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An intersystem or vertical handover is a key enabling mechanism for next generations of
mobile communication systems. A vertical handover can cause an abrupt change of up to
two orders of magnitude in link bandwidth and latency. It is hard for end-to-end congestion
control to adapt promptly to such changes. This is especially a concern for slowly respon-
sive congestion control algorithms, such as TCP-Friendly Rate Control (TFRC). TFRC is
designed to provide a smooth transmission rate for real-time applications and, therefore, is
less responsive to changes in network conditions than TCP. Using measurements and sim-
ulation, we show that TFRC has significant difficulties adapting after a vertical handover.
TFRC receives only a fraction of TCP throughput over a fast link, but can be grossly unfair
to concurrent TCP flows after handover to a slow link. We show that two proposals based
on overbuffering and an explicit handover notification are effective solutions to these prob-
lems. Using them, TFRC can quickly adapt to new link characteristics after a handover,
while otherwise maintaining a smooth transmission rate.

I. Introduction

Existing wireless networks offer to a mobile user a
trade-off between connection bandwidth, coverage,
and cost. The user can utilize the most suitable wire-
less network at a given time and location, for example,
by switching between Wireless LAN (WLAN), Gen-
eral Packet Radio Service (GPRS), and Universal Mo-
bile Telecommunications System (UMTS) links while
keeping ongoing data transfers. An intersystem han-
dover is also known as a vertical handover because
wireless networks often form an overlay structure —
the fastest network with least coverage is contained in
a slower network with a larger coverage area [38].

An intersystem handover is challenging to end-to-
end transport protocols, because packets often get lost,
delayed or reordered during a handover. Furthermore,
path characteristics such as bandwidth, latency, and
the buffer size can change instantly, often more than
by an order of magnitude. Estimators used by the end-
to-end transport protocols to control the amount of
outstanding data in the network and the rate of trans-
mission are likely to be significantly off after a han-
dover. As a result, overshooting or underutilization of
the available bandwidth becomes likely.

In the Internet, TCP is the dominant transport pro-
tocol that serves well many applications requiring
reliable data delivery. However, for real-time ap-
plications, such as streaming video, a highly vari-
able transmission rate of TCP is problematic. Re-

cently, several slowly responsive congestion control
algorithms were proposed based on the notion of
TCP-friendliness [32, 43]. Such algorithms provide
a smooth transmission rate on the short time scale.
On the longer time scale they consume no more band-
width than a TCP flow under similar network condi-
tions. The TCP-friendly Rate Control (TFRC) [11]
is perhaps the most popular protocol among proposed
alternatives.

In this paper, we evaluate performance of TFRC
during handovers between GPRS, WLAN, and
UMTS. We measure behavior of TFRC and TCP flows
in a testbed implementing vertical handovers using
Mobile IP. To verify our testbed measurements and
to study the effect of changes in path characteristics,
we use an ideal handover model in the ns-2 simula-
tor [40]. Essentially, an ideal handover is represented
by a step change in the bottleneck link bandwidth, la-
tency, and buffer size, as if a smooth handover with
packet forwarding were implemented [7]. Through-
put, aggressiveness, responsiveness, and fairness of
TFRC are evaluated. We show that there are signifi-
cant problems with using TFRC in the presence of ver-
tical handovers. In particular, over a fast link TFRC
receives only a fraction of TCP throughput, while over
a slow link TFRC can starve concurrent TCP flows af-
ter a handover. Two proposals based on overbuffering
and an explicit handover notification are demonstrated
to be effective solutions to these problems.

The rest of the paper is organized as follows. Sec-
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tion II gives the necessary background on end-to-end
transport protocols and congestion control. In Sec-
tion III, we describe our Mobile IP testbed and present
TFRC and TCP traces from vertical handovers. In
Section IV, behavior of TFRC and TCP during an
ideal handover is explored via simulation. In Sec-
tion V, we examine the effect of TFRC parameters.
In Section VI and VII, we introduce and evaluate
overbuffering and the explicit handover notification
for improving aggressiveness and responsiveness of
TFRC and TCP. Finally, Section VIII presents main
conclusions from this work.

II. Background and Related Work

In this section, we review congestion control mecha-
nisms in TCP and TFRC, as well as existing work on
evaluating the effect of vertical handovers on transport
protocols.

II.A. End-to-end Congestion Control

II.A.1. Transmission Control Protocol

TCP is a reliable transport protocol that uses slow start
and congestion avoidance for congestion control [3].
TCP has an important property of self-clocking, also
known as the packet conservation principle [26]. As-
suming that delayed acknowledgments are not used,
in the equilibrium condition every arriving ACK indi-
cates that a segment has left the network and triggers
a transmission of a new segment. We assume that the
reader is familiar with the TCP protocol [39] and only
review existing work on TCP performance in the pres-
ence of handovers.

A study on the effect of mobility on TCP found
that packet losses during a handover significantly re-
duce throughput [30]. The most significant factor con-
tributing to long TCP recovery from handovers was
found to be in the exponential back-off of the TCP
retransmit timer [8]. A proposed solution is to arti-
ficially generate three Duplicate ACKs at the TCP re-
ceiver to trigger fast retransmit at the sender and avoid
lengthy recovery using the retransmit timer. However,
this approach may not work if Selective Acknowl-
edgments (SACK) are used by the TCP connection.
An improved variant of this mechanism is proposed
by Fladenmuller and Silva [10]. As an alternative
to modifying TCP, Hsieh proposed a new receiver-
centric transport protocol that performs well in the
presence of handovers [21].

The transmission rate of transport protocols using
a sliding window is defined by the rate of returning

acknowledgments. The number of outstanding seg-
ments — the current window — depends on the buffer
size of the bottleneck link, that is typically set accord-
ing to the bandwidth-delay product of the link. As an
example, TCP congestion control estimators (the con-
gestion window and slow start threshold) for two links
(1000 kbps/10 ms and 100 kbps/100 ms) are the same
assuming the same link buffer size. Therefore, after
a handover between two such links, the TCP sender
instantly adapts to the bandwidth of a new link. In
other words, window-based protocols, such as TCP,
are more sensitive to the change of the bandwidth-
delay product of the link than only of the link band-
width.

TCP options negotiated at the connection establish-
ment may not be appropriate after a handover to the
network with vastly different characteristics. Unfor-
tunately, TCP options cannot be adjusted later in the
connection lifetime. We identified option values that
are adequate for all overlay networks considered in
this paper. These values are listed in Appendix A.

II.A.2. TCP-Friendly Rate Control

TFRC permits an application to transmit at a steady
rate that is typically within a factor of two from the
TCP rate in the similar conditions [11]. TFRC does
not halve the transmission rate after a single packet
loss, but is also slow to increase the rate in the ab-
sence of congestion. In other words, the main goal
of TFRC is to provide a smooth transmission rate, but
not to aggressively make use of available bandwidth.
In the absence of explicit feedback from the network,
there is an inherent trade-off between smoothness of
the transmission rate and convergence time to the fair
share of bandwidth.

The TFRC receiver reports the loss event rate � and
the average receive rate ������� to the sender. The sender
computes the reference transmission rate � ���
	�� based
on � , � ����� , and average round-trip time using a TCP
rate equation [32]. The actual transmission rate � is
set as follows [20]:���� �������

� ���
	���������� �"! ��#�$&% �"!��
� �(')��* � ' ��$+� � ���
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� �(')��* � ' ��$+� .10 � ,/.G0 � ��3:��� � ,/5�67F �
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Here 5 represents the packet size, !�>IE is time when
the rate was last doubled, F is RTT, and !J9K;=< repre-
sents the maximum back-off time (64 seconds by de-
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fault) in the persistent absence of feedback. If � is
zero, no packet loss has yet been seen by the flow.
In this phase, the TFRC sender emulates slow start of
TCP by doubling the transmission rate every RTT.

TCP does not typically reduce the congestion win-
dow more than once per a window of data. Therefore,
calculating the loss event rate rather than simply tak-
ing the packet loss rate is an important part of TFRC.
The default method that TFRC uses for calculating
the loss event rate is called the Average Loss Interval.
With this method a weighted average of recent inter-
vals between packet losses is computed. The weights
are 1, 1, 1, 1, 0.8, 0.6, 0.4, and 0.2 for the oldest loss
interval.

History discounting allows the TFRC receiver to
adjust the weights, concentrating more on the most re-
cent loss interval, when it is more than twice as large
as the computed average loss interval. This is an op-
tional mechanism to allow TFRC to response some-
what more quickly to the sudden absence of conges-
tion, as represented by a long current loss interval.

Self-clocking is seen as the key feature of TCP con-
gestion control that contributes to the stability of the
Internet [5]. An optional self-clocking mechanism for
TFRC is applied for the RTT following a packet loss.
It limits the sender’s rate to at most the received rate
in the previous round trip time. Furthermore, in the
absence of losses, the TFRC maximum sending rate
is limited to the earlier receive rate times a constant to
prevent a rapid increase in the transmission rate.

Main metrics of a congestion control algorithm are
throughput, fairness, aggressiveness, responsiveness,
and smoothness. Throughput is the rate at which data
is delivered to the receiver. Fairness reflects the ability
of a flow to share bandwidth in a compatible way with
a TCP flow running in similar conditions. Aggressive-
ness describes how rapidly the algorithm increases the
transmission rate in the absence of congestion. Re-
sponsiveness reflects how fast the rate is decreased in
time of persistent congestion. Finally, smoothness de-
fines how variable is the rate when packet losses are
relatively rare. Formally, the responsiveness of a con-
gestion control mechanism has been defined as the
number of round-trip times of persistent congestion
until the sender halves its sending rate, where persis-
tent congestion is defined as the loss of one packet per
round-trip time [11]. The aggressiveness of a conges-
tion control mechanism has been defined as the max-
imum increase in the sending rate in one round-trip
time, in packets per second, given the absence of con-
gestion [5].

The maximum increase of TFRC rate given fixed

RTT is estimated to be 0.14 packets per RTT and 0.22
packets per RTT with history discounting [11]. It
takes four to eight RTTs for TFRC to halve its sending
rate in the presence of persistent congestion.

We explained in Section II.A.1 that window-based
protocols, such as TCP, are sensitive to changes in
the delay-bandwidth product, but not necessarily to
changes in bandwidth. For rate-based protocols, such
as TFRC, the opposite is true. TFRC does not esti-
mate the amount of outstanding data necessary to uti-
lize the link, but transmits at a relatively steady rate.
Therefore, TFRC is more sensitive to changes in the
link bandwidth than in the delay-bandwidth product.

TFRC is not a full-fledged transport protocol, as
it only concerns with end-to-end congestion control.
Therefore, TFRC should be deployed together with a
transport protocol, such as UDP, RTP, or Datagram
Congestion Control Protocol (DCCP) [27].

In this paper, we examine aggressiveness and re-
sponsiveness of TFRC during step changes in link
characteristics triggered by a vertical handover. Fair-
ness and smoothness are considered only briefly. Our
study goes further than previous work [45, 11, 5] in
several ways. First, we evaluate changes in link band-
width and latency of up to two orders of magnitude.
Second, we consider the effect of varying RTT. Third,
we are interested in cellular networks where little de-
gree of statistical multiplexing is present. This allows
us to concentrate on behavior of one or two flows.
Our results are based on measurements and simula-
tion. We are not aware of other TFRC measurements
over wireless links except by Beaufort et al. [6].

II.B. Overlay Networks

The terms wireless overlay networks and a vertical
handover were introduced during the Bay Area Re-
search Wireless Access Network project [38]. The
BARWAN testbed included WaveLAN, Infrared, Ric-
ochet wireless networks, and later a wide-area cellu-
lar network [42]. Other researchers built a number of
similar testbeds, concentrating on minimizing delays
and packet losses during handovers.

Several studies evaluated performance of a Mobile
IP [34] handover in overlay networks. A common
conclusion appears to be that while Mobile IP can
provide sufficiently quick handovers for non-real-time
applications, the disruption is too long to be tolerated
by real-time applications [10]. However, using op-
timizations, handover times as low as 10 ms can be
achieved in WLANs [9]. Local loss recovery using a
snoop proxy was shown to improve TCP performance
during handovers [4]. A study of an optimized smooth
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Table 1: Link characteristics of overlay networks.
System RTT, Bw, Bw*RTT, Coverage

ms Mbps Kbytes
GPRS 600 0.03 � 2 country
UMTS 300 0.384 � 15 city
WLAN 10 11 � 14 building
LAN 1 100 � 13 desk

handover in Mobile IP observed that forwarding pack-
ets from the old access point to the new one can sig-
nificantly reduce packet losses [7, 33].

Hsieh and Seneviratne compared several mecha-
nisms for improving performance of Mobile IP for
TCP [22]. The basic Mobile IPv6 framework is com-
pared with Hierarchical Mobile IPv6, Hierarchical or
Flat Mobile IPv6 with Fast handover, Simultaneous
Bindings, and Seamless handoff architecture for Mo-
bile IP (S-MIP) for linear and ping-pong mobility sce-
narios. All frameworks except S-MIP suffered from
packet losses and performance degradation.

In this paper, we consider four different overlay
networks: GPRS, UMTS, WLAN, and LAN. These
network technologies are described, for example, by
Walke [41]. Their link characteristics are summarized
in Table 1. Vertical handovers cause a varying degree
of change in link characteristics. GPRS-UMTS han-
dovers trigger a change in the delay-bandwidth prod-
uct, while WLAN-LAN handovers trigger a signifi-
cant change in bandwidth. The delay-bandwidth prod-
uct of WLAN and LAN is similar.

III. Measurements of Vertical Han-
dovers

In this section, we describe our testbed and present
measurement results of TFRC flows during vertical
handovers. For comparison, we also show traces of a
TCP flow running alone and concurrently with TFRC.

III.A. Measurement Setup

Figure 1 shows the network architecture that we use
for measurements. Mobile nodes can connect to the
testbed using 100 Mbps Ethernet LAN, 11 Mbps
802.11b WLAN, a live GPRS network, and a live
UMTS network. For brevity, we only present mea-
surements results of handovers between GPRS and
WLAN.

The connection to the GPRS and UMTS cellular
networks is realized using a dedicated Access Point
Name (APN). IP traffic from GPRS and UMTS is sent
over a Generic Router Encapsulation (GRE) tunnel

�������
�������
�������

�������
�������
�������

Router

Correspondent Node

Mobile Node

APN

GPRS/UMTS

Home Agent DNS

Firewall

WLANLAN

Figure 1: Measurement testbed based on Mobile IP.

between a Gateway GPRS Support Node (GGSN) and
the APN router. This is necessary because the firewall
in the live cellular network would otherwise drop Mo-
bile IP messages. The Mobile Node, Correspondent
Node, Home Agent, and the APN router are PCs with
a Pentium-3 600 MHz processor running the Linux
operating system. The APN router has a Debian distri-
bution with a 2.2.17 kernel. The Mobile Node, Home
Agent, and Correspondent Node have the RedHat 7.3
distribution.

For GPRS access we used a Nokia’s D211 PCM-
CIA card, which is capable of three downlink and one
uplink timeslots. With CS-2 coding it can achieve
36 kbps downlink and 12 kbps uplink transfer speeds.
Our testbed has a commercial SecGo Mobile IPv4 in-
stallation. This Mobile IPv4 implementation is based
on the previous work done in the Dynamics research
project [12]. The SecGo Mobile IPv4 implementa-
tion is fully compliant to the latest specification [34]
and also implements NAT Traversal (NATT) tunnel-
ing [28]. The Mobile IPv4 product we used does
not implement any handover enhancements, such as a
smooth handoff [7]. Buffering in the Home Agent and
in the Mobile Node does not modify standard Linux
buffering.

In handover tests we used a co-located Foreign
Agent residing at the Mobile Node. We forced re-
verse NATT tunneling and defined zero agent solici-
tations to be sent from the Mobile Node. These set-
tings caused all traffic to go through the Home Agent.
During a handover, the Mobile Node sends a registra-
tion request message immediately to the Home Agent
using a new link. The new and old links are simulta-
neously active, the layer two handover delay is zero
and all delay is at the layer three. Handovers were
manually forced by changing the interface prioritiza-
tion from the client software graphical interface. It
may not be a practical scenario for vertical mobility,
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Table 2: Delay and packet loss during handovers as
measured in the testbed.

From � to Delay, DL loss, UL loss,
seconds % %

GPRS � LAN 13 100 -
LAN � GPRS 3 0 100

GPRS � WLAN 1 95 -
WLAN � GPRS 4 0 100
LAN � WLAN 0.2 0 100
WLAN � LAN 0.8 0 100

but is sufficient for our purposes of studying the ef-
fect of a change in link characteristics on end-to-end
congestion control.

NATT tunneling adds header overhead of 32 bytes,
which consists of 20 bytes of encapsulating IP-header,
8 bytes of UDP headers, and 4 bytes of NATT tunnel-
ing header. The IP Maximum Transfer Unit (MTU)
was intentionally lowered to 1440 bytes to avoid
packet fragmentation. We concentrated on downlink
bulk data transfers from the server to the mobile node.
TCP traffic is generated with ������� , and TFRC traf-
fic with an application-level implementation of TFRC
over UDP [23]. This implementation does not com-
pletely correspond to the TFRC specification, but it
was the best implementation available. Packet traces
were recorded at the end hosts using �������
	��� .

III.B. TCP Measurement Results

Table 2 summarizes the delay and packet loss es-
timated from TCP traces during handovers in our
testbed. No packet duplication or reordering was ob-
served during the measurements. The delay refers to
the total duration of the handover on the IP layer and
does not include, for example, the effect of TCP time-
outs. The fraction of lost packets during handovers is
given separately for downlink (DL) and uplink (UL)
directions. During handovers from WLAN and LAN,
packets were rarely lost in downlink, but always in the
uplink direction.

During handovers from GPRS, all packets in down-
link were lost and we did not have sufficient infor-
mation to estimate losses in uplink. TCP transmits ac-
knowledgments only when data segments are arriving.
As we only experimented with downlink transfers,
loss of data segments in the downlink direction stops
transmission of acknowledgments in uplink. Without
any packets sent in the uplink direction, it is not pos-
sible to estimate the loss probability for uplink traffic.

In the rest of this section, we focus on traces of TCP

connections during vertical handovers between GPRS
and WLAN. Handovers to and from LAN have had
a similar pattern and we do not include those traces
here. Figure 2(a) shows TCP behavior during a han-
dover from GPRS to WLAN. The graph shows a time-
sequence trace of TCP segment numbers modulo 90
from the sender side. The handover takes a second
to execute. Although almost all data segments were
lost, a single acknowledgment arriving after the han-
dover resumes the connection quickly. Linux TCP
uses the FACK algorithm [36] that enables trigger-
ing a fast retransmit after a single Duplicate ACK
rather than waiting for three Duplicate ACKs as re-
quired by the standard TCP [3]. In experiments where
the TCP sender had to rely on the retransmit time-
out to recover lost segments, we observed connec-
tion breaks of more than ten seconds during handovers
from GPRS to WLAN and LAN. The reason for such
breaks is a high latency and queuing delay in GPRS.

A handover from WLAN to GPRS in Figure 2(b)
lasted four seconds. The TCP sender timed out
and performed three retransmissions using exponen-
tial back-off. Interestingly, the first acknowledgment
that returns to the sender after a handover on the 31st
second confirms all outstanding segments. This tells
us two things. First, all data segments outstanding
when the handover has started were delivered to the
receiver. Second, all acknowledgments except the one
for the highest outstanding segment were lost. TCP
generates an acknowledgment for at least every sec-
ond segment; if they arrived to the sender we would
see unnecessary go-back-N retransmissions [29].

III.C. TFRC Measurement Results

Figure 3(a) and 3(b) show behavior of a single TFRC
flow during handovers between GPRS and WLAN.
As before, the time-sequence trace is recorded at the
sender side and the sequence numbers in the graph
wrap after 90 segments. Handovers are triggered ap-
proximately on the 30th second.

TFRC aggressiveness can be evaluated from Fig-
ure 3(a), when a handover is made from a slow
(GPRS) to a fast link (WLAN). In this test, the TFRC
flow accelerates quickly to the bandwidth of the new
link. A possible reason is that the flow has not yet
exited the slow start phase when the handover oc-
curs [17]. In slow start, TFRC is much more aggres-
sive than after reaching the steady state with a smooth
transmission rate. Then, the past history of high RTT
and low bandwidth can make TFRC adaptation slow
after a handover from GPRS to WLAN.

The responsiveness of TFRC to a decrease in band-
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Figure 2: Measured behavior of a TCP flow during a vertical handover in the testbed (the handover occurs
approximately at time 30).
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Figure 3: Measured behavior of a TFRC flow during a vertical handover in the testbed (the handover occurs at
time 30).
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Figure 4: Measured behavior of a TFRC (top) and TCP flow (bottom) during a vertical handover in the testbed
(the handover occurs at time 30).
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width after a handover from WLAN to GPRS can
be seen in Figure 3(b). On the 30th second feed-
back packets stop arriving to the sender. About a sec-
ond later, a no-feedback timer expires at the sender
and the transmission rate is halved several times un-
til the first feedback packet arrives on the 40th sec-
ond. Because TFRC is a rate-based protocol, there
is no visible break in transmission during a handover
as with TCP. There is a significant time period before
the TFRC flow converges to the bandwidth on the new
link.

III.D. TFRC Measurement Results with
a Competing TCP Flow

In this section, we describe packet traces of a TFRC
flow with a competing TCP flow during vertical han-
dovers between GPRS and WLAN. In Figure 4(a)
and 4(b), handovers are triggered approximately on
the 30th second. Figures show a time-sequence graph
from the sender side of TCP and TFRC. Segment
numbers modulo 90 are plotted for TCP in the lower
and for TFRC in the upper part of the graph.

Figure 4(a) shows TCP and TFRC behavior during
a handover from GPRS to WLAN. Prior to handover,
both flows are running at similar rates. However, the
TFRC flow accelerates slower than the TCP flow after
a handover. The TFRC flow obtains only 15% of the
throughput of a competing TCP flow. This scenario il-
lustrates that TFRC discovers the increased bandwidth
significantly slower than TCP. Several minutes can be
needed for TFRC to achieve a fair share of bandwidth
after a handover from a slow to a fast link.

Figure 4(b) shows TCP and TFRC behavior during
a handover from WLAN to GPRS. As in the previ-
ous graph, flows share the bandwidth fairly before the
handover. However, after a handover the TCP flow
is starved, performing retransmissions using the ex-
ponential back-off. Only when the TFRC flow termi-
nates (not shown in the graph) the TCP flow is able
to resume transmission. A possible explanation for
this behavior is that the TFRC implementation used
for measurements has the minimum sending rate of
one packet per RTT [11]. On a slow GPRS link,
a TFRC flow transmitting at this minimum rate can
starve a TCP flow that uses the exponential back-off
up to 64 seconds between retransmission attempts.
Although the latest TFRC specification [20] requires
a similar type of behavior, TFRC still reacts consider-
ably slower than TCP to decreased bandwidth, caus-
ing congestion and a high packet loss rate for concur-
rent flows after a handover from a fast to a slow link.

IV. Simulating Ideal Vertical Han-
dovers

In this section, we evaluate the effect of abrupt
changes in link bandwidth, latency, and buffer size on
TCP and TFRC flows after a vertical handover.

IV.A. Simulation Setup

In this section, we want to focus on fundamental ef-
fects of a change in link characteristics, but not on
transient disruptions caused by imperfect handover
mechanisms. Therefore, a simple approach present-
ing a handover as a step change in the bottleneck link
bandwidth, latency, and the buffer size is sufficient for
our purposes. We model an ideal handover using the
ns-2 simulator [40]. We implemented an algorithm
described in Appendix B to prevent packet reordering
during a handover. The implementation of the Drop-
Tail queue was enhanced to check for buffer overflow
when the limit of queue size changes.

The network topology is a simple dumbbell, with
a mobile node adjacent to the wireless access link
(see e.g., [18]). Traffic is generated by uni-directional
downlink transfers. A handover is triggered on the
30th second after the start of simulation. The bottle-
neck queue is Drop-Tail. The bandwidth and one-way
latency of the link are set according to Table 1. The
end-to-end one-way latency is higher than the link la-
tency by 50 milliseconds to account for an Internet
path. The link buffer is set to 7 packets for GPRS
and WLAN, and to 20 packets for UMTS. The TCP
agent is uni-directional TCP SACK with delayed ac-
knowledgments, Limited Transmit, timestamps, and
the receiver window of 50 segments (it is sufficiently
large so that the protocol behavior is dominated by the
bottleneck buffer in the network).

By default, TFRC history discounting is enabled,
the feedback frequency is once per RTT, and self-
clocking is disabled. Our simulation scripts are pub-
licly available [16].

IV.B. TCP Simulation Results

In this section, we evaluate the performance of a sin-
gle TCP connection during an ideal handover between
GPRS and UMTS. After a handover from GPRS to
UMTS in Figure 5(a), it takes approximately 10 sec-
onds for the connection to fully utilize the new link.
This delay is explained by the slow increase of the
TCP window in congestion avoidance and the in-
creased bandwidth-delay product of the path.
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In Figure 5(b), a TCP flow creates congestion af-
ter a handover from UMTS to GPRS. The handover
causes packet losses due to the reduced bandwidth-
delay product of the path. TCP experiences a retrans-
mit timeout due to many lost segments. For several
seconds the TCP flow remains idle waiting for the re-
transmit timer to expire. In previous work [18], we
proposed a TCP variant NewReno-SACK that better
avoids retransmit timeouts than the standard Reno-
SACK used in this simulation. It can improve TCP
throughput in the presence of handovers, but cannot
entirely eliminate delays due to the retransmissions of
lost packets.

In summary, the self-clocking property of TCP al-
lows a relatively rapid adaptation to changed link
bandwidth after a handover. However, a retransmit
timeout due to packet losses forces TCP to lose self-
clocking. Furthermore, it is important to avoid a spuri-
ous retransmit timeout when RTT suddenly increases
after a handover [18].

IV.C. TFRC Simulation Results

In this section, we evaluate the behavior of a sin-
gle TFRC flow during an ideal handover between
GPRS and UMTS. In Figure 6(a), a TFRC flow signif-
icantly underutilizes the UMTS link after a handover
from GPRS. This behavior differs from measurements
shown in Figure 3(a), where TFRC quickly increased
the transmission rate. This discrepancy is explained
by the presence of losses due to a buffer overflow at
time 10 in Figure 6(a). They terminate TFRC slow
start and prevent rapid acceleration after a handover.
Furthermore, high latency of UMTS contributes to the
slow increase of the transmission rate. Such sluggish-
ness can prevent TFRC from using the available band-
width if the fast link is available only for a short period
of time.

In Figure 6(b), a TFRC flow creates heavy con-
gestion after a handover from UMTS to GPRS. The
TFRC flow starts to react to the reduced bandwidth
only after several acknowledgments. Taking the inter-
val at which acknowledgments are sent, about 50 data
packets are transmitted and dropped before the sender
starts slowing down. The flow slows down sufficiently
only after 20 seconds from the handover. Such delays
in the reduction of transmission rate can negatively
affect concurrent traffic from other users and applica-
tions.

IV.D. TFRC Simulation Results with a
Competing TCP Flow

In this section, we experiment with a TFRC flow with
a competing TCP flow during an ideal handover be-
tween GPRS and UMTS. In Figure 7(a), the TFRC
flow is shown at the upper and the TCP flow at the
lower part of the graph. For convenience, sequence
numbers wrap every 90 segments. In this scenario,
the TCP flow receives 12 times more bandwidth than
the TFRC flow. Such gross unfairness starts at time
5 after a burst of losses resulting from buffer over-
flow. While the TCP connection is able to recover
from losses and transmit at a steady rate, the TFRC
flow only transmits a packet every five seconds. Af-
ter the handover at time 30, TCP adapts to the new
link rate after ten seconds. The TFRC flow increases
the rate very slowly and even at time 60 has not yet
converged to the fair share of the link bandwidth.

In Figure 7(b), TFRC and TCP flows are shown
during a handover from UMTS to GPRS. TFRC re-
duces the rate excessively after a buffer overflow in
UMTS at time 5, that results in TCP obtaining more
bandwidth than the TFRC flow before the handover.
However, after the handover, despite the high packet
loss rate, TFRC transmits faster than TCP. In fact, a
similar observation was made during measurements in
Figure 4(b), where TFRC prevented a TCP flow from
getting any packets through after a handover.

V. Effect of TFRC Parameters

In this section, we examine the effect of self-clocking,
history discounting, and feedback frequency on ag-
gressiveness and responsiveness of TFRC during a
simulated ideal handover.

Self-clocking can improve TFRC responsiveness
after a UMTS to GPRS vertical handover when the
available bandwidth sharply decreases. Figure 6(b)
showed TFRC behavior without self-clocking. With
self-clocking, a TFRC flow reduces the rate somewhat
faster after a handover; the transmission rate better
corresponds to the actual link bandwidth. There are
fewer congestion losses with self-clocking.

When history discounting is enabled, TFRC is able
to forget about losses in the past faster. This is a
useful feature for handovers from GPRS to UMTS
when available bandwidth increases, especially when
error losses occur during a handover. Figure 6(a)
showed TFRC behavior with history discounting en-
abled. When we repeated the experiment without his-
tory discounting, TFRC was slightly more aggressive
than with history discounting.
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Figure 5: Simulated behavior of a TCP flow during an ideal handover. A vertical line indicates the handover
time. X marks show drops at the bottleneck queue.
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Figure 6: Simulated behavior of a TFRC flow during an ideal handover.
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Figure 7: Simulated behavior of a TFRC flow (top) with a competing TCP flow (bottom) during a vertical
handover.
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Figure 8: Effect of a higher feedback frequency (three
acknowledgments per RTT) on TFRC during a han-
dover from GPRS to UMTS.

Normally, TFRC uses feedback frequency of one
packet per RTT. Higher feedback frequency makes it
more resilient to loss of feedback packets, but should
not significantly affect the dynamics of the protocol.
Figure 8 shows TFRC with feedback frequency in-
creased from one to three times per RTT. The re-
sult can be compared to Figure 6(a), where feed-
back frequency was once per RTT. Surprisingly, a
shorter feedback interval improves aggressiveness and
responsiveness TFRC by 30%. However, a scenario
with a higher feedback frequency was shown where
TFRC transmits at a lower rate, because several pack-
ets are lost in the beginning of a flow [17].

In summary, existing TFRC optimization mecha-
nisms are helpful but not sufficient to adapt to chang-
ing link characteristics after a vertical handover. Even
with an optimal choice of TFRC parameters, heavy
congestion is present for several seconds after switch-
ing from a fast to a slow link. It can take tens of sec-
onds for a TFRC flow to fully utilize a fast link after a
handover from a slower link.

VI. Dealing with a Changing
Bandwidth-Delay Product

The size of the link buffer is commonly set to the prod-
uct of delay and bandwidth of the link. An interest-
ing problem arises when a handover occurs between
two networks with different bandwidth-delay prod-
ucts (e.g., GPRS and UMTS). When forwarding pack-
ets from a network with a high bandwidth-delay prod-
uct to a low one, some data can be lost because the
buffer space is insufficient to hold all packets. When
transferring from a low bandwidth-delay product net-
work to a high one, the number of buffered packets

may not be enough to utilize the new link.

A possible solution to this problem can be configur-
ing the buffer of all links to the maximum bandwidth-
delay product of any link. Some links would become
overbuffered, that is persistently have a longer queue
than required for utilizing the link. However, packet
losses or underutilization present after handovers can
be reduced. A drawback of the proposed approach is
a requirement to the network operator to know type of
links that the user can handover to, which may not be
always feasible in practice.

The effect of overbuffering on TCP flows can be
seen in Figure 9(a) during a handover from GPRS to
UMTS. In this simulation, the buffer size is fixed at 20
packets. TCP behavior can be compared to Figure 5(a)
where the buffer size changes after the handover and
the link is underutilized for four seconds. With over-
buffering, a UMTS link is better utilized after a han-
dover from the GPRS link. Figure 9(b) shows the ef-
fect of overbuffering after a handover from UMTS to
GPRS. Packet losses that triggered a retransmission
timeout in Figure 5(b) are eliminated and TCP per-
forms optimally.

Overbuffering is known to have three negative as-
pects. First, interactive applications can suffer from
the increased response time because of the queuing
delay. In GPRS, the RTT is approximately 10 seconds
with a buffer size of 10 kilobytes and is increasing
by approximately one second per additional kilobyte.
Second, the inflated RTT causes the retransmit time-
out value at the sender to be very high delaying loss
recovery. Third, when a data transfer is aborted, pack-
ets buffered in the network are unnecessarily delivered
to the receiver.

It it planned that traffic in cellular systems is sep-
arated into different service classes [1]. Streaming
and background traffic can use overbuffering with-
out harming the interactive traffic, that solves the first
problem. The second problem can be partly solved
by implementing the state-of-the-art TCP at the end
hosts, which is less prone to timeouts than the older
TCP Reno. We proposed a solution to the third prob-
lem called Fast Reset that eliminates unnecessary data
delivery from aborted data connections [15].

A scenario with overbuffering was shown where
TFRC transmits at a higher rate after a handover, be-
cause the sender stays in slow start due to the ab-
sence of losses in the beginning of a flow [17]. We
also found scenarios where TFRC does not benefit
from overbuffering. The TFRC transmission rate is in-
versely proportional to the RTT. Reducing losses with
overbuffering is compensated with increasing RTT
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Figure 9: Effect of overbuffering on TCP.

due to queuing. Therefore, overbuffering is a more
useful mechanism for TCP than TFRC. The next sec-
tion presents a highly efficient mechanism for TFRC.

VII. Explicit Handover Notification

In a highly dynamic network environment it is chal-
lenging for end-to-end protocols to estimate network
characteristics accurately. Feedback from link layers
that have local knowledge of the link conditions can
be helpful to transport protocols [44]. Such mecha-
nisms are currently under discussion in IETF (Trig-
tran) [24]. In this section, we examine how TCP
and TFRC could utilize such information if it is made
available to them.

To improve TCP performance for vertical han-
dovers it can be helpful to artificially change the trans-
mission rate of the sender. The TCP receiver is able
to limit the transmission rate by manipulating the ad-
vertised window [37]. Additionally, by setting the Ex-
plicit Congestion Notification bit, the receiver can sig-
nal to the sender the need to reduce the transmission
rate. As a last resort, the receiver can deliberately
drop a packet to avoid heavy losses in the future. Us-
ing the receiver window also allows accelerating the
sender. The TCP sender can grow the congestion win-
dow while being limited by the receiver window. By
increasing the receiver window the TCP sender can be
made to transmit at a higher rate.

For slowly responsive congestion control, such as
TFRC, the problem of adapting to varying network
conditions is even more topical than for TCP. TFRC
is forced to reduce the rate quickly during high loss
rates to avoid heavy congestion. However, it is fairly
slow to probe for available network bandwidth.

The TFRC receiver reports the estimated through-

put and recent loss history to the sender. It is possi-
ble to adjust receiver reports to reflect changes in the
networking conditions after a handover. TFRC im-
plementations differ in how rapidly they increase the
transmission rate when the calculated rate suddenly
increases. The TFRC specification [20] makes possi-
ble an instant increase of the transmission rate to the
rate given by the rate equation (however, the specifi-
cation discourages increasing the rate more than twice
per RTT to be compatible with TCP).

When receiving a handover notification from lower
layers, the TFRC receiver could change the loss rate
(� ) and throughput estimates ( �&����� ) in its standard re-
ports according to characteristics of a new link for
several RTTs (three in our tests). Consequently, the
receiver reports real throughput and loss rate. These
“faked reports” allow to instantly change the transmis-
sion rate of the sender and hide non-congestion related
losses during a handover. Figure 10(a) shows the ef-
fect of the explicit handover notification on a TFRC
flow after a handover from GPRS to UMTS. Under-
utilization on the UMTS link present in Figure 6(a) is
eliminated. A TFRC flow with a handover notification
in Figure 10(b) (from UMTS to GPRS) causes fewer
losses than without it in Figure 6(b).

However, simply changing the receiver reports
without adjusting the receiver state allows the trans-
mission rate to restore when reports are not changed
anymore. Indeed, TFRC keeps estimates of the loss
rate, RTT, and throughput as smoothed averages.
Plenty of new samples may be needed to change the
average value so that it reflects new network charac-
teristics. We found that resetting the TFRC receiver
state after a handover eliminates this problem.

The explicit handover notification can be used when
servers connect to the wireless network via a LAN
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Figure 10: Effect of explicit handover notification on TFRC.

with abundant transmission capacity. It is reasonable
to expect that network operators place their real-time
application servers as close to the user as possible to
avoid extra latency of an Internet path.

It is an open question if the explicit handover noti-
fication for TFRC can be used in the public Internet.
An abrupt increase in the transmission rate can cause
transient congestion when the bottleneck link is some-
where else than in the wireless link. However, slow
start in TCP causes a similar problem of transient con-
gestion, but is widely accepted as a safe mechanism
for the Internet.

VIII. Conclusions

We believe that vertical handovers are a fundamen-
tal property of future mobile networking. In this pa-
per, we explored the effect of a change of networking
characteristics triggered by vertical handovers on end-
to-end transport protocols and arrived at the following
results:

� Using measurements of handovers between
GPRS and WLAN, as well as simulation of ideal
handovers between GPRS and UMTS, we have
shown that TFRC has significant difficulties in
adapting to new link characteristics after a han-
dover. In particular, TFRC receives only 10-50%
of TCP thoughput over a fast link, while it can
completely starve a TCP flow after handover to a
slow link after a handover. The adaptation time
of the TFRC rate to new link characteristics can
be from tens to hundreds of seconds.

� Tuning TFRC parameters has only a minor pos-
itive effect. In particular, enabling self-clocking

and history discounting in TFRC has slightly im-
proved its responsiveness and aggressiveness. A
higher feedback frequency from the TFRC re-
ceiver allows to increase the rate faster.

� We proposed and evaluated two mechanisms to
improve transport performance during vertical
handovers. With overbuffering, the bottleneck
buffer of all links is set according to the maxi-
mum delay-bandwidth of any link. It helps TCP
to smoothly change between links with different
bandwidth-delay products. With an explicit han-
dover notification, a TFRC receiver or a perfor-
mance enhancing proxy adjusts TFRC feedback
reports for several RTTs. It enables TFRC to
quickly adapt to new link characteristics, while
otherwise maintaining a smooth sending rate.

During experiments, we also made two important
observations. First, implementing congestion control
at the application layer may not be feasible, because
UDP applications do not receive prompt congestion
notification from the operating system. When we first
run measurements with a standard Linux kernel, the
user-level TFRC implementation had been grossly un-
fair to concurrent TCP flows. The problem was found
in a local congestion notification inside the kernel.
While TCP flows reduce the transmission rate upon
filling of network buffers, TFRC flows continue to run
at a high rate until detecting a packet loss. The second
observation is that it is possible to define a set of TCP
options that provides good performance in all overlay
networks we considered. Thus, no modifications to
TCP specifications to enable option renegotiation are
needed.

The effort that designers of transport protocols are
willing to spend for achieving good performance in
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the presence of handovers needs motivation. If han-
dovers occur only rarely, their negative effect on trans-
port protocols could be ignored. However, there are
scenarios, such as Infostations on a highway [13],
where vertical handovers can be frequent. Therefore,
we believe that the effect of vertical handovers on
transport protocols is an issue of growing importance.
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A. Static Protocol Options

Most connection-oriented transport protocols, such as
TCP or DCCP, perform negotiation of protocol op-
tions during the connection establishment. In case of
TCP, the options cannot be adjusted later during the
connection lifetime. Options negotiated at the connec-
tion establishment may not be appropriate after a han-
dover to the network with vastly different character-
istics. In this section, we seek values of TCP options
that would be appropriate for all considered overlay
networks. Table 3 lists four widely implemented TCP
options and a TCP header flag [35].

Table 3: Currently deployed TCP options.

Option Name Values Recommended Value
Timestamps On/Off On
Window scaling Scale factor 4
MSS Bytes 1460
SACK-enabled On/Off On
ECT (flag) On/Off On

The timestamp option requires that both connection
end points use it through the connection lifetime. A
timestamp and an echo of the received timestamp are
placed in every segment. The benefit of always using
the timestamp option is questioned [2] because of its
12-byte overhead in every segment. However, some
studies found that timestamps are useful in the wire-
less environment [14]. Therefore, we believe that the
use of the timestamp option is justified in all consid-
ered overlay networks.

The window scale option defines a multiplier for the
receiver window. A scaled window is appropriate in
networks with a high bandwidth-delay product, such
as UMTS (with bandwidth close to 2 Mbps). How-
ever, limiting the receiver window to a smaller size
is often beneficial in slow networks, such as GPRS, to
prevent excessive queueing in the network [19]. Using
the scaling option, the receiver window becomes of a
granularity of 2, 4, 8, . . . bytes for the scaling param-
eter of 1, 2, 3, . . . . Reduced granularity does not sig-
nificantly affect the ability of the receiver to limit the
size of the receiver window, if necessary. Hence, the
receiver can negotiate the largest required scale factor
even if the connection is initiated in the network with
a low delay-bandwidth product, such as GPRS.

Justifications for setting the maximum segment size
(MSS) were given, for example, by Stevens [39]. In
summary, the trade-off is between lighter header over-
head (with larger segments) and inefficient operation

in the presence of packet losses and high latency.
GPRS does not have high packet loss rates because
of retransmissions at the link layer. In GPRS, the la-
tency is already so high that using a large segment size
does not significantly increase it. Therefore, using the
MSS of 1460 bytes in all overlay networks is accept-
able. A slightly smaller value should be used to avoid
fragmentation due to tunneling by Mobile IP.

The SACK-enabled option [31] informs that the
end point supports selective acknowledgments. The
ECN-capable transport (ECT) flag defines that the
end point understands an explicit congestion notifica-
tion [35] given by routers. These options are useful in
any network.

Hence, we found a set of option values adequate for
all considered overlay networks. In fact, these values
are approved as a best current practice recommenda-
tion in the IETF [25]. It is fortunate that the TCP pro-
tocol need not be modified to enable re-negotiation of
options during an ongoing connection.

B. Preventing Packet Reordering

We implemented an algorithm in ns-2 to prevent
packet reordering that can occur during a step change
in link bandwidth and latency. The algorithm can be
implemented in real-world networking nodes schedul-
ing packets over multiple links or over a link with
frequently changing bandwidth. An intuitive purpose
of the algorithm is to avoid transmitting a packet if it
could arrive to the receiver earlier than the previously
sent packet.
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Here � is the link bandwidth, E is the link one-
way latency, and � %�%�� � ' � estimates when the packet
would arrive to the receiver across the link. Note that
� and E can change during the execution of the al-
gorithm. In ns-2, an arrival of the packet to the re-
ceiver is scheduled directly with schedulePkt(). If the
algorithm is implemented in a real router, then sched-
ulePkt() refers to transmission of the packet to the link
and should be called with � %�%�� � ' ��� % ��� C 5�6�� C E
as a parameter.
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