responsibility (such as interpretation, response generation, or

knowledge management) and interacts with the other modules according

to native rules, or rules in the controlling module. Various approaches to

the controlling module have been suggested. A separate module, called a

hub or facilitator for controlling the information flow can be used (cf.

Flycht-Eriksson, 2000), or the controlling function can be put in the

dialogue management module (Jönsson, 1993). Even though the exact

module design differs, most dialogue systems make a distinction between

a linguistic system and a background – or knowledge – system. Figure 1

shows a simple and generic dialogue system architecture.

Figure 1 Generic dialogue system architecture.

It proves advantageous to further divide the linguistic module into sub-

units. Typically, there is an interpreter (parser) with a domain-dependent

lexicon, a response generator and a dialogue management module

included in the linguistic component. According to Thompson and

1 6

R E L A T E D R E S E A R C H

Thompson (1985) the modularization of the linguistic component makes

the required effort to change natural language minimal. This is especially

true for systems where the output consists of simple lists and tables. In

these cases, the response generator needs very little customization.

The main reason for using modules is that this increases the ability to

extend the system in various ways. Allen et al (1998) claim that collapsing

the various modules together for an application makes the system hard to

construct and debug, and hard to modify for new tasks and domains.

Extensibility2 spans over natural language (NL) extensibility, portability,

scalability and transportability. These terms are used in different ways by

various authors. The view in this thesis is that NL extensibility refers to

changing the natural language (e.g. from Swedish to English), portability

refers to changing domain (e.g. provide a new knowledge base) whereas

scalability refers to extending an existing domain (by adding new facts to

the same domain), and transportability implies changing computational

platform (e.g. from Unix to a Windows platform).

The need for extensibility in general, and portability in particular arises

because the current capabilities of natural language dialogue systems are

limited to narrow domains and restricted contexts (Hafner & Godden,

1985).

The modular approach is suitable when dealing with extensibility issues.

Modules with clear-cut borders can be reused, and ported to new

modules. The two main modules are in most cases one linguistic module,

and one background management module. To separate the linguistic

component from the background system implies that the general

linguistic framework can be reused when extending the system. The same

2 Extensibility is sometimes refered to as customization. The two terms are used interchangeably in this thesis.

1 7

R E L A T E D R E S E A R C H

goes for the background system. With a generic and separate domain

knowledge manager, the system is more easily ported to a new domain.

The dialogue manager should only be involved in processes concerning

the actual dialogue with the user, and not be involved with background

system access. The domain knowledge manager should, according to

Flycht-Eriksson and Jönsson (2000), handle this. Dahlbäck and Jönsson

(1999) conclude that a modular approach makes it possible to reuse the

core of a dialogue system when extending it to a new domain, without

having to incorporate aspects of dialogue management that is not

required in the new domain.

To customize an existing system to a different platform, Thompson and

Thompson recommend using open systems standards. The consequences of

open systems standards are that components can be implemented on

different hardware by different vendors, making them more transportable

and extensible. Development time and cost can be minimized since many

aspects of a system can be built of existing components, and be adapted

to evolving needs. Examples of open systems are the programming

language Java and the Linux platform. This is to contrast with for

example the proprietary Allegro Lisp compiler.

The process of analyzing syntax and semantics in text is called parsing.

Before describing parsing in further detail (see section 2.4.3 Chart Parsing

and 2.4.4 Lexicon and Grammar), explanations of feature structures,

unification (section 2.3) and two grammar formalisms (sections 2.4.1

Context-Free Grammar and 2.4.2 Unification-Based Formalism) are

needed.

1 8

R E L A T E D R E S E A R C H

2 . 3 F E A T U R E S T R U C T U R E S A N D
U N I F I C A T I O N

Two central concepts of computational linguistics are feature structures and

unification. In general, they belong to a reductionist approach that allows

explanations of a large structure’s behavior as a function of the combined

behaviors of its substructures (Jurafsky & Martin, 2000). A structure can

be thought of as representing an object, which can have complex sets of

properties attached. Models that use such structures are called constraint-

based formalisms.

When implementing a constraint-based formalism, an attribute-value

matrix can be used. This is referred to as a feature structure. Figure 2

shows an example of a simple feature structure:

ATTRIBUTE1 VALUE1

ATTRIBUTE2 VALUE2

… …

ATTRIBUTEn VALUEn

Figure 2 A simple feature structure with atomic values, represented in an attribute-

value matrix.

The value fields in Figure 2 consist of atoms, but they can also contain

substructures, as in Figure 3.

ATTRIBUTE1 ATTRIBUTE1a

ATTRIBUTE1b

VALUE1a

VALUE1b

ATTRIBUTE2 VALUE2

Figure 3 A feature structure containing a substructure.

A feature structure can be represented in a graph, which illustrates a

feature path. This is called a Directed Acyclic Graph (DAG) and is shown in

Figure 4.

1 9

R E L A T E D R E S E A R C H

VALUE 1a

VALUE 1b

VALUE 2

ATTRIBUTE 1a

ATTRIBUTE 1b

ATTRIBUTE1

ATTRIBUTE 2

Figure 4 The feature structure represented as a Directed Acyclic Graph (DAG).

 A third way to represent feature structures is in equation form, as shown

in Figure 5. This makes them, as we shall see, suitable when using feature

structures in conjunction with context-free grammatical rules (see section

2.4.2 Unification-Based Formalism).

0 Property1 Property1a = Value1a :

0 Property1 Property1b = Value1b :

0 Property2 = Value2 .

Figure 5 The feature structure represented as an equation. ‘0’ is a reference to the top

of the structure.

Feature structures can be used to represent information about an object

and its properties. In language technology, feature structures are

particularly useful for both parsing (see section 2.4.3 Chart Parsing) and

domain reasoning (see section 2.5.2 Reasoning About Domain

Knowledge).

The main advantage of using feature structures is that several structures

can be compared and merged through unification. A unification procedure

compares two feature structures and returns – if possible – one unified

2 0

R E L A T E D R E S E A R C H

structure. Figure 6 shows a successful unification of two feature

structures.

AttrA Val1

AttrB Val2
∪

AttrB Val2

AttrC Val3
 =

AttrA Val1

AttrB Val2

AttrC Val3

Figure 6 Unification of two feature structures.

The unfication results in the creation of a new feature structure containing

the union of the information from the two original feature structures. A

complete unification algorithm is presented by Jurafsky and Martin

(2000, p. 423).

2 . 4 G R A M M A R F O R M A L I S M S A N D P A R S I N G

There are a number of different grammar formalisms that can be used in

dialogue systems for natural language. To provide the background

information necessary for the concept of chart parsing, two grammar

formalisms are discussed. First, context-free grammar, which builds on

categories that are ordered according to a set of rules, is described.

Second, the unification-based formalism that combines context-free

grammars with unification of feature structures is explained.

2 . 4 . 1 C O N T E X T - F R E E G R A M M A R

The idea of context-free grammars (or phrase-structure grammars)

was formalized by Chomsky (cf. Jurafsky & Martin, 2000) and consists

of a set of rules for predefined categories. Each rule expresses the way

that the categories can be grouped and ordered together. Figure 7

shows a simple context-free grammar:

2 1

R E L A T E D R E S E A R C H

S → NP VP

NP → N

NP → PROPN

VP → V NP

N → Linguistics

PROPN → Abraham

V → likes

Abbrevations:

S = sentence

P = phrase

N = noun

V = verb

PROPN = proper noun

Figure 7 Sample context-free grammar.

The sentence "Abraham likes Linguistics" is parsed as being a

sentence belonging to the category S, since it consists of a noun

phrase (category NP) with the proper noun (category PROPN)

"Abraham", and a verb phrase (category VP) consisting of the verb

(category V) "likes" and the noun (category N) "Linguistics". This can

be represented in a parse tree, as in Figure 8.

Figure 8 A parse tree generated from a context-free grammar.

Usually, context-free grammars are thought of as a device for

assigning a structure to a given sentence, or as a device for generating

sentences (Jurafsky & Martin, 2000).

2 2

R E L A T E D R E S E A R C H

2 . 4 . 2 U N I F I C A T I O N - B A S E D F O R M A L I S M

Unification-based formalisms are based on Chomsky’s transformational

grammar. The drawback with this approach is that it is hard to construct

efficient parsing algorithms. To come to terms with this, various

unification-based formalisms were developed. Among them is the PATR

formalism (cf. Strömbäck, 1996). PATR can be viewed as a context-free

grammar with feature structures (i.e. DAGs) as categories. This means

that the categories need not be atomic, but consist of features with

attached values.

The use of feature structures allows for unification (as mentioned above),

and is helpful when we want to merge partial information structures. This

means that new information can be added to the structure as long as it is

compatible. Figure 9 shows a sample PATR rule.

NP → DET N :

0 head = 2 :

1 numb = 2 numb :

1 gend = 2 gend .

Figure 9 Extending context-free grammar with PATR unification constraints. From

Hansen (1998, p. 2).

The first row is an ordinary context-free grammar rule. What follows is

the DAG in its equation form (see section 2.3 Feature Structures and

Unification). The DAG contains information about how to unify the

categories.

Extending the context-free grammar with unification constraints, allows

us to largely ignore the implemented search strategy used by the parser

module. This is due to the order-independent nature of unification

(Jurafsky & Martin, 2000).

2 3

R E L A T E D R E S E A R C H

Table 2 summarizes how context-free grammars, parse trees, feature

structures, DAGs and unification relate to each other.

Table 2 Relationship between context-free grammars, parse trees, feature structures,

DAGs and unification.

Information
representation

Definition Generation

Parse tree Context-free grammar Parser

Feature structure Rule + DAG in equation
form Unification

The main point this leads to is that feature structures are more

semantically orientated than parse trees, since the objects in them are

described with respect to their meaning instead of their order.

The tools provided above are useful in the process of automatically

parsing written natural language. The next section briefly describes

parsing in general, and chart parsing in particular.

2 . 4 . 3 C H A R T P A R S I N G

As mentioned earlier, parsing is the process of assigning part of speech

attributes to each word in a sentence (Russel & Norvig, 1995). Usually,

this denotes automatic analysis of a text, with a given lexicon and set of

grammatical rules. The purpose of a parsing module is to interpret natural

language user input, and generate a data structure to represent it.

Traditionally, complete syntactic analysis has been favored. For

information extraction systems, care must be taken before trying to

implement complete analysis. The problem is that it is too demanding

computationally, and requires a lot of “unnecessary” work, when

implementing the grammar and lexicon. Cowie and Lehnert (1996) advice

that one can “get by with minimal syntax” (p.85), when implementing the

2 4

R E L A T E D R E S E A R C H

parser. This is referred to as shallow or partial parsing and is useful when

extracting information, since the complete syntax is often not needed

(Jönsson, 1993). Analysis in shallow interpretation is done by parsing as

small parts of the utterance as possible (Jönsson & Strömbäck, 1998).

Related to shallow parsing is the parser’s robustness. Since it is desirable to

minimize the size of the lexicon, chances are that the user will use words

not covered by it. With a robust parser, these pitfalls can be avoided. A

parser that allow for general rules has the ability to leave some words non-

analyzed. The main advantage of this is that the size of both the lexicon

and the grammar can be decreased (Hansen, 1998). The notion of

robustness forms one part of the attempt to fulfill Norman’s (1988)

requirement of error handling in a system with no constraints (see section

2.2.1 Natural Language Interfaces), and is one step in the direction of

creating a habitable dialogue system.

The basic algorithm used for chart parsing is the Earley algorithm, which

was constructed by Earley (1970). The core of this algorithm is a left-to-

right pass that fills out an array called a chart. For each word in the parsed

sentence, the chart contains information about the parse trees generated

so far (called states). The function of the chart is to prevent repeated

parsing of the same string, and to prevent that the same is generated more

than once. This is done through prediction, scanning and completion

(Jurafsky & Martin, 2000).

Chart parsing is object oriented. Each meaningful text unit (depending on

the rule that is used when parsing text) corresponds to a hierarchically

organized object. This makes it suitable not only for syntactic and

morphological analysis, but also for compositional semantic

representation (Wiren, 1992). The interpreted input is represented as a

feature structure in the matrix format.

2 5

R E L A T E D R E S E A R C H

2 . 4 . 4 L E X I C O N A N D G R A M M A R

The parser utilizes a word list, called a lexicon. The lexicon should

theoretically consist of all lexical terms occurring in the sub-language of

the genre in which the system is supposed to be used (Jurafsky & Martin,

2000). In practice, this is not feasible, since it requires too much effort and

computer power.

A problem when constructing lexicons in English is the notion of open

nominal compounds (“ice cream”, “action movie”), and phrasal verbs (“married

[somebody] off”). The traditional view of a word as being a contiguous

sequence of alphabetic characters is thus not completely true

(Amsler, 1989). It is desirable that the lexicon format supports open

nominal compounds and proper nouns (such as first name and last

name); otherwise this has to be implemented in the grammar rules.

The simplest – but largest – possible lexicon would be a list of all existing

words in a natural language (or sub-language). This would be a very large

and cumbersome list, which would not reflect the morphological

structure of the language, and the dynamic aspects such as derivations and

compounds. Also, the list would contain needless duplicates of

morphemes. To come to terms with this, a computational lexicon – or mini-

lexicon – is recommended by Jurafsky and Martin. The computational

lexicon consists of a list of stems, and universal morphological rules for

the chosen natural language. The main advantage of this is the fact that all

words belonging to a certain word type behave the same can be used

when building the lexicon. For example, all nouns ending with a ‘-y’ in

singular (e.g. “sky”, “city”, “wallaby”) behave the same when

transformed into plural. They all drop the ‘-y’ ending and get the ending

‘-ies’ (“skies”, “cities”, “wallabies”). Instead of listing all possible

derivations from a word stem, the computational lexicon only contain the

stem itself, along with information about what type of word it is. From

2 6

R E L A T E D R E S E A R C H

there, the various forms and syntactic categories originating from the stem

can be derived.

The grammar in chart parsing follows a unification-based formalism and

consists of rules that decides how the DAGs connected to the words in

the lexicon are to be grouped and unified (see section 2.3 Feature

Structures and Unification).

The main advantages of reducing the size of the lexicon and grammar are

that development time, and computation time, are reduced (Jönsson &

Strömbäck, 1998).

2 . 5 R E P R E S E N T I N G A N D R E T R I E V I N G
K N O W L E D G E

In the previous section the relevant computational linguistic framework

has been discussed. Now it is time to deal with the background system,

i.e. the knowledge base. The purpose of a knowledge base is to provide

the system with information, and means to access and reason about it.

2 . 5 . 1 R E L A T I O N A L D A T A B A S E S

A relational database represents a coherent model of a part of the world

(Androutsopoulos et al, 1994). A relational database can be defined as a

collection of information organized into interrelated tables of data and

specifications of data objects. The information is structured in tables that

are connected to each other through primary and foreign keys. This means

that the information can be retrieved using a formal query language

(e.g. SQL). A formal query language is artificial and requires training to

master. In order to remove ambiguity and redundance in the tables,

databases can be normalized. Normalization is the process of structuring a

relational database schema such that most ambiguity is removed.

2 7

R E L A T E D R E S E A R C H

To make the information retrieval task easier for users not willing or able

to learn a formal query language, two other interaction techniques have

been designed: graphical interfaces and form-based interfaces. Graphical

interfaces allow the user to use drag-and-drop techniques with a mouse to

manipulate and extract data. Form-based interfaces use predefined fields

that can be filled out by the user. These three approaches all have their

own advantages and disadvantages, and the decision which one to use in a

particular system depends on the complexity and type of task. They all

have in common that they require some extent of training before they can

be properly employed. One answer to the need for easier interaction

techniques is the natural language interface, discussed in section 2.2.1

Natural Language Interfaces.

2 . 5 . 2 R E A S O N I N G A B O U T D O M A I N K N O W L E D G E

As mentioned in section 2.3 Feature Structures and Unification, feature

structures and unification-based formalisms are useful for semantic

information representation. This makes reasoning about domain

knowledge possible. Flycht-Eriksson and Jönsson (2000) recommend a

generic domain knowledge manager with various knowledge modules

(e.g. temporal reasoning module, spatial reasoning module). When

customizing the generic framework to a specific application it is

advantageous if the domain knowledge manager is only concerned with

phenomena related to the background system.

There are different communicative acts a user can perform when interacting

with a dialogue system. Flycht-Eriksson and Jönsson define a structure

shown in Figure 10 for different communicative acts.

2 8

R E L A T E D R E S E A R C H

Communicative
acts

Factual information
acts

Dialogue control
acts

System requests Task requests

Simple Complex

Figure 10 Communicative acts.

2 . 5 . 3 T E M P O R A L R E A S O N I N G

Temporal information is expressed in a number of ways in natural

language. In order to objectively model temporal expressions the linguistic

form needs to be analyzed. Smith (1981) categorizes temporal frame-

adverbials into three categories:

• Deictic phrases (e.g. “last week”, “tomorrow”)

• Dependent phrases (e.g. “later”, “after”)

• Clock calendar phrases (e.g. “at midnight”, “at noon”)

Deictic phrases are anchored in the time of speech, and a dependent is

anchored in another given time in the context, whereas a clock calendar

can anchor to either speech of time, or another context-dependent time

(Merkel, 1988).

2 9

R E L A T E D R E S E A R C H

Merkel makes a distinction between periods and phases. Periods are

segments of time with a certain length and can have a number of

subperiods that together exhaust the main period. A phase is a specific

instance of an ordered subperiod.

Periods can be either fuzzy (such as seasons, and ”night”) or bounded (such

as months, and weekdays). Fuzzy expressions present a problem when

trying to model them. In order to determine for example at what time

”afternoon” turns to ”night”, interpretation principles are needed.

Another troublesome aspect of temporal expressions is the ”next”

expression. This is ambigouos in some cases. Depending on speech of

time, the expression ”next Thursday” can mean either the closest

following Thursday (speech of time +1), or the Thursday in the next week

(speech of time +2).

Merkel discusses time adverbials, and claims that order is not always

necessary within a temporal phrase. The following phrases have the same

meaning and consist of the same meaning-bearing constituents:

� on Monday next week at 6 pm

� At 6 pm next week on Monday

� Next week on Monday at 6 pm

Interpretation principles are needed to resolve temporal expressions. The

result of a successful interpretation is, according to Merkel, a DAG with a

set of phasal values.

2 . 6 N A T U R A L L A N G U A G E G E N E R A T I O N

Natural Language Generation (NLG) is when a speaker uses knowledge

about a language to decide what to say (cf. Russel & Norvig, 1995).

Artificial NLG has not been stressed as much as interpreting natural

language within computational linguistics and artificial intelligence.

3 0

R E L A T E D R E S E A R C H

According to Russel and Norvig, this is because “humans are anxious to

talk to machines, but are not as excited about them talking back” (p.657).

A specific type of NLG is response generation. This is the generation of the

response to a query in for example an information extraction system.

There are three classes of generation, ranging from simple to advanced:

� Canned text

� Templates

� True generation

Which of these methods to use depends on the system complexity,

whether or not the natural language is going to change, and how big the

range of the responses is. For information extraction systems, where the

responses mostly consists of tables and lists, canned text or templates are

sufficient (Thompson & Thompson, 1985). Templates are based on the

corpus, and are filled with relevant information from the knowledge base,

depending on the request. Templates can be recursive and combined

(Santamarta, 2001). True generation is expensive and requires tedious

configuration (Androutsopoulos et al, 1994) and is only worthwhile if the

output requires generation of complex sentences. It is important to note

that even when dealing with simple task requests that give responses in

the form of tuples from a database, additional types of responses are

needed. Androutsopoulos et al present four cases where simply returning

a database table is insufficient. They can be summarized as follows:

� The retrieved database tuples may contain encoded information

that needs to be explained to the user.

� The system may not be able to understand the question, in which

case no tuples are returned. The cause of failure should be

explained to the user.

3 1

R E L A T E D R E S E A R C H

� The user’s question may contain false presuppositions about the

database or the world, in which case the system should report the

false presuppositions.

� The user’s request may not express literally what the user wants to

know (e.g. Yes/No questions might require more than just a single

“yes” or “no”).

In attempting to provide appropriate error handling there are some

system-related responses that need to be configured. Examples of this

are when the user uses modal questions (i.e. questions about the relations

between information in the database), or meta-knowledge questions (such as

“Can I use slang when interacting with this system?”). Meta-knowledge

questions are also referred to as system requests (as in Figure 10).

3 2

P R O B L E M S T A T E M E N T

3 Problem Statement

This chapter consists of a development of the purpose, and forms

questions that are to be answered in this thesis.

The purpose of this thesis is to explore how much and what kind of

work that needs to be carried out when customizing a generic dialogue

system framework to a new natural language, a new domain, and a

new computational platform.

As pointed out in the previous chapter, a natural language dialogue

system can be divided in two components: the linguistic component

and the domain – or knowledge area – component. The same division

can be made when breaking down this thesis’ purpose. Thus, the

purpose is viewed from two aspects: one linguistic aspect and one

domain aspect. Each aspect has its own issues, and amounts to

research questions. The focus of this thesis is to resolve some of the

issues in the linguistic and domain aspects, the connection between

them, and the workloads in the design and implementation of a

dialogue system prototype.

The following sections give an overview of the various aspects of the

purpose, and are concluded with the research questions of this thesis.

3 3

P R O B L E M S T A T E M E N T

3 . 1 T H E L I N G U I S T I C A S P E C T

The linguistic aspect raises questions about what sub-language is being

used by the to-be users. It is interesting to identify the sub-language,

and find a suitable representation for it.

A second question of the linguistic aspect is how to increase the

dialogue system’s interpretation robustness. Depending on how well

the sub-language has been identified and accounted for in the dialogue

system, more or less robustness is needed. In all cases, since there are

no constraints in the interface, the user will sooner or later provide

input that has not been explicitly accounted for. A robust dialogue

system will be able to accommodate this. Therefore, it is desirable to

find out how a dialogue system can increase its robustness.

The generic framework, as well as the chart parser module (see

chapter 4 The MALIN Framework), was developed for Swedish. In this

thesis, the natural language is English. This raises another linguistic

question: what needs to be done when changing the natural language

in the interpretation and response generation?

To summarize, this thesis deals with three questions raised by the

linguistic aspect of the general problem:

� How is the sub-language identified, and how is its

representation defined?

� How do we enhance interpretation robustness on utterance

level in a dialogue system?

� What needs to be done when changing natural language in a

dialogue system?

3 4

P R O B L E M S T A T E M E N T

3 . 2 T H E D O M A I N A S P E C T

The knowledge area for this thesis is the realm of television

programmes and television programme tableaus. There exists a wide

range of channels, which broadcast an even wider range of

programmes. The programmes have titles, start times and start dates;

they are divided in categories, certain programmes have actors,

directors and presenters, etc. The information available about

television programmes is not only vast; it is also subject to change.

Every day, new shows are created and broadcasted, so even though

the domain is set, the content changes constantly.

On the domain level, several interesting and challenging questions

require attention. As with the sub-language, the domain has to be

identified since there are not enough resources to cope with a generic

cross-domain system. Just as with the definition of the sub-language

representation, the domain information representation is crucial to

define.

The analogy with the linguistic aspect continues with the extensibility

issue. The generic framework described in chapter 4 The MALIN

Framework needs to be customized to a new domain. This is referred

to as the system’s portability, and finding out what characteristics

make the system more or less portable is relevant, since this in turn

affects the system’s scalability. Scalability is a special case of portability

and refers to the system’s ability to upscale – or change content –

within an already existing domain. Identifying how to make allowance

for scalability is especially interesting for dialogue systems that are

dealing with an ever-changing domain, such as the television tableau

domain. This implies design decisions in data representation, as well as

system architecture.

3 5

P R O B L E M S T A T E M E N T

Three main questions are posted in this section:

� How is the domain identified, and how is the representation of

the information in the domain defined?

� How is portability in a dialogue system enhanced?

� How do we construct a system architecture and data structures

that allow for scalability?

3 . 3 C O U R S E O F A C T I O N

Having broken down the general problem into linguistic, domain and

workload aspects and posed a number of questions, the course of

action has to be set. To contribute to the issues described above, a

functional prototype of a dialogue system, based on the MALIN

architecture, is to be designed and implemented for the television

tableau domain. Dialogue systems have been developed before, and

the prototype developed in this thesis is not particularly advanced.

The aim of the development is to complete a full development

iteration to find out where the main efforts in a more full-on, robust

dialogue system development should be put.

3 6

T H E M A L I N F R A M E W O R K

4 The MALIN Framework

Before moving on to the design and implementation of the dialogue

system, the general architecture of MALIN, and its predecessor LINLIN,

needs to be described. This architecture is a generic dialogue framework,

which design contributes to the system in this thesis. MALIN and LINLIN

are developed at NLPLAB. Along with the MALIN architecture, a chart

parser called Flexchart, is provided.

4 . 1 T H E M A L I N S Y S T E M A R C H I T E C T U R E

The LINLIN architecture is described by Jönsson (1993; 1997) and is a

natural language dialogue system framework originally written in Lisp. It is

the predecessor of the multimodal MALIN architecture, currently used by

NLPLAB (Degerstedt & Jönsson, 2001). The LINLIN framework has

previously been implemented in Swedish on a Unix platform in a used

cars domain called CARS (Jönsson, 1993). The approach taken in LINLIN

is to let the dialogue manager be the central controller of the interaction.

The architecture of the CARS customization is shown in Figure 11.

3 7

T H E M A L I N F R A M E W O R K

Figure 11 The architecture of the LINLIN-based CARS dialogue system.

A new architecture has been suggested to enhance the domain

reasoning capabilities of the LINLIN framework. The architecture and

connection to other modules of the new framework has been named

MALIN and is shown in Figure 12 (Flycht-Eriksson & Jönsson, 2000).

The MALIN framework is written in Java.

3 8

T H E M A L I N F R A M E W O R K

Figure 12 The conceptual design of the MALIN framework (from Flycht-Eriksson,

2000).

MALIN is the architecture that is to be customized for the television

tableau domain in this thesis. The starting point for the system in this

thesis is the CARS customization, which had no implemented domain

knowledge manager module (see Figure 11). Currently, work is carried

out at NLPLAB to implement the domain knowledge manager

module for the MALIN architecture (Flycht-Eriksson, 2001), but at the

time of writing, that work is not finished.

Jönsson (1993) identifies two important concepts for simple information

requests: objects and properties. Simple requests deals with properties of and

relations between simple objects, for which the answers can be values of

properties or names of objects. A central concept of the object/properties

approach is that they can be represented as feature structures, and be

unified. The feature structures contain information about objects and

properties belonging to them. Also, the structures can contain markers. A

dialogue system and other modules reason about these structures.

Henceforth, these structures are referred to as OPMs (Objects, Properties,

and Markers) and they are a part of the LINLIN, as well as the MALIN

3 9

T H E M A L I N F R A M E W O R K

general framework. An object typically includes one or more fields by

which the object is identified in the knowledge representation structure.

The object-fields are thus related to the concept of key fields in relational

databases. Properties have aspects and atomic or non-atomic values

attached. The properties are aspects of the current object that the user

and system are interested in. Markers can be viewed as flags that are used

on a conceptually higher level than properties and object-fields. For

instance, a marker flag can signal that the current OPM is referring to a

system question – as opposed to a task-related query. Also, a marker can

contain dialogue information, e.g. “greeting”, or “farewell”.

The MALIN architecture supports sub-language representation as

unifiable OPMs. The domain specific OPMs are further described in

section 5.4.2 The Dialogue Manager Module. Generally, they consist

of objects, whose properties are modeled as aspect/value matrices.

Figure 13 shows an example OPM from the CARS implementation:

Obj: Manufacturer: Volvo

Model: 850

Year:

Prop: Aspect: speed

Value:

Figure 13 An OPM for the question "How fast is a Volvo 850" (from Flycht-Eriksson,

2001).

MALIN requires an interpreter that parses the user’s input. In previous

implementations the Lisp-based chart parser Flexchart, also developed

by NLPLAB, has been used. MALIN communicates with Flexchart

using a socket connection.

4 0

T H E M A L I N F R A M E W O R K

4 . 2 T H E C H A R T P A R S E R F L E X C H A R T

Flexchart is a robust chart parser written in Lisp for the Unix platform,

and has been used in the customization of the MALIN framework in the

used cars domain. The original algorithm is from O’Shea and Eisenstadt

(1984), but has been modified since (Hansen, 1998). Flexchart is robust,

because it allows for partial parsing. The means for doing this is to

construct general rules in the grammar. In Flexchart, an important aid to

construct general rules is the use of a “Kleene star” (i.e. the * symbol), to

denote any word. The main advantages of this are that the size of the

grammar decreases, and the parsing gets less prone to errors such as

typos, and makes up for lack of lexicon coverage.

The grammatical formalism in Flexchart is the unification-based PATR

(see section 2.4.2 Unification-Based Formalism), which means that the

rules can contain DAGs (in equation form) that can be unified. Flexchart

takes a text string as input and produces a feature structure in string

format as output.

Flexchart is flexible, since it can be loaded with a grammar and lexicon of

choice. The grammar and lexicon are implemented as two separate text

files. The lexicon supports the use of a computational lexicon, where the

language-dependent morphological information is contained in a third

separate text file.

Hansen (1998) claims that since the parser in itself is not an executable

file, the parser is not transportable.

4 1

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

5 The TV-Programme
Dialogue System

In order to resolve the questions posted in chapter 3 Problem Statement,

a functional prototype of a natural language is implemented, which is

presented in this chapter. First, the relevant method theory is described in

section 5.1 Method. Section 5.2 Corpus Work gives an account of the

corpus work. The two following sections (5.3 Design and 5.4

Implementation) describes the design and the implementation of the

dialogue system. Finally, to clarify the system flow, a detailed walkthrough

of an example query is presented in section 5.5 The System Flow: An

Example.

5 . 1 M E T H O D

The implementation of a dialogue system for a new application can –

according to Degerstedt and Jönsson (2001) – be divided in two distinct

steps: conceptual design and framework customization. Design and coding are

viewed as complementing each other in the process of system

development, and are carried out in parallel. The conceptual design results

in a design document. Working from the other angle results in the actual

implementation.

This method is iterative. After a first prototype of the system has been

created, the design and corresponding modules are updated, and a new

4 3

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

version of the system is created. One important factor in an iterative

approach is that the realization process can be divided into manageable

pieces. Furthermore, new insights and aspects occur, as the understanding

of the problem increases. Step-by-step refining of the system helps to

reach the overall goal with a future robust and habitable natural language

dialogue system. This section describes the design and implementation of

a first iteration. Chapter 7 Discussion discusses the obtained results,

which provide the basis and guidelines for the next iteration. (In Figure

14, this is represented as the “Testament” box).

In summary, the design and implementation process can be viewed as a

work chart. Figure 14 shows the workflow for the first iteration of the

dialogue system described in this thesis.

4 4

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

Corpus Work
System Behavior

Theory
Requirement
Specification

DESIGN

Testament

Existing Framework Other Modules

IMPLEMENTATION

Conceptual
Design

Framework
Customization

Figure 14 The system development work chart for the first iteration. From Degerstedt

and Jönsson (2001, p. 2).

Degerstedt and Jönsson’s notion of prerequisites before conceptual design

and coding can commence consists of choosing theories, specifying the

requirements of the system, and gathering and analysis of a dialogue

collection (see section 5.2 Corpus Work).

The requirements specification can be summarized as follows:

� The interaction is typed, and in natural English.

� The area of knowledge is limited to television programme

information.

4 5

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

� The system runs on a Nokia Mediaterminal compatible

platform (i.e. Linux).

� There is no dialogue handling implemented.

� The communicative acts supported are simple task requests (e.g

system requests are not accounted for).

� The MALIN generic framework forms the basis of the

customization.

The complexity of the system is between the first two levels in Table 1

(chapter 2 Related Research), since the system does not provide

clarification questions, but does allow the user to take initative.

5 . 2 C O R P U S W O R K

In order to determine what behavior the system should exhibit, and

how broad the linguistic and domain coverage should be, a collection

of dialogues is used. The analysis of the corpus forms the basis for the

specification of the system. There is also a second corpus available,

due to the introduction of the database content. This corpus is mainly

used for including domain-specific words, such as programme titles,

channel names, categories, and actors etc. in the lexicon. For the

purpose of grammar development, the dialogue collection was used.

The dialogue collection consists of utterances that the system should

be able to answer. For the first iteration this corpus was constructed

through introspection, and consists of 50 utterances. These utterances,

along with an addition from an informal test (see section 5.1.5

Updating the Corpus), represent the use cases of the system. Two

analyses of the corpus were done. The first analysis aimed to divide

4 6

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

each utterance into meaning-bearing phrase chunks. It was revealed

that the utterances consisted of sub-phrases (or components).

Following the principle of compositionality (see section 2.2.2

Linguistic Coverage), it is assumed that the meaning of the utterance

is equal to the sum of the meanings of the sub-phrases of the

utterance.

The meaning-bearing components of the sentences in the corpus are

of the following types:

� Introduction Phrases

� Query Phrases, consisting of up to three Query Blocks

� Temporal Phrases

The minimal utterance consists of a query phrase with one query

block, but can contain all of the components.

5 . 2 . 1 I N T R O D U C T I O N P H R A S E S

The introduction phrases bear little relevant information. In the project

corpus there are five types of introduction phrases.

� Type I-1: The user wants to know if something exists, by starting

the sentence with phrases like “is there” and “are there”.

� Type I-2: These include commands such as “show me”, “tell me”,

“explain” etc. They can occur after courtesy phrases such as

“please”, “could you” and combinations (e.g. “Could you please

tell me”, “please explain”).

� Type I-3: These phrases contain the words

when/what/where/which/how etc, and can also contain an

appropriate verb (e.g. is, does, has).

4 7

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

� Type I-4: This opening is used when the user explains what

he/she wants to know. Examples are “I would like to know”, “I

want to watch”, “I want to”. There is a variation on this, which is a

negation such as “I don’t”. These are rare, and mostly they deal

with system questions.

� Type I-5: This type is related to the wish type above, but is

formulated a little differently. “Can I”, “can my VCR”, “can I

print”, “can I watch” are all examples of this.

Introduction phrases are cumulative. It is possible to apply more than one

introduction phrase in the same utterance. For example, the utterance

“[Could you] [please] [tell me] [what] movies are on tonight” contains

three type I-2 phrases and one type I-3 phrase. Brackets show the

divisions between the phrases.

5 . 2 . 2 Q U E R Y P H R A S E S

The query blocks contain information about the actual domain. At least

one query block should be provided; otherwise the system will not know

what to look for in the database. Depending on how specific the user is,

more query blocks can be identified. There are three kinds of query

blocks in the project corpus. Their order is somewhat important, but

there are cases where the sequence can be omitted.

The query phrases are divided into three types. The main issue is not the

type divisions though. Each query block contains one piece of useful

information, or action word. That is what differentiates them. If the user

provides three essential attributes or action words, three query blocks are

filled out. The first query block contains one of the following types:

� Type Q-1a: Contains action words such as “shows”, “programs”,

and “channel”. They also contain phrases such as “movies are on”,

movies are showing” etc.

4 8

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

� Type Q-1b: Contains a set operating word and an action word.

Examples are “any channel”, “all movies”, and “a news channel”.

� Type Q-1c: Is closely related to Type Q-1a, since an Introduction

Phrase of type I-3 often precedes them. They are more oriented

towards a specific property (such as director, actor, description),

instead of a more generic channel or category.

� Type Q-1d: This type is only found in one instance in the original

corpus, and denotes a time phrase before the action or query block.

The example is: “the next episode of”. This could be viewed as

one query block (of Type Q-1a) and one temporal phrase.

The second query block can be of five types according to the corpus.

They are:

� Type Q-2a: On a specific channel (e.g. “on BBC2”, “on Nature

Planet”).

� Type Q-2b: Persons (e.g. “with Demi Moore”, “starring Mel

Gibson”, “directed by George Lucas”).

� Type Q-2c: Categories (e.g. “feature cultural programmes”,

“shows sitcoms”).

� Type Q-2d: Title of a programme (e.g. “Braveheart”, “Gladiator”,

The Simpsons).

� Type Q-2e: The special case of including all of 1 above (e.g.

“TV”).

Only in two instances have the third block proven to be necessary. In the

sentences “Tell me what Bravehart is about”, and “Show all movies currently

screening”. The phrase “is about” (Type Q-3a) denotes the description

aspect, and “currently screening” (Type Q-3b) denotes a temporal phrase

(“currently”) before the action word “screening”. The reason to let these

4 9

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

special utterances represent a block of their own is necessary, since a

request from the user might already consist of two query blocks. Table 3

shows how an utterance requiring three query blocks is composed.

Table 3 The components of an utterance from the corpus.

“Tell me what the action

movie

on Channel4 tonight is about.”

INTRO 2 INTRO 3 QUERY 1B QUERY 2A TEMPORAL QUERY 3B

5 . 2 . 3 T E M P O R A L P H R A S E S

Analyzing the corpus gives an important fact about temporal expressions.

The temporal expressions used in the corpus are often “sloppy” and

vague descriptions of time that are not suitable for queries to a database

that requires exact numbers for starting times and dates. The temporal

expressions in the corpus form the basis for developing a time grammar.

Section 5.4.3 The Domain Knowledge Manager Module describes the

modeling of temporal expressions.

5 . 2 . 4 L O O K I N G F O R A N S W E R S

The second corpus analysis categorizes the utterances on basis of what

answers the statements should have the system generate. This forms the

basis for connecting an information representation structure to the

information extraction component. The corpus is sorted into categories

depending on what information was provided and which facts that are

expected. Classifying the questions into categories, or patterns, is

important when it comes to generating the database queries. In total, 25

types were found in the corpus. Some of the basic question types from

the corpus are listed in Table 4. (See also Table 8).

5 0

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

Table 4 Examples of question types in the corpus.

Given information Expected

information

Example

time title, channel, time “What shows are on

television tonight?”

time, category title, channel, time “What movies are

showing tomorrow

afternoon?”

time, title title, channel, time “Is Star Wars screening

this weekend?”

time, category,

actor/director/presenter

title, channel, time ”Are there any movies

directed by George

Lucas tonight?”

time, channel title, time ”What is on Channel 5

tomorrow after 6 pm?”

time, channel, category,

actor/director/presenter

title, time ”Are there any movies

with Nicole Kidman

on BBC1 between 9

and 11 pm on

Wednesday?”

title,

actor/director/presenter

Y/N ”Is Ridley Scott the

director of Gladiator?”

5 . 2 . 5 U P D A T I N G T H E C O R P U S

The original corpus was used to produce a lexicon and set of grammar

rules. Even though no formal tests have been conducted for collecting or

5 1

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

testing the corpus, a simple and informal test was conducted using one

subject. The instructions were to freely type questions to the system using

English. The use of polite phrases, synonyms and all kinds of time

phrases were encouraged. All interaction was logged.

The test resulted in 35 new sentences, which were added to the corpus.

This extended project corpus was used to construct a new version of the

lexicon and grammar.

It was concluded that the interaction started out being simple and general,

but got more complex and specific, since the parser seemed to handle all

requests accordingly3. The first query was:

“What is on television tonight?”

The last query was more complex:

“Tell me who is starring in the movies on BBC2 that starts after five pm and ends

before ten pm?”

5 . 3 D E S I G N

The conceptual design of the system is done in parallel with the

implementation (see Figure 14) and results in a design document, which

specifies what sub-modules are included in the final system, and how the

system should behave, as well as what kind of input is expected. The two

latter goals are in general accounted for from the corpus work. The

former goal, identification of sub-modules, is reached in this section. The

design can be seen as providing guidelines for the implementation.

3 This complexity increase might have been due to the eagerness to try the system’s limits. It has no bearing on

how the system might be used in a real context. The only feedback that was given to the user in this test was the

returned chart parser feature structure.

5 2

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

5 . 3 . 1 K N O W L E D G E R E P R E S E N T A T I O N

By analyzing and drawing conclusions from the user-centered dialogue

collection described in section 5.2 Corpus Work, as well as ”working from

the other end” (i.e. considering the task-centered XML documents that

provides the content of the database), the knowledge representation

structure is defined. The structure is referred to as an OPM (see section

4.1 The MALIN System Architecture), and is a unifiable feature structure.

The OPM is defined to contain one or more of the parameters listed in

Table 5:

5 3

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

Table 5 Objects and Properties in the television system.

Entity Field Value

object Channel ∞4
 Date <YYYYMMDD>5
 Start <HHMM>6
properties aspect actor ∞
 category children
 culture
 film
 music
 news
 series
 sport
 talkshow
 description ∞
 director ∞
 presenter ∞
 subtitle ∞
 time afternoon
 day
 morning
 night
 clock noon
 midnight
 am
 pm
 day today
 tomorrow
 Monday
 …
 Sunday
 title ∞
 year <YYYY>

The fields CHANNEL, DATE and START identify an object, about which

properties the user can ask. An important concept is that there are

notions of time in both the object-fields (START and DATE) as well as in

4 The infinity sign denotes that the value content can be a string of arbitrary length, consisting of alphanumeric

characters.

5 The format “YYYYMMDD” requires the dates to be represented as for example “20010303”.

6 Times are represented as for example “1025” for 10.25 am and “2225” for 10.25 pm.

5 4

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

the properties (with aspect CLOCK, DAY, and TIME). This makes temporal

reasoning easier to manage (see section 2.5.3 Temporal Reasoning).

A specific OPM can contain everything from a single property with only

an aspect, to a complex structure including all three object-fields and a

hierarchy of properties with atomic and non-atomic values for each

aspect.

5 . 3 . 2 M O D U L A R I Z A T I O N

Identification of the system’s modules includes specification of each

module’s responsibilities and the interfaces between them. This is

necessary to make the development feasible and efficient. The modules in

the design are outlined below (see Figure 15).

Figure 15 Conceptual design of the System architecture.

A Chart parser is needed to create a structure representing the user’s

input to the system. This structure is an OPM feature structure, and is

produced by utilizing a domain-specific grammar and lexicon. A

Dialogue Manager module keeps track of the dialogue history, and

passes the information structure to a Domain Knowledge Manager

5 5

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

module. The Domain Knowledge Manager module utilizes a Temporal

Reasoner to convert the user’s temporal expressions to formalized

notions of time that can be used in the creation of SQL templates. A

Database Manager module that is contained within the Domain

Knowledge Manager framework carries this out. The SQL statement

created is sent to the Database, which contains the information the user

wants. In order to present the results from the query, a Response

Manager module formats and prints the system’s output to the user.

This architecture is, as shown, straightforward and simple. The Dialogue

Manager lacks some of the features that is desirable in the final version

(e.g. a dialogue grammar to keep track of the dialogue tree and focus

paramters). In this version, the responsibility of the Dialogue Manager is

simply to be a placeholder, to which further functionality is to be added in

later versions. The architecture above is minimalistic, which allows the

user to post single task requests and get results back but little more than

that.

5 . 4 I M P L E M E N T A T I O N

This section describes the implementation of the prototype, based on the

design presented in the preceeding section. Each module is described in

the following sub-sections.

5 . 4 . 1 T H E P A R S E R M O D U L E

Two steps are involved when building the lexicon. First, the corpus is

tokenized using a Perl script that separates all words and removes

duplicates. The list is then sorted by syntactic categories. The result is a

word list with 120 words, which form the basis of the lexicon. With a

small corpus like in this case, the lexicon can be manually completed. For

example, some weekdays were added, even though only “Monday” and

5 6

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

“Friday” actually occurred in the original list. Tokenization also includes

the identification of lexical units, and abbreviations, which was done

manually in this case. Some words are ambiguous, and need to be

considered in the generation of lexicon and grammar (such as the verb

and the noun “show”). First, a generic, static lexicon that is used in the

system (independently of what actual titles; channels etc. are included in

the database) is constructed. Second, a dynamic lexicon is created

automatically from the database content. It is necessary to include all

programme titles, channels, actors, presenters, directors and categories in

the lexicon if the system is to understand a user’s question that deals with

explicit channels etc. The advantage of keeping two lexicons is that the

dynamic lexicon can be exchanged on for example a daily or weekly basis.

Both lexicons are loaded when the chart parser starts.

The identified components of the corpus utterances suggest that three

separate grammars need to be developed. The framework for creating

rules is provided by the corpus work (see section 5.2 Corpus Work). The

introduction phrases are handled by one grammar, the query phrases by a

second grammar, and the temporal phrases by a third grammar.

In this version of the system, the introduction phrases are implemented,

but not accounted for in the OPM. The information contained in the

introduction phrases has little use in the task-related queries. They could

function as markers for dialogue issues, which is to be implemented in

later versions.

The query phrases are of higher interest. The analysis of the corpus

reveals that a query phrase can consist of up to three query blocks. To

clarify, consider the following utterance:

“Which channel is Friends on tonight?”

5 7

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

The words in this string are looked up in the lexicon. For example, the

word “Friends” belongs to the dynamic lexicon and its entry looks like in

Figure 16:

friends = title (SHOW) : 0 lex = friends :

 0 properties aspect = title :

 0 properties value = friends .

Figure 16 Lexicon entry for the title "Friends".

Entries identify the grammatical type, the syntactic category, the lexeme, and

the semantic information on how to order it in the OPM feature

structure. The information used by the grammar rules is first of all that

“Friends” is a TITLE. The information about ASPECT and VALUE are used

when unifying with the rest of the words in the utterance. In the case of

titles and proper names, the syntactic category is semantically oriented. In

Figure 16, the syntactic type is SHOW. For other words (typically included

in the static lexicon), the syntactic category actually is syntactically

oriented. For example, the syntactic category for the word “film” is N1,

meaning that it is a noun of type 1. The morphology interpreter uses this

information when parsing different forms of “film” (e.g. “films”), (see

section 2.4.4 Lexicon and Grammar). The parser uses the semantic

information to produce a unifiable OPM feature structure.

The rest of the words are contained in the static lexicon. “Which” is for

example of the constituent type WH (along with words like “which”,

“who”, “when” etc.). The word “channel” is a generic instance of the type

CHANNEL etc. The notation of the constituents is arbitrary, and consists

of a mix between syntactic categories (such as V denoting any verb), and

semantic categories (such as TITLE, indicating that the constituent is a title,

regardless of its syntactic classification).

5 8

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

As shown in section 5.2 Corpus Work, utterances can be divided into

Introduction, Query and Temporal phrases. Table 6 lists constituents and

sub-phrases for the example utterance:

Table 6 Constituents and sub-phrases of an example utterance.

Utterance “Which channel is Friends on tonight”

Constituents wh channel V title start deictic

Query Block
1

Query Block
2

Sub-phrases
Introduc

tion
Phrase Query Phrase

Temporal
Phrase

The meaning of the utterance is equal to the sum of the meanings of the

sub-phrases, following the principle of compositionality (see section 2.2.2

Linguistic Coverage).

In the implementation, the parser applies the rules in Figure 17 to the

example string:

1. Intro -> wh .

2. QueryBlock1 -> channel : 0 object = 1 object .

3. QueryBlock2 -> V title start : 0 properties = 2 properties .

4. Time -> deictic : 0 properties = 1 properties .

5. QueryPhrase -> QueryBlock1 QueryBlock2 :

0 properties = 1 properties :

0 properties = 2 properties .

6. S -> Intro QueryPhrase Time 0 properties = 2 properties :

0 properties = 3 properties :

0 object = 2 object .

Figure 17 Sample grammar rules.

The equations to the right in Figure 17 contain the necessary unification

information. Categories are numbered from 0, so a ‘0’ refers to the

leftmost category, ‘1’ to the first category after the arrow and so on. In the

5 9

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

example utterance above QUERYBLOCK2 is assigned the property

information from the TITLE entry in Figure 17 (rule 3). That is to say that

the meaning-bearing constituent in this instance of QUERYBLOCK2 is the

title. Likewise, QUERYBLOCK1 is assigned the object-fields of the entry

for the word “channel” (rule 2), and TIME copies the property structure

from the DEICTIC according to rule 4, (in this case, “tonight”). The two

query block structures are unified using rule 5 where the two property

structures are unified. Finally, the Introduction, Query and Temporal sub-

phrases are unified into one feature structure.

The output from the parser module is a feature structure that has been

unified according to the rules in the equations in Figure 17. The feature

structure is a simple string, presented in Figure 18:

[PROPERTIES:[2:[ASPECT:DAY
 VALUE:[ARG:TODAY
 RELATION:THIS]]
 1:[ASPECT:TIME
 VALUE:[ARG:NIGHT
 RELATION:THIS]]
 0:[VALUE:FRIENDS
 ASPECT:TITLE]]
 OBJECTS:[0:[CHANNEL: GENERIC]]
 TOPIC:TASK
 SET:OLD
 ANSWER:NIL]
Figure 18 OPM delivered by the chart parser for query "Which channel is Friends on

tonight?"

The string in Figure 18 is passed to the Dialogue Manager module.

5 . 4 . 2 T H E D I A L O G U E M A N A G E R M O D U L E

The Dialogue Manager module has several responsibilities in a full-on

dialogue system. In this prototype it is limited to creating a structure of

6 0

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

Java objects7 of the OPM from the string passed on from the chart parser.

The Java structure is laid out in the fashion showed in Figure 19.

Figure 19 The OPM structure.

Each OPM contains one OBJECTSTRUCTURE with the three key fields

CHANNEL, DATE and START. Furthermore, an OPM can contain any

number (’*’ in Figure 19) of properties (stored in the property array

PROPERTIES). Each property consists of one ASPECT and a

VALUESTRUCTURE spanning arguments (ARG), relations (RELATION) and

numbers (NR). Each property is represented as a PROPERTY Java object.

Relations and numbers are mostly used by properties with temporal

aspects.

7 A Java structure consists of Java objects, which are not to be confused with OPM objects. An OPM object

corresponds to the Java class OBJECTSTRUCTURE, which can be instansiated to an OBJECTSTRUCTURE Java

object.

6 1

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

The Domain Knowledge Manager uses the OPM to access various

knowledge sources.

5 . 4 . 3 T H E D O M A I N K N O W L E D G E M A N A G E R

M O D U L E

The Domain Knowledge Manager module has two main responsibilities:

resolving temporal aspects, and create a specific SQL statement from a set

of generic SQL templates. Thus, as can be seen in Figure 15, the Domain

Knowledge Manager module has two sub-modules: the Temporal

Reasoner and the Database Manager.

The OPM created in the Dialogue Manager module normally lacks the

object-fields START and DATE, but instead contains properties of various

temporal aspects. In order to convert the often-vague temporal

expressions provided by the user to a format that is compatible with the

notions of time in the database the Domain Knowledge Manager module

utilizes the Temporal Reasoner. As soon as a property with temporal

information is detected, the Domain Knowledge Manager utilizes the

Temporal Reasoner to convert the value, relations and number arguments

to update the object-fields in the OPM. To clarify, consider the following

user’s input (Figure 20):

“What movies are on [before five tonight]?”

Figure 20 Example query.

The temporal phrase is enclosed in brackets. If today’s date were March 3

2001, the corresponding and useful values to consider would be:

 start < 1700

 date = 20010303

These values are ready to be incorporated into an SQL statement that is

sent to the database by the Database Manager. The Temporal Reasoner is

6 2

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

written in Java and takes properties with aspects TIME, DAY or CLOCK as

arguments. The values of such properties can be arguments (TODAY,

TOMORROW, PM, AM or NOON), relations (BEFORE, AFTER or AT) and/or a

numbers (a point in time between 0 and 23). These properties translate to

temporal frame-adverbials as in Table 7:

Table 7 Properties representation of temporal frame-adverbials

Frame-adverbial Representation Example

Deictics Aspect: time Value:

arguments

tomorrow

Dependents Aspect:

time/clock

Value: relations before

Clock calendar

expressions

Aspect: clock Value:

arguments

midnight

The Temporal Reasoner works through the arguments and can produce

two variables – either START or DATE. These values are in fact the object-

fields of the OPM, which are updated with the variables. The returned

variables are used when generating an SQL statement.

Below is the output from the Temporal Reasoner for the example input

above. When the first property (CLOCK) has been parsed, the system does

not know whether “5” refers to 5 am (i.e. 05:00) or 5 pm (i.e. 17:00).

6 3

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

PROPERTY: ASPECT: clock
 VALUE: [ARG:
 RELATION: before
 NR: 5]

(1) → start < 1700

(2) → start < 0500

Since the user did not provide a specific “am” or “pm” (i.e. the VALUE

ARG is empty) the system does not know if the “5” provided should be 5

am or 5 pm. For now, options 1 and 2 are kept in memory.

Time is resolved when the next property is parsed since the value

argument is “night”. Today’s date is used, since the user provided the

word “tonight”. The TIME property is resolved as follows:

PROPERTY: ASPECT: time
 VALUE: [ARG: night
 RELATION: this
 NR:]

→ start > 1800 AND date = 20010303

The heuristics of the Temporal Reasoner conclude that the missing ARG

in the CLOCK property should be “pm”, since the ARG of the TIME

property is “night”. This eliminates the early START option (2). It should

be noted that the default value of “night” in the TIME property is

interpreted as “later than 6 pm” (“> 1800”). The TIME property is

overridden by the CLOCK property, so the final values returned by the

Temporal Reasoner are:

start < 1700

date = 20010303

, which are the wanted values for the expression in Figure 20.

The updated OPM is now ready to be processed by the Database

Manager. The Database Manager matches the included properties in the

OPM and checks what – if any – fields are present in the object part. A

query template, consisting of one SQL statement and one message string,

6 4

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

is created. The values and/or aspects in the properties and object-fields

update the SQL statement’s fields. The Database Manager has 25 query

templates to choose from, and the choice depends on what information is

present in the user OPM. Table 8 shows the matching between the

templates and the information present in the OPMs.

Table 8 Matching between OPMs and query templates.

 Given information Expected information

Query Object Properties

templ. channel
start/
date

cate-
gory title a/d/p desc title channel start date a/d/p desc

cate-
gory

1 x x x x x
2 x x x x x x
3 x x x x x x
4 x x x x x x
5 x x x x x x x
6 x [x] x x
7 x x x x
8 x x
9 x x x x x
10 x x x x x x
11 x x x x x x x
12 x x x [x] x x
13 x x x x x x
14 [x] x x x x x
15 [x] x x x x x
16 x [x] x x x x x
17 x x x x x
18 x x
19 x x x x x
20 x [x] x x x
21 x [x] x x x x x
22 x x [x] x x x x x
23 [x] x x x x x
24 x x x x x x
25 x x x x

An ‘x’ indicates that a specific piece of information is present. An ‘x’

enclosed in brackets (‘[x]’) indicates that a property aspect but without

value is present. This is also referred to as an “empty” value.

6 5

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

Continuing with the example above, Figure 21 shows the SQL statement

from the chosen Query Template.

SELECT title.title, programme.channel, programme.start,
programme.date
FROM title, programme, category
WHERE title.ForeignKey = programme.PrimaryKey
AND category.ForeignKey = programme.PrimaryKey
AND category.category = "film"
AND programme.start < 1700
AND programme.date = 20010303
 ORDER BY programme.date, programme.start

Figure 21 SQL template with highlighted variable fields.

The bold lines show what has been updated. The Database Manager

carries out the update using the information represented in the OPM,

(after the Temporal Reasoner has updated it).

5 . 4 . 4 T H E D A T A B A S E

The data for the database was downloaded from an Internet site. The

information was structured in XML and automatically converted to text

documents. The text files were loaded into a relational database (see

section 2.5.1 Relational Databases) that was set up on a MySQL server for

the Linux environment. The Database Manager then loads a MySQL

Driver and establishes a client connection to the database. The

information in the database is distributed over six tables, connected

through integers, that serves as artificial primary and foreign keys. Figure

22 shows the relationships between the database tables.

6 6

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

Figure 22 Relationships for the television database.

The tables in Figure 22 are normalized (see section 2.5.1 Relational

Databases). In the demonstration version of the system the dates range

from Saturday, March 3, 2001 to Friday, March 10, 2001. The database

consists of programme listings for 34 channels during this period of time.

This amounts to more than 4777 unique entries in the database.

In the main PROGRAMME table (to which the other tables are connected

via foreign keys) the fields CHANNEL, START and DATE corresponds to the

object-fields in the object feature structures. START denotes the starting

time of the show.

The categories in the table CATEGORY are compatible with the category

values in the OPM feature structure: CHILDREN, CULTURE, FILM, MUSIC,

NEWS, SERIES, SPORT, and TALKSHOW.

6 7

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

5 . 4 . 5 T H E R E S P O N S E M A N A G E R

The Response Manager has two main tasks: First, to format the resultset

from the database and print it to the screen. Second, to customize a

message template to provide a message string to go along with the

resultset. There is one message template for each query template in the

Database Manager, and is filled out using various aspects and values from

the OPM.

When a resultset is retrieved, some tuples contain information that needs

to be explained to the user. For instance, the values in the start fields are

integers ranging from 0 (denoting midnight) to 2359 (denoting 11.59 pm).

The start time ’45 minutes past midnight’ is for example encoded as ‘45’,

which is not an obvious point in time for the user. The first task (i.e.

formatting) then consists of presenting values such as this in a readable

format.

The customized message is categorized as a template (see section 2.6

Natural Language Generation). It provides two functionalities. The user

gets confirmation that the system has in fact answered the right question,

or – if it has not – gets information about how the system actually

interpreted his or her question. Secondly, the message provides

diagnostics if the resultset should be empty. Generally, it can be viewed as

an error handling function, informing the user about empty resultsets,

client-server time-outs etc. The system may not be able to understand the

question, in which case no tuples are returned. The cause of failure is

explained to the user by the message.

For Y/N questions, the use of meta-data (e.g. the number of tuples

retrieved) along with the message is proven to be useful. Care is taken,

since the user’s request may not express literally what the user wants to

know (e.g. Yes/No questions might require more than just a single “yes”

6 8

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

or “no”). In those cases, resultsets (if not empty) are reported as well. (see

section 2.6 Natural Language Generation).

There is one message for each query template, and the message

accompanies one unique SQL statement. The variables that are

incorporated in the SQL statement can also be used in the message string.

By using certain formatting rules, the messages can be customized for

different locales. In English, the “am/pm” time format is preferred, while

the most common time format in Swedish is the 24-hour “military time”

format. To automatically switch between locales, a few simple parameters

can be set in the Response Manager.

As an example, the message for query template 5 is provided in Figure 23.

The <creditsAspect> <CREDITSVALUE> is in the following <CATEGORY>
<date>:

Ex: The actor RUSSEL CROWE is in the following FILM(s) March 3, 2001:

Figure 23 Message string template for Query Template 5.

If the locale is set to for example U.S. standards, the format for <date>

would be ”March 7, 2001”. In a Swedish locale setting, the format would

be ”7 mars, 2001”.

The output from the Response Manager completes the chain of action in

the system and provides the user with the system output.

5 . 5 T H E S Y S T E M F L O W : A N E X A M P L E

To summarize this chapter a complete walkthrough is presented. This

section describes the flow of data from the user’s input through all

modules via the database to the system’s output.

The user wants to know if there are any movies with the actor Rutger

Hauer in the database. The user types the following sentence:

”Are there any movies with Rutger Hauer tomorrow night?”

6 9

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

This string is sent to the chart parser Flexchart via a socket connection.

Flexchart processes the incoming string, utilizing the computational

lexicon and the grammar, and delivers the following string (Figure 24):

[PROPERTIES:[4:[VALUE:[ARG:NIGHT]
 ASPECT:TIME]
 3:[VALUE:[ARG:TOMORROW]
 ASPECT:DAY]
 2:[VALUE:HAUER
 ASPECT:ACTOR]
 1:[VALUE:FILM
 ASPECT:CATEGORY]
 0:[VALUE:GENERIC
 ASPECT:CATEGORY]]
 OBJECTS:NIL
 TOPIC:TASK
 SET:OLD
 ANSWER:NIL]

Figure 24 The returned string from the chart parser.

The Dialogue Manager module uses various methods to create an OPM

structure. Property 0 (the ”generic category”) is deemed less specific than

property 1 (the ”film category”) and is discarded. The newly created OPM

structure is passed to the Domain Knowledge Manager Module which

scans for properties with temporal aspects. In this case, the Temporal

Reasoner processes property 3 and 4 and updates the start and date fields

in the object structure. The updated OPM is shown in Figure 25.

7 0

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

Figure 25 Example OPM updated with the Temporal Reasoner.

Now, the OPM is complete and the Database Manager tries to match the

properties and object-fields to one of the 25 Query Templates. In this

case the Database Manager recognizes the OPM structure and creates one

SQL statement, and one customized answer string. Figure 26 shows the

complete SQL statement with the incorporated CATEGORY, ACTOR,

START and DATE variables.

7 1

T H E T V - P R O G R A M M E D I A L O G U E S Y S T E M

SELECT title.title, programme.channel, programme.start,
programme.date
FROM title, programme, category, credits
WHERE title.ForeignKey = programme.PrimaryKey
AND title.ForeignKey = category.ForeignKey
AND category.category = "film"
AND credits.actor LIKE "%Rutger Hauer%"
AND credits.ForeignKey = title.ForeignKey
AND programme.start > 1800
AND programme.date = 20010304
ORDER BY programme.date, programme.start

Figure 26 SQL statement for the example OPM.

The Database Manager sends the statement in Figure 26 to the MySQL

database, and passes the returned resultset to the Response Manager. The

Response Manager formats the answer string and the resultset. The

output is presented on the screen and looks like in Figure 27.

The actor RUTGER HAUER is in the following FILM(s) Monday, March
4:

Title: Omega Doom
Channel: Channel 5
Start: 10:00 PM

Figure 27 System output for the example query.

7 2

R E S U L T S

6 Results

The result of this thesis work is a dialogue system prototype. All

experiences drawn from the corpus work, design phase and

implementation phase are also results that are narrated in this chapter.

The results are ordered by their contribution to the original problem

statement in chapter 3 Problem Statement. First, the linguistic results are

accounted for, followed by domain-related results.

6 . 1 L I N G U I S T I C R E S U L T S

The linguistic component of the system is concerned with three main

aspects. The first aspect is how well the sub-language of the television

programme domain has been covered for in the corpus, and how the

representation form has managed to account for user requests (section

6.1.1 The Sub-Language and Its Representation). The second aspect

involves the robustness of the linguistic component (section 6.1.2

Robustness). The third aspect deals with how the architecture handles

the switch in natural language from Swedish to English (section 6.1.3

Natural Language Extensibility).

6 . 1 . 1 T H E S U B - L A N G U A G E A N D I T S

R E P R E S E N T A T I O N

Ideally, the corpus should be large and diverse enough to cover the

complete sub-language of a given domain. In this case, the corpus size

7 3

R E S U L T S

and coverage is very limited. The corpus consists of 50 utterances, created

mostly through introspection.

The domain span can be viewed from two angles. The first view is that

the vocabulary of the television tableau domain sub-language consists of a

relatively small set of words. The concepts in the domain deal with the

classification of programmes; occurrences and durations of programmes;

content and credits information about programmes (such as synopsis,

actors, year of production etc); and information about channels and their

content and broadcasting details. These concepts – except for temporal

phrases – are all relatively easy to identify, and the sub-language can be

viewed as static from this point of view, consisting of the words and

expressions necessary to describe these concepts.

The second view of the sub-language is that it can contain an infinite

range of words. Since the content of the television tableaus are constantly

subject to change, there is a never-ending addition of for example titles,

synopsis, actor names and channel names. This implies that the sub-

language can also be viewed as dynamic.

Since this system is confined to task-centered queries, the communicative

acts in the sub-langauge do not include meta-knowledge (or system)

questions.

The sub-language in the MALIN framework is represented as OPMs. The

exact layout of the OPMs is described in detail in sections 4.1 The

MALIN System Architecture, and 5.3.1 Knowledge Representation. This

form of representation works fine for the television tableau domain. What

makes the feature structure representation functional is the design of the

unification information in the grammar and lexicon. The chosen

categories in the lexicon, and the division between introduction, query

7 4

R E S U L T S

and temporal phrases presents no significant problems in the

implementation.

6 . 1 . 2 R O B U S T N E S S

The linguistic robustness often directly depends on the size and coverage

of the project corpus. Since the corpus is limited, and the sub-language

can be viewed as dynamic (see section 6.1.1 The Sub-Language and Its

Representation), robustness is not easily achieved. In the prototype,

utterance level robustness is handled by the general rules approach in the

grammar. For example, the utterance “Is there a news channel” and the

utterance (with a typo) “Is there a news channek” give the exact same

output, since the general rule trigs on the keyword “news” to identify a

category. Robustness on discourse level is normally handled by having a

dialogue manager that collaborates with a domain knowledge manager. In

the protoype, the dialogue manager is idling (i.e. discourse is not handled).

System robustness – to contrast with linguistic robustness – concerns the

stability of the system while running and is discussed in section 7.3

Implementation Issues.

6 . 1 . 3 N A T U R A L L A N G U A G E E X T E N S I B I L I T Y

To change natural language, both the input handler (the parser), as well as

the output handler (the response generator) have to be modified.

The original chart parser was developed for the Swedish language. The

lexicon and grammar are by necessity language dependent, and have to be

rewritten. The only thing that obstacles a smooth transition to another

natural language (such as English) is the computational lexicon module. If

we are to use a computational lexicon to save development and

computational time, we utilize the fact that a specific natural language

behaves in a predictable manner for similar words. This implies that the

7 5

R E S U L T S

parser itself has to be modified when changing natural language.

Fortunately, the computational module is implemented as a separate text

file, following the same format as the grammar and lexicon, making the

editing easy. Rewriting the computational module requires linguistic

knowledge, but the module can be reused in various domains, as long as

the natural language does not change.

The response manager has to present the results in the user’s natural

language. There are two ways for the system to respond to the user. The

most obvious is the actual database content. The tuples returned by the

database manager contains information of various kinds. Some

information (e.g. such as titles, names of actors and directors) is language

independent and can be presented as is. But some information (e.g.

notions of times and dates) is dealt with in different ways depending on

the language. The response manager can be set to different locales,

without changing the database content. The database representation of a

point in time is modeled as two integers, one for the starting time (0-

2359) and one for the date (e.g. 20010303). If the locale is set to American

standards times are presented in the “am/pm” format, and months are

spelt out in English. If the locale is set to Swedish standards, times are

presented in the military time format and months are consequently spelt

out in Swedish.

The second way the system interacts with the user is through the

messages that go together with a query template’s SQL statement. This

message string is language dependent, which means that it has to be

completely translated if the natural language is changed.

6 . 2 D O M A I N R E S U L T S

In this section the domain-related results are described. The domain is

identified and its representation is described (section 6.2.1 The

7 6

R E S U L T S

Domain and Its Representation) and the domain component’s

portability in general and its scalability in particular are accounted for

(section 6.2.2 Portability and section 6.2.3 Scalability).

6 . 2 . 1 T H E D O M A I N A N D I T S R E P R E S E N T A T I O N

Obviously, the domain definition and the sub-language definition are

intimately connected. They can be viewed as the same thing viewed

from two angles. The domain is an area of knowledge, and the sub-

language is the collection of words and expressions used when

communicating and reasoning about the domain. So, when describing

the domain the distinction between the domain and its sub-language is

sometimes elusive.

The concepts in the domain deal with the classification of

programmes; occurrences and durations of programmes; content and

credits information about programmes (such as synopsis, actors, year

of production etc); and information about channels and their content

and broadcasting details. This information is modeled as tables in a

relational database (see section 5.3 Implementation). The tool used for

reasoning about the database content is the formal query language

SQL. Reasoning about the information is carried out by the domain

knowledge manager. The database manager is a part of the domain

knowledge manager module. Being general, the database manager can

be reused. Domain-related database issues (i.e. SQL statements) are

only present in the query template files, which are separate from – but

used by – the database manager. This is essential for the

portability/scalability issue discussed below.

As mentioned earlier, time and temporal information are important

concepts in this domain. Objects in the television tableau domains are

7 7

R E S U L T S

identified with respect to their temporal characteristics. A large

amount of work lies in dealing with temporal concepts.

In the corpus, there are dialogues that belong to the sub-language, but

are not covered in the domain representation. One example of this is

duration and ending times of television programmes. Another

example is that the categories in the original information source (the

Internet television site) do not contain as detailed information as

certain user requests demand. There are shows that belong to the

category FILM. If the user asks for action movies, he or she receives

all movies, not just action movies. This is an information structure

problem, which needs to be addressed in the future.

� Temporal concepts are crucial.

� The domain is represented in a relational database.

� The information structure is not optimal.

6 . 2 . 2 P O R T A B I L I T Y

The MALIN architecture was reused to a large extent, even though the

parser was the only module that was entirely kept. The original system

architecture was developed using a modularized approach, which allowed

for keeping the design, but changing some of the modules in the

implementation. This section describes the current system architecture’s

portability.

The design resulted in a modularized system, in which the individual

components can be exchanged and/or modified without having to

rewrite the whole system. By refining individual modules, the system as a

whole is improved.

7 8

R E S U L T S

The functionality of the chart parser module itself did not need to be

changed. Obviously, when introducing a new domain the lexicon and

grammar need to be rewritten to cover the new sub-language. Some rules

could be directly translated from the CARS implementation (such as order

numbering, e.g. “first”, “second”), but most of the rules are domain and

language dependent. Clear and complete documentation of the linguistic

components (such as in section 5.2 Corpus Work) is essential when

generalizing the grammar rules. Also, such documentation helps when

reusing rules in new domains. To further increase the efficiency in

developing grammars for new domains, generic methods are desirable.

The domain knowledge manager module was also designed and

implemented from scratch. There are two things that need to be entirely

rewritten in the domain knowledge manager when changing domain: the

query template collection, and the mechanism for selecting the query

templates. The knowledge base itself, the database, is where the actual

domain change takes place. A domain change typically implies that new

tables and relationships between tables occur. The database manager itself

is not concerned with domain dependent SQL queries, but rather creates

a connection to a database server and executes the SQL queries that are

sent to it. Similarly, a generic temporal reasoner should be able to

accommodate temporal expressions in any domain.

Moving on to the response manager, little has to be changed there as well.

The principles, according to which the response manager formats the

database output, are independent of the database content (e.g. names of

tuple heads and format etc.). The database output accounts for one aspect

of the system’s output. The second aspect involves the message strings.

These are intimately connected to the SQL statements and are thus placed

in the query templates, which have to be rewritten anyway, as indicated

above.

7 9

R E S U L T S

6 . 2 . 3 S C A L A B I L I T Y

Scalibity refers to extending the existing television tableau domain.

Scalability is to add new shows and channels to the database. By

adding new shows, new titles, actors, starting times, descriptions etc.

are also added. Scalability has not been tested in this iteration, but is a

desirable feature in future versions. The current architecture is

prepared for scalability, due to the distinction between the static and

dynamic lexicon, and the distributed layout of the database tables. The

distributed layout of the database tables follows good practise for

non-redundant information, making database updates easier to

manage.

The lexicon division makes it manageable to conserve the static parts

of the linguistic representation of the domain (i.e. the sub-language),

while changing the dynamic content.

To minimize the work effort associated with the domain aspect of the

system, the shallow knowledge approach (2.2.3 Domain Coverage)

proved to be useful and save development time.

8 0

D I S C U S S I O N

7 Discussion

In this chapter the work of the design, and implementation of a dialogue

system prototype is discussed. The purpose of this rapid prototyping

approach was to establish what kind and amount of work that needs to be

carried out in order to construct a dialogue system for the television

programme tableau domain (i.e. in what direction work should be carried

out, and where the main efforts should lie).

The empirical basis for the design and implementation is a dialogue

collection – the project corpus – with the aid of a second corpus provided

by the knowledge base content. Knowledge base content is detailed

information about one week of television programmes represented in a

relational database.

The design resulted in a modularized system, in which the individual

components can be exchanged and/or modified without having to

rewrite the whole system. By refining individual modules, the system as a

whole can be improved.

7 . 1 T H E L I N G U I S T I C A S P E C T

In this section the linguistic results are discussed. First, suggestions

how the sub-language and its representation can be improved are

discussed (section 7.1.1 The Sub-Language and Its Representation).

This discussion relates to how the robustness can be improved, which

8 1

D I S C U S S I O N

is discussed in section 7.1.2 Robustness. Finally, the switch in natural

language is discussed in section 7.1.3 Natural Language Extensibility.

7 . 1 . 1 T H E S U B - L A N G U A G E A N D I T S

R E P R E S E N T A T I O N

The two views presented in section 6.1.1 The Sub-Language and Its

Representation indicate that there is one static part and one dynamic part

in the sub-language of television programmes. It is worth reminding the

reader that the sub-language concerns simple task requests, and contains

no system request vocabulary (see section 2.5.2 Reasoning About Domain

Knowledge). Furthermore, the results indicate that special care needs to

be taken to temporal phrases in this particular domain for two reasons: (a)

temporal phrases are vaguely expressed (see section 2.5.3 Temporal

Reasoning), and (b) temporal information is crucial in the domain and

used to identify objects (see section 5.3.1 Knowledge Representation).

Most of the sub-language can be handled straight forward. Categories,

channels, actors, presenters, directors and titles are precise in their

linguistic use, and the linguistic representation mapping to the domain

representation provides few problems. One problem is the notion of

multi-word lexemes. Open nominal compounds have already been

identified as presenting a problem (see section 2.4.4 Lexicon and

Grammar), and since proper nouns, such as names on actors, directors

and presenters, usually are multi-word lexemes, it is unfortunate that the

chart parser has no support for this in the lexicon formalism. Proper

nouns and titles constitute a major portion of the lexicon, and as of now,

the coverage has to be accounted for by rules in the grammar. This calls

for added functionality in the chart parser.

The problems presented by temporal phrases are more difficult to handle.

In the television programme sub-language, temporal expressions are very

8 2

D I S C U S S I O N

common – and they vary greatly in precision. The grammar responsible

for time phrases can, like the temporal reasoner module, be troublesome.

The solution to have temporal phrases represented as both properties

with temporal aspects, and as object-fields serves the purpose of

portability. The temporal grammar only deals with properties (i.e. not

object-fields), while the temporal reasoner ensures that the temporal

representation is converted to the temporal object-fields. This approach

ensures that the object-fields START and DATE always are compatible with

the information in the database, while the properties information contains

aspect/value representation of temporal expressions that is closer to the

way users express them. It falls on the temporal reasoner module in the

domain knowledge manager to resolve them. The double representation

of temporal phrases means that the separate temporal grammar attributes

to the increased portability of the system, since it can be used in a domain

where temporal information need not be moved to object-fields.

In this thesis, the real end-users have been neglected on purpose. For

the subsequent iterations it is advisable to introduce more user-

centered work, such as gathering a large and varied project corpus

using for example a WOZ8 test. It is also worth pointing out that the

users in such a test should be representative end users, and native

speakers of the chosen natural language. The protoype developed in

this project could be a useful tool for this sort of research.

The main disadvantage with the method used is that the use-cases are

very limited, and no claims on the representativeness are put. The

8 Wizard-of-Oz tests aims to study user interaction with a system that has not yet been implemented. The user is

led to believe that he or she is interacting with a computer system, while in fact a human “wizard” is controlling

the system in hide.

8 3

D I S C U S S I O N

results of the work presented in this thesis are not generalizable, and

merely form a starting point for a second iteration of the prototype. It

is important to point out that the purpose of the first iteration is not

to have a complete coverage – neither linguistically nor domain-wise.

The size of the corpus used for the construction of this prototype is not

enough to account for all potential actions a user might take with a natural

language dialogue system in the domain. If a bigger corpus was used, a

wider range of coverage and a finer division between introduction, query

and temporal phrases could be reached. The informal test to update the

corpus only contained one subject, but even so provided useful additions

to both lexicon and grammar. This implies that if more end-users were

employed in the dialogue gathering, even more additions would be added.

The closer the corpus translates in fidelity to the sub-language, the better

the system’s linguistic coverage will be.

The lack of generalizability and coverage in the corpus is not considered

to be a significant problem, since the results (i.e. the “testament”) are to

be used directly as input values for the next design iteration when

constructing the second version of this system (i.e. they are not used for

generalization purposes).

To further enhance the linguistic capabilities of the dialogue system, a

WOZ test could also contribute to meta-knowledge (system) question

coverage. This obviously means an increase in the sub-language and

implies a larger lexicon. Following the experience drawn from the

modularization, yet another lexicon could be constructed containing

information about the system and its capabilities.

Furthermore, certain information that is not really a part of the sub-

language – but still anticipated – can be included. For example, it is

possible to include a separate, static database (and accompanying lexicon)

8 4

D I S C U S S I O N

with information about actors that users are likely to ask questions about

(e.g. very famous actors), but that are not in any of the shows the current

time period.

Extra-grammatical utterances are supported, due to the general rules. To

allow for extra-grammatical utterances makes the system more

linguistically robust. Looking ahead, handling extra-grammatical

utterances might increase in importance when implementing spoken

interaction.

For dialogue purposes, words such as “funny” could be included. Not

because there is information in the database about “funny” shows, but

because it might help the system assist the user finding shows that the

user considers to be “funny”. For example, the system could counter with

“Well, what kind of shows do you think is funny?”, or “Do you think

Charlie Chaplin is funny?”).

User-centered testing could also include response testing. The answer to

the question “Is The Simpsons on BBC2 tomorrow?” could result in at

least two types of answers and user testing should provide clues as to

what kind of answer users in general want. Is a simple “Yes” or “No”

sufficient, or do users want information about when Simpsons is actually

screening. And if so, should the system include information about The

Simpsons from other channels as well? (See section 2.6 Natural Language

Generation).

Query phrases and temporal phrases are the obvious information-bearing

components of a user utterance. The introduction phrases are more or

less neglected, even if the grammar and lexicon are able to parse them.

Taking care of the introduction phrases to identify level of courtesy and

interaction style could be one way to account for personalized interfaces.

This touches on social interfaces and is beyond the scope of this thesis.

8 5

D I S C U S S I O N

7 . 1 . 2 R O B U S T N E S S

Robustness in a dialogue system occurs in some form or another in all the

system’s modules. It is convenient to consider robustness on two levels:

� Utterance level

� Dialogue or discourse level

The utterance level robustness corresponds to the parser. In order to

make a dialogue system robust on the utterance level the corpus coverage

needs to represent the sub-language. Thus, the key to utterance level

robustness improvement lies in the extensiveness and precision of the

corpus. With a corpus of less magnitude, robustness can still be achieved

using general grammar rules, as in the case of the system described in this

thesis. The use of general rules to a certain extent can improve parser

robustness. General rules allow the parser to skip words in the user

utterance that is not included in the lexicon. Of course, the more general

the rules are, more subtleties in the utterances will be missed. In

combination with dialogue management, this feature becomes more

useful since it provides robustness on both utterance and discourse level.

To take robustness even one more step into the architecture, domain

reasoning can also provide robustness.

The discourse (or dialogue) robustness corresponds to the dialogue

manager, which has not been implemented in this version of the system.

The dialogue manager in the MALIN architecture handles the OPMs in its

native dialogue grammar format to build initiative/response nodes in a

dialogue tree. This makes the system able to take initiative and ask the

user for clarifying questions. Implementing a dialogue grammar would

make the dialogue system more robust.

The robustness could be further increased concerning collaboration with

the domain knowledge manager. With an advanced domain knowledge

8 6

D I S C U S S I O N

manager, shortcomings in the corpus can be accounted for, and improve

the robust behavior of the system as a whole. Temporal reasoning is very

important in the television programme tableau domain (see section 6.1.1

The Sub-Language and Its Representation). Therefore, the status of the

temporal reasoner module can be a troublesome bottleneck. It needs to

be able to handle all temporal expressions that can possibly occur in the

linguistic representation of temporal expressions. The temporal properties

in the OPM (DAY, TIME and CLOCK) need to be accommodated by the

temporal reasoner. For a generic, and more robust, temporal reasoner

several other temporal properties should be added – for instance, MONTH

and YEAR. Added functionality for error handling (such as identifying that

“the 31st of February” as a non-valid date) is also desirable. A generic

temporal reasoner is, at the time of writing, under development at

NLPLAB.

7 . 1 . 3 N A T U R A L L A N G U A G E E X T E N S I B I L I T Y

Modularization gives that parts of the existing system can be reused. It is

desirable to try to isolate language dependent modules in order to make

language transition smooth and manageable. In the televison tableau

domain, the use of domain and language dependent query templates

implies that the database manager and the response manager can be

generic. In some cases, it is desirable that tuple headers and content are

kept in a certain language, in some cases they need to be translated, and

sometimes a combination is called for. In the case of TV shows, a direct

translation of show titles (i.e. content) is often not desirable, while the

tuple head itself (e.g. the word “title”) needs to be translated.

To change natural language in the television tableau dialogue system, the

following steps are required:

� Translate the Query template message strings.

8 7

D I S C U S S I O N

� Set the locale for formatting time/date results in the response

manager.

� Construct a language dependent lexicon, and a language dependent

computational module.

� Construct a language dependent grammar to match the lexicon.

� Translate the database content (can either occur when deciding on

information source, or translating tables, or in the response

manager formatting system. For example, if the language switch is

from English to Swedish, a rule in the response manager could be

if <incoming tuple header> = “Actor”
then set <tuple header> to “Skådespelare”

The advantage of the locale setting approach is of course that the

response manager only requires a one-line change and the database

remains untouched when switching natural language.

A WOZ setup to allow dialogue could serve as a tool for deciding

whether the discourse is language dependent or not (i.e. are clarifications

handled the same way in the Swedish discourse in the second-hand cars

domain and in the English discourse of television programmes?).

There is an already-existing dialogue grammar developed for the CARS

implementation of the MALIN architecture. It would be interesting to test

whether that grammar is (a) domain dependent, and (b) language

dependent, by implementing it in the English television tableau system.

To summarize the work effort for the linguistic aspect: The approaches

and concepts described in chapter 2 Related Research, were used and

worked well. Especially, the practical dialogue hypothesis (see section

2.2.2 Linguistic Coverage), partial parsing (described in section 2.4.3 Chart

Parsing), computational lexicon approach (see section 2.4.4 Lexicon and

Grammar), and robust grammar rules (see section 2.4.3 Chart Parsing,

8 8

D I S C U S S I O N

and section 4.2 The Chart Parser Flexchart) proved to minimize the

workload.

7 . 2 T H E D O M A I N A S P E C T

This section discusses the results presented in section 6.2 Domain

Results. First, the domain results are discussed in section 7.2.1 The

Domain and Its Representation. Second, portability is discussed

(section 7.2.2 Portability). This section is concluded with a discussion

about scalability (section 7.2.3 Scalability).

7 . 2 . 1 T H E D O M A I N A N D I T S R E P R E S E N T A T I O N

Figure 28 shows how the domain, its representation, the sub-language

and its representation are connected to each other through a reasoning

agent (either a human being or a dialogue system).

Figure 28 The connection between domain representation, sub-language

representation and dialogue system.

The dialogue system in Figure 28 shows the ideal dialogue system (i.e.

a dialogue system with optimal domain representation, optimal sub-

8 9

D I S C U S S I O N

language representation and an ideal domain knowledge reasoner

module can exchange a human reasoner for the particular domain).

This is obviously a faulty view of both human beings and dialogue

systems, but it serves the purpose of clarifying how representations of

domain and sub-language are connected to the dialogue system. It is

worth noting that the human mental representations of language and

knowledge are left out in the figure. Dealing with mental

representations of language and knowledge is not the topic of this

thesis.

It is desirable that the domain knowledge manager is as generic as

possible. In order to make a module generic, its sub-parts (i.e. the

temporal reasoning module and the database manager) should be

developed to be more general. The implemented temporal reasoner

handles the utterances – and variations – present in the project

corpus. Its interface is directly dependent on the OPM knowledge

representation, but this can be altered.

Since temporal information is crucial in the domain, this is modeled as

primary keys in the television programme objects. START and DATE,

along with CHANNEL, constitutes the key fields in the OPM.

There are two problems with representing the domain information in

a relational database. First, there is a gap between the sub-language

and the information in the database. Sometimes the user might ask

about information not included in the database. For example, the

utterances “action movie” and “drama” both denote the category

“film” in database). This can be accounted for in at least two ways:

� The finer-grained user classification can be ignored. This is the

current status of the system. General rules skip the word

9 0

D I S C U S S I O N

“action” in the phrase “action movies” and delivers all movies.

The user has to find out what kind of movie each one is by

further questioning. This approach is not optimal, since the

user does not get an explanation of what went wrong.

� A better way is to utilize meta-knowledge in the domain

knowledge manager to report on false presuppositions (see

section 2.6 Natural Language Generation). This requires a

functioning system model, allowing the domain knowledge

manager to explain how for example movies are categorized.

The response could in this case be something like: “There is no

sub-classification of movies. Retrieving all movies: …”

There is a similar gap that is dependent on the representation. The

original XML source does not contain explicit information about

duration and stopping time. However, since each channel can only

broadcast one programme at a certain time on a certain date, stopping

time (and duration) can be derived by finding the next programme on

the same channel. When the XML documents are loaded into the

database (of the current layout) this information is lost. An

improvement in the domain knowledge manager could be the ability

to infer duration and stopping times, even if this information is not

expressed in the database. If we know the starting time of every show,

the stopping time (and thus show duration) can be derived from

looking at the closest next or previous show starting time on the given

channel.

Information structure in the database can pose another problem, even

if we have covered it in the sub-language. Sometimes actor and

director information is included in DESCRIPTION, but skipped in the

CREDITS table. For example: the query “Show me the synopsis for The

9 1

D I S C U S S I O N

Yakuza” can give actor information if for example the main actor is

listed in the synopsis. Often, this implies that the main actor in the

CREDITS table is missing. Thus, the query “Who is the main actor in

The Yakuza” gives no information. This problem is due to the quality

of the original information source (i.e. the chosen television site on

the Internet).

These two information structure problems imply that work with

content-centered corpus, i.e. parsing the XML documents before

adding it to the database, should be carried out.

Finally, a note on shortcomings in SQL is in place: The more specified

an SQL statement is, the longer it takes for the MySQL client to

process the query. This is due to limitations in the SQL language,

which is unfortunate for the users of the television system. It is, so to

speak, easier for the system to quickly find and print all movies on all

channels at all times of a particular day, than it is to find out if a

certain movie on a specific channel has a given actor or actress. The

more specific a user is in his or her query (i.e. the more pieces of

information he or she provides), the more complex the SQL

statement usually becomes. A complex SQL statement takes longer to

process than a simpler one, rendering the waiting time longer for a

specific request. This results in that the more specific information a

user provides, the longer he or she will have to wait for the response.

This phenomenon should be placed in perspective: when a very

specific user-request has been processed and presented, it is hopefully

exactly the right information the user wanted; whereas a general query

usually results in follow-up questions, whose combined process time

might exceed the specific query’s process time. It remains to be

verified if this is the case or not. More importantly, it remains to be

9 2

D I S C U S S I O N

verified whether the user experiences this to be the case or not. Since the

tables in the database are normalized (see section 2.5.1 Relational

Databases), the problem is not due to the database structure. The

implication of this is that an SQL database might not be the optimal

representation for this domain.

7 . 2 . 2 P O R T A B I L I T Y

As a reminder, extensibility is a general characteristic that spans the

change of natural language, portability, scalability and transportability.

In this section, the system’s portability is discussed.

As mentioned in section 7.2.1 The Domain and Its Representation,

temporal information is first processed by a separate temporal

grammar, which yields in a properties representation. The two

temporal object-fields (START and DATE) are updated by the temporal

reasoner, using the information in the temporal properties. As long as

the OPM domain representation is used, the temporal grammar can

thus be reused – even in domain representations where the temporal

aspects are not included as object-fields. The temporal reasoner needs

to accommodate this in other domains. This supports the notion of

modularization, since even the grammar (which is a sub-module to the

parser, which is a sub-module to the linguistic component, etc.) is

further modularized to increase portability.

The SQL statements are domain dependent. With the statements

(from the query templates in this implementation) separated from the

database manager, the effort of changing domain is minimized.

Similarly, the response manager can be generalized, since it is

disconnected from the query templates. This enhances not only the

9 3

D I S C U S S I O N

portability of the system as a whole, but helps in other extensibility

issues, such as natural language change.

7 . 2 . 3 S C A L A B I L I T Y

Scalability is a specific case of portability, namely the expansion of the

existing domain. This has not been done in the prototype described

herein, but it is desirable that this feature is included in following versions.

Scalability can be accounted for from two directions – or angles: Weak

scalability (updating the database content, and extending the dynamic

lexicon in the parser) and true scalability (rebuilding the database with

types of information about television programmes previously not

recorded). If the database setup is changed, the domain knowledge

reasoner and the database have to be reconstructed, while the lexicon and

grammar only needs extension. One might argue that there in this case is

a portability issue connected to the domain knowledge reasoner module

and the database, while there is a scalability issue connected to the

interpretation module. True scalability has not been dealt with, but might

be a desirable feature in future implementations. The weak scalablity (just

“scalability” henceforth) of this system deals with updating the database

content, and updating the lexicon, while the changes in the interpretation

module is limited to updating the dynamic contents of the lexicon.

In this prototype the domain is static. That is, the database content

represents a ”snapshot” of one week of television programmes. In a

future version of the television query system the domain is to be

constantly upscaled, and automatically updated. This requires a new, more

complex architecture, which is suggested in chapter 8.2.2 Suggestions for

a New Architecture.

9 4

D I S C U S S I O N

7 . 3 I M P L E M E N T A T I O N I S S U E S

This section discusses the transportability (section 7.3.1

Transportability) and modularization (section 7.3.2 Modularization)

issues, from the implementation of the dialogue system prototype.

7 . 3 . 1 T R A N S P O R T A B I L I T Y

Transportability refers to the changes in computational platform,

hardware and programming language(s). In this thesis the platform

change is from Unix to Linux. Linux is the operating system of the

Nokia Mediaterminal, and Unix is the platform used by NLPLAB

when the parser and the MALIN architecture were developed. Since

these platforms are similar, few problems were encountered. Unix and

Linux are similar enough to provide few transportability difficulties.

The only significant problem was the Lisp-based chart parser.

The chart parser provided by NLPLAB is the only module that was

entirely kept. The only significant problem concerned the fact that the

parser is written in Lisp, and requires a separate, proprietary Lisp

compiler that does not abide to the desirable open systems standards.

Flexchart is not very transportable (see section 4.2 The Chart Parser

Flexchart). To come to terms with the transportability problem of the

parser I suggest that the parser be rewritten in Java. There are five

reasons I recommend rewriting the chart parser.

First, since the current Chart parser Flexchart is written in Lisp, it

requires an expensive compiler, whereas the Java programming

environment is free. Second, the rest of the system framework is Java-

based, and the handling of objects and strings would be faster if the

whole system would be Java-based. Third, future knowledge engineers

and system builders would not be required to be familiar with Lisp –

9 5

D I S C U S S I O N

Java knowledge would be sufficient. Fourth, Java is platform-

independent, and a system written completely in Java would be

transportable to new operating systems. Fifth, the Lisp-based parser

and the Java-based dialogue manager communicate via a socket.

Related to the discussion about robustness is the overall system

robustness. The programming language aspect is connected to this.

The connection between the Lisp-based parser and the Java-based

dialogue manager module is via a socket stream, which can fail.

Sockets are not fail-safe and this implies a weak link in the overall

robustness of the system. By employing a Java-based parser that

particular route to potential failure is eliminated.

7 . 3 . 2 M O D U L A R I Z A T I O N

Modularization makes it possible to divide the system into manageable

pieces, and high modularization is generally agreed upon (see section

2.2.4 System Architecure and Modularization). It seems like

modularization can be stretched far. It has already been suggested that

it is advantageous to modularize the linguistic, as well as the domain,

components. For example, the linguistic component can consist of

one interpreter, one response generator and one dialogue management

module. The television tableau dialogue system prototype

implementation shows that even these modules can be made more

extensible and easier to implement if they are modularized. For

example, the television tableau dialogue system prototype has two

grammar modules, one static lexicon and one dynamic lexicon.

High modularization requires a good framework for plug-ins, and

good interface documentation is essential. Documentation of the

MALIN system is currently sparse and insufficient, rendering it difficult

for a new user to quickly grasp the system.

9 6

D I S C U S S I O N

I suggest the system should abide to open systems standards, in order

to minimize acquisition cost and efforts, by taking advantage of reuse.

This includes rewriting the chart parser in Java (see section 7.3.1

Transportability).

The workload effort benefits from taking advantage of already existing

modules (see section 2.2.4 System Architecure and Modularization,

and chapter 4. The MALIN Framework). By using the modular

approach, development time was saved.

9 7

C O N C L U S I O N

8 Conclusion and
Future Research

In this thesis the work of designing and implementing a dialogue

system prototype has been described and discussed. The main results

presented in chapter 6 Results, are discussed in chapter 7 Discussion,

and lead to the conclusions presented in this chapter. This chapter is

concluded with some suggestions for future research. Future research

includes work on a second version of the prototype – taking it one

step closer to a robust dialogue system suitable for the future e-home.

8 . 1 C O N C L U S I O N S

It was found that having one static lexicon and one disposable

dynamic lexicon enhances scalability. Furthermore, dividing the

grammar into sub-modules, such as a separate temporal grammar,

enhances both scalability and portability. A language dependent, but

domain independent, temporal grammar that can be used in new sub-

languages, which are represented in OPMs enhances portability. It

also makes scalability increase, since extending the domain might

include extending some parts of the sub-language, which can be

modelled in separate grammars to reflect this extension.

Temporal representation in both properties and object-fields yields in

a portable system, since the temporal grammar only deals with

9 9

C O N C L U S I O N

properties, and is suitable in a domain where temporal information is

not used as object-fields. The temporal reasoner in the domain

knowledge manager module is responsible for updating the temporal

object-fields, which are crucial for the linguistic representation in

domains where temporal information is used as object-fields (such as

the television tableau domain described in this thesis).

It is my belief that modularization can be taken further than the

MALIN architecture suggests. One example is the temporal grammar

and keeping temporal properties separated from object-fields.

Linguistic robustness is divided into utterance level robustness and

discourse level robustness. Employing a larger corpus, in combination

with general rules, enhances utterance level robustness. A larger

corpus can be gathered with a WOZ test, or by logging the interaction

with the prototype described in this thesis. Employing a dialogue

grammar, and allowing it to collaborate with an advanced dialogue

knowledge manager can enhance discourse level robustness.

The existing chart parser does not support lexicons with multiword

lexemes, such as names and titles, which is unfortunate in this

particular domain. Generally, this feature is desirable as well, since

open nominal compounds are used frequently in English.

There are two “gaps” in the information source that needs to be

bridged. The first gap is the lack of information in the original source.

This includes for example fine-grained categorization of television

programmes. The second gap relates to the lack of structure in the

original source. This implies that more work when parsing the XML

documents, before loading the database is needed. Also, a more

advanced domain knowledge reasoning mechanism is desirable.

1 0 0

C O N C L U S I O N

8 . 2 F U T U R E R E S E A R C H

Since the field of dialogue system construction is fairly new, a lot of

things need to be done generally. This section first describes some

rough directions where further research could be carried out.

Secondly, some suggestions about a second iteration of the television

tableau dialogue system prototype are presented.

8 . 2 . 1 G E N E R A L I S S U E S

In general, theory is needed in the field of language technology and

dialogue system design. The terminology needs to be set, since there is

a confusing inconsistency in the literature.

Furthermore, methodology on different levels is lacking. The method

used in this thesis, verifies the usability of Degerstedt and Jönsson’s

method (see chapter 5 The TV-Programme Dialogue System). Rapid

prototyping in general is not unheard of (e.g. Extreme programming,

and even language technology-specific methods such as CSLU), but a

complete method for the entire system building chain of stages is

desirable. On the other hand, methodology on a lower level is sought

after. I believe that for example grammar development can be more

efficient, and allowing for systematic reuse of old grammars, with an

adequate method. This is lacking today, and calls for future research.

The intention with a dialogue system in the television tableau domain

is to extend the interaction to spoken or multi-modal interaction,

which incorporates speech technology.

True scalability issues needs to be tested in this domain. What

happens if the database is configured in a different way, but in the

same domain? We have seen that weak scalability is handled, and I

have suggested that the interpreter and the domain knowledge

1 0 1

C O N C L U S I O N

component handle true scalability differently. If this is the case

remains to be verified.

The waiting times on SQL queries should be tested to answer

question if user’s generally prefer quick-and-dirty approach with

sloppy expressions and lots of data and gradually refining it, or if they

prefer a carerfully utterance and wait for a high-quality response. The

user’s experience is the crucial aspect. The user’s feeling of efficiency

with the dialogue system in contrast to conventional searching in the

newspaper or on the Internet is important to identify.

8 . 2 . 2 S U G G E S T I O N S F O R A N E W A R C H I T E C T U R E

Two main improvements are introduction of a dialogue grammar, and

the addition of dynamic knowledge base updates. Furthermore, there

are a multitude of smaller improvements suggested above. The

architecture in Figure 29 shows the layout of such a design.

1 0 2

C O N C L U S I O N

Figure 29 A new system architecture for the television tableau domain.

The main ideas of a modularized approach are conserved. The design

and function of the parser is kept, but as mentioned (see section

7.3.1 Transportability) I suggest the parser to be implemented in Java.

A dialogue manager should be incorporated in the system, to raise the

system’s complexity to at least level 2 in Table 1 in section 2.2

Dialogue Systems. To include a dialogue manager allows for utilizing

markers in the OPM, which implies adding functionality to the

grammar and the lexicon. A dialogue grammar should be added to the

dialogue manager. The dialogue grammar can be viewed as a context-

free grammar with categories and rules. The purpose of the grammar

is to construct a dialogue tree and allow for focus handling.

More application-specific research includes testing of the portability of

the dialogue grammar developed for the CARS application (see section

4.1 The MALIN System Architecture). The testing can also span

language dependency of the dialogue grammar. There is no evidence

to the author’s knowledge that discourse in the same domain but in a

different language is generalizable, and this remains to be tested.

1 0 3

C O N C L U S I O N

In order to make the domain knowledge manager module more

functional, it is updated with a system information database, a generic

temporal reasoner, and a recipe generator (Flycht-Eriksson, 2000).

One interesting part is to have a software agent, or module, retrieving

television tableaus from television sites on the Internet, and loading the

content in the relational database on for example a weekly basis. This

procedure was carried out manually in the first version. Information

represented in XML was taken from an Internet site and converted to text

files, which were loaded in the relational database. An agent could carry

this procedure out automatically, providing a dynamically updated

knowledge base. Upscaling the database is not enough. The lexicon needs

to be updated with titles, actors, presenters and directors. This falls under

the agent’s responsibilities as well. Related to the lexicon extension is the

housekeeping of both database and lexicon. Since the tableaus for one

week of television programmes consist of some 4700+ entries, a

constantly growing lexicon and database soon get cumbersome. It is

desirable that old material is discarded on a regular basis. One solution for

this problem is to keep the static and dynamic lexicon separated, and

simply discard the old dynamic lexicon and replace it with a new

collection of titles, actors etc. every update. The agent (or module) needs

to be flexible, since it is dealing with information in a dynamic

environment. This fact puts high requirements on the agent’s abilities.

In order to further enhance the system’s capabilities, a system model

(“system information” in Figure 29) should be provided in the domain

knowledge manager. Ideally, this provides the system with

information about what the system’s capabilities are. The system

would, so to speak, know what it knows. Furthermore, the system can

use this to along with a user model (not present in Figure 29). The

system would then know that the user knows what the system knows.

1 0 4

C O N C L U S I O N

This would make the system address unexpected user utterances with

greater confidence and try to match them with the user and system

models. This is certainly an interesting area for future research.

1 0 5

R E F E R E N C E S

9 References

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., Stent, A.

(1998). An Architecture for a Generic Dialogue Shell. In Natural Language

Engineering, 1, 1-15.

Allen, J., Ferguson, G., Stent, A. (2001a). An Architecture For More

Realistic Conversational Systems. In Proceedings of IUI ’01, 14-17. Santa Fe,

New Mexico, USA.

Allen, J.F., Byron, D.K., Dzikovska, M., Ferguson, G., Galescu, L., Stent,

A. (2001b). Towards Conversational Human-Computer Interaction. In

AI Magazine, 2001, 1-9.

Amsler, R. (1989). Research Toward the Development of a Lexical

Knowledge Base for Natural Language Processing. Proceedings of the twelfth

annual international ACMSIGIR conference on Research and development in

information retrieval, 242-249. Cambridge, MA, USA.

Androutsopoulos, I., Ritchie, G.D., Thanisch, P. (1994). Natural

Language Interfaces to Databases – An Introduction. In Journal of Natural

Language Engineering, Mars 1995. Cambridge, England: Cambridge

University Press.

Bell, J.E., Rowe, L.A. (1992). An Exploratory Study of Ad Hoc Query

Languages to Databases. In Proceedings of the 8th International Conference on

1 0 7

R E F E R E N C E S

Data Engineering, Tempe, Az. (p. 606-613). IEEE Computer Society Press,

February 1992.

Clark, H.H., (1996). Using Language. Cambridge, England: Cambridge

University Press.

Cowie, J., Lehnert, W. (1996). Information Extraction. In Communications

of the ACM, Vol. 39, No 1, 80-91.

Dahlbäck, N., Jönsson, A. (1999). Knowledge Sources in Spoken

Dialogue Systems. In Proceedings of Eurospeech ’99. 1523-1526. Budapest,

Hungary.

Degerstedt, L., Jönsson, A. (2001). A Method for Iterative

Implementation of Dialogue Management.In 2nd IJCAI Workshop on

Knowledge And Reasoning In Practical Dialogue Systems. Seattle: August 2001.

Earley, J. (1970). An efficient context-free parsing algorithm.

Communications of the ACM, 6, 451-455.

Flycht-Eriksson, A. (2000). A Domain Knowledge Manager for Dialogue

Systems. In Proceedings of ECAI. Berlin: 2000.

Flycht-Eriksson, A. (2001). Domain Knowledge Management in Information-

providing Dialogue Systems. (Linköping Studies in Science and Technology,

dissertation No.890). Linköping: Department of Computer and

Information Science, Linköping University.

Flycht-Eriksson, A., Jönsson, A. (2000). Dialogue and Domain

Knowledge Management in Dialogue Systems. In Proceedings of the 1st

SigDial Workshop. Hong kong: 2000.

1 0 8

R E F E R E N C E S

Hafner, C.D., Godden, K. (1985). Portability of Syntax and Semantics in

Datalog. In ACM Transactions on Office Information Systems, Vol. 3, No. 2,

141-164.

Hansen, M. (1998). En robust, flexibel och itegrerbar chart parser. Thesis Work.

Linköping: Department of Computer and Information Science.

Jacobs, P.S., Rau, L.F. (1988). Natural Language Techniques for Intelligent

Information Retrieval. In SIGIR 1988, 85-99.

Janssen, T. M. (1997). Compositionality. In van Benthem, J. and ter

Meulen, A. (Eds.), Handbook of Logic and Language, chap. 7, pp. 417-473,

North-Holland, Amsterdam.

Jönsson, A. (1993). Dialogue Management for Natural Language Interfaces.

(Linköping Studies in Science and Technology, dissertation No.312).

Linköping: Department of Computer and Information Science,

Linköping University.

Jönsson, A. (1997). A Model for Habitable and Efficient Dialogue

Management for Natural Language Interaction, In Natural Language

Engineering, 3 (2/3), 103-122. Cambridge, England: Cambridge University

Press, 1997.

Jönsson, A., Strömbäck, L. (1998). Robust Interaction through Partial

Interpretation and Dialogue Management. In Proceedings of Coling-ACL ’98,

Montreal, Canada.

Jurafsky, D., Martin, J.H. (2000). Speech and Language Processing. An

Introduction to Natural Language Processing, Computational Linguistics, and Speech

Recognition. New Jersey: Prentice Hall.

1 0 9

R E F E R E N C E S

Kelley, J. F., (1983). An Empirical Methodology for Writing User-Friendly

Natural Language Computer Applications, Proceedings of the CHI’83, pp.

193-196.

McRoy, S., Ali, S.S., Restificar, A., Channarukul, S. (1999). Building

Intelligent Dialog Systems. In Intelligence, Spring 1999, 14-23.

Merkel, M. (1988). A Novel Analysis of Temporal Frame-Adverbials. In

Coling, Budapest: 1988.

Norman, D. (1988). The Design of Everyday Things. New York: Doubleday.

O’Shea, T., Eisenstadt, M. (1984). Artificial Intelligence. Tools,

Techniques, and Applications. Harper & Row Publishers.

Russel, S., Norvig, P. (1995). Artificial Intelligence. A Modern Approach. New

Jersey: Prentice Hall.

Santamarta, L. (2001). Natural Language Generation. Lecture in Language

Technology, University of Linköping.

Smith (1981). Semantic and Syntactic Constraints on Temporal

Interpretation. In Tedeshi, P.J. & Zaenen, A (eds.), Syntax and Semantics,

Vol. 14, 213-238.

Strömbäck, L. (1996). User-Defined Constructions in Unification-Based

Formalisms. (Linköping Studies in Science and Technology, dissertation

No.461). Linköping: Department of Computer and Information Science,

Linköping University.

Thompson, B.H., Thompson, F.B., (1985). ASK is Transportable in Half

a Dozen Ways. In ACM Transaction of Office Information Systems, Vol. 3, No.

2, 185-203.

1 1 0

R E F E R E N C E S

Watt, W. C., (1968). Habitability, American Documentation. July, pp 338-351.

Wiren, M. (1992). Studies in Incremental Natural-Language Analysis.

(Linköping Studies in Science and Technology, dissertation No.292).

Linköping: Department of Computer and Information Science,

Linköping University

1 1 1

A P P E N D I X A : S Q L S T A T E M E N T S

Appendix A: Glossary

chart parsing Parsing algorithm developed by Early (1970) that

consists of a single left-to-right pass that fills an

array (the chart). For each word position in the

sentence, the chart contains a list of states

represented the partial parse generated so far.

clock calendar phrase temporal phrases such as “midnight”, “at noon”

etc.

computational

lexicon

 Lexicon consisting of word stems with

morphological rules for derivating words. A

computational lexicon reduces computation and

development time. Also known as a mini-lexicon.

context-free grammar A grammar consisting of a set of rules for

predefined categories. Each rule expresses how

categories can be grouped together. Also known

as a phrase-structure grammar.

corpus A collection of utterances in a sub-language used

in a certain domain.

customization see Extensibility

DAG see Directed Acyclic Graph

deictic phrase temporal phrase anchored in time of speech, such

“l t k” d “t ”

A P P E N D I X A : S Q L S T A T E M E N T S

as “last week” and “tomorrow”.

dependent phrase temporal phrase anchored in another given time

in the context, such as “after” and “later”.

dialogue A discourse between two entities, where turn-

taking and grounding occurs.

directed acyclic graph (DAG). The graphical representation of a feature

structure.

domain An defined area of knowledge, for which a system

can be built.

extensibility A dialogue systems ability to change natural

language, domain, and computational platform.

Also known as customization.

feature structure An attribute-value structure that can be used for

information representation. Can be represented as

a matrix, a graph, and an equation.

Flexchart A Lisp-based chart parser provided by NLPLAB.

foreign key An artificially constructed key for identifying

tuples in a relational database.

formal language An artificial language, that is rigidly defined, such

as Java, SQL and Lisp.

genre A type of discourse with specific features and

content.

habitable The user never feels restrained by prohibited

sentences in the interaction with a natural

language interface.

lexicon A word list containing the words used in a sub-

l

A P P E N D I X A : S Q L S T A T E M E N T S

language.

LINLIN A generic dialogue system framework developed

at NLPLAB.

MALIN A refined dialogue system framework derived

from the Linlin architecture, consisting of

extended domain knowledge reasoning

capabilities.

marker see OPM

meta-knowledge

question

A user question about the capabilities of the

dialogue system (such as “Can I use slang when I

interact with you?”).

mini-lexicon see Computational Lexicon

modal question Questions about the relation between information

in the database.

natural language Human languages, such as Swedish or English,

which can be written and/or spoken.

natural language

generation

When a speaker uses knowledge about a language

to decide what to say.

NHC Nokia Home Communications

NL extensibility Natural language extensibility. The change of

interacting natural language in a dialogue system.

NLG see Natural Language Generation

NLPLAB The Natural Language Processing Laboratory

object see OPM

open nominal Expressions such as “action movie” or “ice

A P P E N D I X A : S Q L S T A T E M E N T S

compound cream”.

open system

standards

A standard for system components that allows for

different vendors to build on existing modules to

save development cost and time and handle

evolving needs.

OPM A unifiable unification structure consisting of

objects and properties. Used for dialogue

management and domain knowledge reasoning.

parse tree A graphical representation of a sentence parsed

with a context-free grammar.

parsing The process of assigning part of speech attributes

to each word in a sentence.

portability A sub-case to extensibility meaning how well a

dialogue system architecture can handle a domain

change.

practical dialogue A discourse focused on accomplishing a well-

defined task, such as a task-oriented dialogue.

primary key An artificially constructed key for identifying

tuples in a relational database.

property see OPM

query block The smallest meaning-bearing phrase within a

query phrase.

query phrase One of three phrase components identified in the

television programme domain corpus. See also

Introduction Phrase and Temporal Phrase.

scalability A sub-case of portability meaning how well a

di l t hit t h dl d i

A P P E N D I X A : S Q L S T A T E M E N T S

dialogue system architecture can handle domain

upscaling.

sub-language A set of a natural language that is used within a

genre.

system question see meta-knowledge question

tokenization The process of identifying meaning-bearing

lexemes in a corpus.

transportability A sub-case of extensibility, referring to how well a

dialogue system architecture handles a change in

computational platform and/or programming

language.

unification The process of comparing two feature structures,

and returning one feature structure that represent

the union of the two original structures.

utterance A generic term referring to any mode of

communication.

WOZ Wizard-of-Oz study. Method for corpus gathering

A P P E N D I X A : S Q L S T A T E M E N T S

Appendix B: SQL State-
ments

The following SQL statements can be generated, depending on what

information the user has given.

� <x> means “contents of variable x” (e.g. “< 1800”).

� TIME means that START and/or DATE exists.

� EMPTY means that that property only has aspect, but no (or

generic) argument.

1 S T A T E M E N T T E M P L A T E :

user has given TIME

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel,
programme.start, programme.date
FROM title, programme
WHERE title.ForeignKey = programme.PrimaryKey
AND programme.start = <start>
AND programme.date = <date>
ORDER BY programme.date, programme.start

What is on TV right now?

2 S T A T E M E N T T E M P L A T E :

user has given TIME and CATEGORY.

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel,
programme.start, programme.date

A P P E N D I X A : S Q L S T A T E M E N T S

FROM title, programme, category
WHERE title.ForeignKey = programme.PrimaryKey
AND category.ForeignKey = programme.PrimaryKey
AND category.category = <category>
AND programme.start = <start>
AND programme.date = <date>
ORDER BY programme.date, programme.start

Are there any movies tonight?

3 S T A T E M E N T T E M P L A T E :

user has given TIME and TITLE.

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel, programme.start
FROM title, programme
WHERE title.ForeignKey = programme.PrimaryKey
AND title LIKE <title>
AND programme.start = <start>
AND programme.date = <date>
ORDER BY programme.date, programme.start

Is Star Wars on this weekend?

4 S T A T E M E N T T E M P L A T E :

user has given TIME, ACTOR/DIRECTOR/PRESENTER.

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel,
programme.start, programme.date
FROM title, programme, credits
WHERE title.ForeignKey = programme.PrimaryKey
AND credits.ForeignKey = programme.PrimaryKey
AND credits.creditsAspect LIKE <creditsValue>
ORDER BY programme.date, programme.start

Is Shannon Tweed on tv tomorrow night?

5 S T A T E M E N T T E M P L A T E :

user has given TIME, CATEGORY and ACTOR/DIRECTOR/PRESENTER.

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel,
programme.start, programme.date
FROM title, programme, category, credits
WHERE title.ForeignKey = programme.PrimaryKey
AND title.ForeignKey = category.ForeignKey
AND category.category = <category>

A P P E N D I X A : S Q L S T A T E M E N T S

AND credits.creditsAspect LIKE <creditsValue>
AND credits.ForeignKey = title.ForeignKey
AND programme.start = <start>
AND programme.date = <date>
ORDER BY programme.date, programme.start

List all movies directed by Sydney Pollack today?

6 S T A T E M E N T T E M P L A T E :

user has given TITLE and empty ACTOR/DIRECTOR/PRESENTER.

user expects TITLE and ACTOR/DIRECTOR/PRESENTER.

SELECT title.title, credits. creditsAspect
FROM title, credits
WHERE title.ForeignKey = credits.ForeignKey
AND title.title LIKE <title>

Who directed Omega Doom?

7 S T A T E M E N T T E M P L A T E :

user has given TITLE.

user expects TITLE, CATEGORY and DESCRIPTION.

SELECT title.title, category.category,
description.description
FROM title, description, category
WHERE title.title LIKE <title>
AND description.ForeignKey = title.ForeignKey
AND category.ForeignKey = title.ForeignKey

What is Omega Doom about?

8 S T A T E M E N T T E M P L A T E :

user has given CATEGORY.

user expects CHANNEL and TITLE

SELECT DISTINCT programme.channel, title.title
FROM programme, category, title
WHERE category.ForeignKey = programme.PrimaryKey
AND title.ForeignKey = category.ForeignKey
AND category.category = <category>
ORDER BY programme.channel

Is there a news channel?

A P P E N D I X A : S Q L S T A T E M E N T S

9 S T A T E M E N T T E M P L A T E :

user has given CHANNEL and TIME.

user expects TITLE, START and DATE.

SELECT title.title, programme.start
FROM title, programme
WHERE title.ForeignKey = programme.PrimaryKey
AND programme.channel = <channel>
AND programme.start = <start>
AND programme.date = <date>
ORDER BY programme.date, programme.start

What is on BBC2 before seven pm on Tuesday?

1 0 S T A T E M E N T T E M P L A T E :

user has given CHANNEL, TIME and CATEGORY.

user expects TITLE, START and DATE.

SELECT title.title, programme.start, programme.date
FROM title, programme, category
WHERE title.ForeignKey = programme.PrimaryKey
AND category.ForeignKey = title.ForeignKey
AND programme.channel = <channel>
AND category.category = <category>
AND programme.start = <start>
AND programme.date = <date>
ORDER BY programme.date, programme.start

Are there any movies on BBC1 this weekend?

1 1 S T A T E M E N T T E M P L A T E :

user has given CHANNEL, TIME, CATEGORY and
ACTOR/DIRECTOR/PRESENTER.

user expects TITLE, START and DATE.

SELECT title.title, programme.start, programme.date
FROM title, programme, category, credits
WHERE title.ForeignKey = credits.ForeignKey
AND category.ForeignKey = programme.PrimaryKey
AND credits. ForeignKey = programme.PrimaryKey
AND programme.channel = <channel>
AND programme.start = <start>
AND programme.date = <date>
AND credits.creditsAspect LIKE <creditsValue>
AND category.category = <category>
ORDER BY programme.date, programme.start

Are there any movies directed by Sydney Pollack on Channel5
tomorrow night?

A P P E N D I X A : S Q L S T A T E M E N T S

1 2 S T A T E M E N T T E M P L A T E :

user has given CHANNEL, TIME, CATEGORY and empty
ACTOR/DIRECTOR/PRESENTER.

user expects TITLE and ACTOR/DIRECTOR/PRESENTER.

SELECT title.title, credits.<creditsAspect>
FROM title, programme, category, credits
WHERE title.ForeignKey = programme.PrimaryKey
AND category.ForeignKey = programme.PrimaryKey
AND category.category = <category>
AND programme.channel = <channel>
AND credits.ForeignKey = title.ForeignKey
AND programme.start = <start>
AND programme.date = <date>
ORDER BY programme.date, programme.start

Who is the main actor in tonights action movie on BBC1?

1 3 S T A T E M E N T T E M P L A T E :

user has given CATEGORY, ACTOR/DIRECTOR/PRESENTER.

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel,
programme.start, programme.date
FROM title, programme, category, credits
WHERE title.ForeignKey = credits.ForeignKey
AND category = <category>
AND credits.creditsAspect LIKE <creditsValue>
AND category.ForeignKey = title.ForeignKey
AND credits.ForeignKey = programme.PrimaryKey
ORDER BY programme.date, programme.start

What movies are directed by Sydney Pollack?

1 4 S T A T E M E N T T E M P L A T E :

user has given empty TIME and TITLE.

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel,
programme.start, programme.date
FROM title, programme
WHERE title.ForeignKey = programme.PrimaryKey
AND title.title LIKE <title>
ORDER BY programme.date, programme.start

When is The Simpsons?

A P P E N D I X A : S Q L S T A T E M E N T S

1 5 S T A T E M E N T T E M P L A T E :

user has given empty TIME and ACTOR/DIRECTOR/PRESENTER.

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel,
programme.start, programme.date
FROM title, programme, credits
WHERE credits.ForeignKey = programme.PrimaryKey
AND title.ForeignKey = credits.ForeignKey
AND credits.creditsAspect LIKE <creditsValue>
ORDER BY programme.date, programme.start

When is Shannon Tweed on tv?

1 6 S T A T E M E N T T E M P L A T E :

user has given CHANNEL, empty TIME and
ACTOR/DIRECTOR/PRESENTER.

user expects TITLE, CHANNEL, START and DATE.

SELECT title.title, programme.channel,
programme.start, programme.date
FROM title, credits, programme
WHERE title.ForeignKey = credits.ForeignKey
AND credits.ForeignKey = programme.PrimaryKey
AND programme.channel = channel +
AND credits. creditsAspect LIKE <creditsValue>
ORDER BY programme.date, programme.start

When is Rutger Hauer on Channel5?

1 7 S T A T E M E N T T E M P L A T E :

user has given CHANNEL, TIME and TITLE.

user expects START and DATE.

SELECT programme.start, programme.date
FROM programme, title
WHERE programme.channel = <channel>
AND title.title LIKE <title>
AND title.ForeignKey = programme.PrimaryKey
AND start = <start>
AND date = <date>
ORDER BY programme.date, programme.start

Is The Simpsons on BBC2 this week?

A P P E N D I X A : S Q L S T A T E M E N T S

1 8 S T A T E M E N T T E M P L A T E :

user has given CATEGORY and TITLE.

user expects TITLE and CATEGORY (as Y/N).

SELECT title.title, category.category
FROM title, category
WHERE title LIKE <title>
AND title.ForeignKey = category.ForeignKey

Is Superbowl a movie?

1 9 S T A T E M E N T T E M P L A T E :

user has given CHANNEL and CATEGORY.

user expects TITLE, START and DATE.

SELECT title.title, programme.start, programme.date
FROM title, programme, category
WHERE programme.channel = <channel>
AND category = <category>
AND category.ForeignKey = programme.primaryKey
AND title.ForeignKey = category.ForeignKey
ORDER BY programme.date, programme.start

What sport events are featured on BBC2?

2 0 S T A T E M E N T T E M P L A T E :

user has given TITLE and empty DESRIPTION.

user expects TITLE, CATEGORY and DESCRIPTION.

SELECT title.title, category.category
description.description
FROM title, description, category
WHERE title.ForeignKey = description.ForeignKey
AND category.ForeignKey = title.ForeignKey
AND title LIKE <title>

What is Electra about?

2 1 S T A T E M E N T T E M P L A T E

user has given TIME, empty ACTOR/DIRECTOR/PRESENTER.

user expects TITLE, ACTOR/DIRECTOR/PRESENTER, CHANNEL, START
and DATE.

SELECT title.title, credits.creditsAspect,
programme.channel, programme.start, programme.date
FROM title, programme, credits
WHERE title.ForeignKey = programme.PrimaryKey

A P P E N D I X A : S Q L S T A T E M E N T S

AND credits.ForeignKey = programme.PrimaryKey
AND programme.start = <start>
AND programme.date = <date>
ORDER BY programme.date, programme.start

Is Rutger Hauer on any channel tomorrow after five pm?

2 2 S T A T E M E N T T E M P L A T E

user has given CHANNEL, TIME, empty ACTOR/DIRECTOR/PRESENTER

user expects TITLE, CHANNEL, START and DATE

SELECT title.title, credits.<creditsAspect>,
programme.channel, programme.start, programme.date
FROM title, programme, credits
WHERE title.ForeignKey = programme.PrimaryKey
AND programme.channel = <channel>
AND programme.start = <start>
AND programme.date = <date>
AND credits.ForeignKey = programme.PrimaryKey
ORDER BY programme.date, programme.start

Who is acting on Channel5 tonight?

2 3 S T A T E M E N T T E M P L A T E

user has given empty CHANNEL, TITLE

user expects TITLE, CHANNEL, START and DATE

SELECT title.title, programme.channel,
programme.start, programme.date
FROM title, programme
WHERE title LIKE <title>
AND programme.PrimaryKey = title.ForeignKey
ORDER BY programme.date, programme.start

What channel shows the Simpsons?

2 4 S T A T E M E N T T E M P L A T E

user has given CHANNEL, CATEGORY, ACTOR/DIRECTOR/PRESENTER

user expects TITLE, START and DATE

SELECT title.title, programme.start, programme.date
FROM title, programme, category, credits
WHERE title.ForeignKey = credits.ForeignKey
AND programme.channel = <channel>
AND category = <category>
AND credits. creditsAspect LIKE <creditsValue>
AND category.ForeignKey = title.ForeignKey
AND credits.ForeignKey = programme.PrimaryKey
ORDER BY programme.date, programme.start

A P P E N D I X A : S Q L S T A T E M E N T S

Are there any movies with Shannon Tweed on BBC1

2 5 S T A T E M E N T T E M P L A T E

user has given CHANNEL, TITLE

user expects START and DATE

SELECT programme.start, programme.date
FROM title, programme
WHERE title LIKE <title>
AND channel = <channel>
AND programme.PrimaryKey = title.ForeignKey
ORDER BY programme.date, programme.start

Is Simpsons on BBC2?

A P P E N D I X B : S A M P L E D I A L O G U E C O L L E C T I O N

Appendix C: Sample
Dialogue
Collection

The following utterances are examples of user input to the dialogue

system prototype.

1. What shows are there tonight?

2. What programs are on tomorrow night?

3. What’s on right now?

4. Show me all programs currently screening.

5. Could you please tell me what’s on right now?

6. Please tell me what sports events are on tonight.

7. Are there any movies tomorrow after 7 pm?

8. Show me when the next news show with weather is.

9. What movies are showing this week?

10. Show all movies starting after 7 pm for Monday, Wednesday

and Friday next week.

11. Which channel shows sitcoms at 5 pm tonight?

A P P E N D I X B : S A M P L E D I A L O G U E C O L L E C T I O N

12. Where can I watch movies tomorrow?

13. What channels feature cultural programmes?

14. Is there a news channel?

15. Which channel is “Friends” on tonight?

16. Is there a channel showing “Braveheart” this week?

17. I wanna watch “60 Minutes”. Is it on tonight?

18. I wanna watch “60 minutes”. What channel is it on and when?

19. Which channel shows “60 minutes”?

20. When is the next episode of Star Trek?

21. Who is the main actor in “Living Daylights”?

22. Who directed “Gladiator”?

23. When was “Star Wars” produced?

24. Who is the director of “Jailhouse Rock”?

25. Tell me more about tonight’s Ricki Lake show.

26. Can you tell me what “Return of the Jedi” is about?

27. Show me the synopsis for The Quest for the Holy Grail.

28. Who is presenting “America’s Dumbest Home Viedeos”?

29. What’s on NaturePlanet tomorrow at 8 pm?

30. Show me all CNN shows tonight.

31. I’d like to know what movies are featured on BBC2 on Friday.

A P P E N D I X B : S A M P L E D I A L O G U E C O L L E C T I O N

32. Is there a movie with Nick Nolte tonight?

33. I wanna watch a movie with Nicole Kidman this week.

34. Are there any movies directed by George Lucas tomorrow?

35. Are there any movies starring Mel Gibson on Channel5 next

week?

36. Who’s the main actor in tonight’s 8 o’clock movie on BBC2?

37. Is Gladiator a movie?

38. Is Superbowl a movie?

39. What is on BBC1 before 5 pm?

40. Is Superbowl on BBC2 tomorrow?

41. When is The Simpsons?

42. What channels do I have?

43. Where can I watch series tomorrow?

44. Is there a news channel?

45. Who has directed Gladiator?

46. Who is the director of Gladiator?

47. Is there any information about who the director of Gladiator is?

48. Who directed Gladiator?

49. What is Gladiator?

	Introduction
	BACKGROUND
	Nokia Home Communications
	Natural Language Processing Laboratory

	PURPOSE
	OVERVIEW

	Related Research
	PRELIMINARIES
	DIALOGUE SYSTEMS
	Natural Language Interfaces
	Linguistic Coverage
	Domain Coverage
	System Architecure and Modularization

	FEATURE STRUCTURES AND UNIFICATION
	GRAMMAR FORMALISMS AND PARSING
	Context-Free Grammar
	Unification-Based Formalism
	Chart Parsing
	Lexicon and Grammar

	REPRESENTING AND RETRIEVING KNOWLEDGE
	Relational Databases
	Reasoning About Domain Knowledge
	Temporal Reasoning

	NATURAL LANGUAGE GENERATION

	Problem Statement
	THE LINGUISTIC ASPECT
	THE DOMAIN ASPECT
	COURSE OF ACTION

	The Malin Framework
	THE Malin SYSTEM ARCHITECTURE
	THE CHART PARSER FLEXCHART

	The TV-Programme Dialogue System
	METHOD
	CORPUS WORK
	Introduction Phrases
	Query Phrases
	Temporal Phrases
	Looking for Answers
	Updating the Corpus

	DESIGN
	Knowledge Representation
	Modularization

	IMPLEMENTATION
	The Parser Module
	The Dialogue Manager Module
	The Domain Knowledge Manager Module
	The Database
	The Response Manager

	THE SYSTEM FLOW: AN EXAMPLE

	Results
	LINGUISTIC RESULTS
	The Sub-Language and Its Representation
	Robustness
	Natural Language Extensibility

	DOMAIN RESULTS
	The Domain and Its Representation
	Portability
	Scalability

	Discussion
	THE LINGUISTIC ASPECT
	The Sub-Language and Its Representation
	Robustness
	Natural Language Extensibility

	THE DOMAIN ASPECT
	The Domain and Its Representation
	Portability
	Scalability

	IMPLEMENTATION ISSUES
	Transportability
	Modularization

	Conclusion and Future Research
	CONCLUSIONS
	FUTURE RESEARCH
	General Issues
	Suggestions for a New Architecture

	References

