
Performance of Host Identity Protocol
on Symbian OS

Andrey Khurri, Dmitriy Kuptsov, and Andrei Gurtov
Helsinki Institute for Information Technology

Helsinki University of Technology and University of Helsinki

Abstract—The Host Identity Protocol (HIP) has been specified
by the IETF as a new solution for secure host mobility and
multihoming in the Internet. HIP uses self-certifying public-
private key pairs in combination with IPsec to authenticate
hosts and protect user data. While there are three open-source
HIP implementations, little experience is available with running
HIP on lightweight hardware such as a mobile phone. Limited
computational power and battery lifetime of lightweight devices
raise concerns if HIP can be used there at all. This paper
describes the porting process of HIP on Linux (HIPL) and
OpenHIP implementations to Symbian OS, as well as perfor-
mance measurements of HIP over WLAN using Nokia E51 and
N80 smartphones. We found that with 1024-bit keys, the HIP
base exchange with a server varies from 1.68 to 3.31 seconds
depending on whether the mobile phone is in standby or active
state respectively. After analyzing HIP performance in different
scenarios we make conclusions and recommendations on using
IP security on lightweight hardware clients.

I. I NTRODUCTION

The current trend of moving mobile telecommunications
systems to IP technology is well-recognized. However, the
security aspect of using IP protocol stack on lightweight
devices, such as PDAs or mobile phones, is not sufficiently
explored. In particular, encryption and public key signatures
implemented in software are computationally expensive oper-
ations that could stress CPU, memory and battery resources
of mobile handsets.

The Host Identity Protocol (HIP) is a new security and
mobility protocol standardized by the IETF [15], [16], [9],
[13], [12], [18], [17], [19]. HIP uses IPsec ESP encryption
of data and a version of Diffie-Hellman protocol to exchange
public keys of two hosts. In this article, we describe perfor-
mance measurements of two different HIP implementations
ported to Symbian OS. In particular, we compare OpenHIP
and HIPL protocol implementations running on two Symbian
S60 smartphones with varying hardware resources. This study
continues our previous work on the performance of HIP on
Linux-based Nokia Internet Tablet [11]. Besides our studies
HIP, has been evaluated exclusively on stationary Internet
hosts with conventional PC-like resources [8], [7], [20], [10].

To check whether running IP-based security on lightweight
cellular phones is feasible, we performed HIP measurements
over WLAN with Nokia E51 and Nokia N80 in different
scenarios. Particularly, we measured duration of the HIP base
exchange and its parts, as well as CPU load, RAM utilization
and power consumption during several phases of HIP daemon
work. Finally, we analyzed the results and provided a set

of recommendations on using unmodified HIP on lightweight
clients.

Symbian OS is one of the leading operating systems for
smartphones. 19.6 million Symbian mobile phones have been
shipped globally in Q2 2008. The amount increased by 5%
from the same period of 2007 [1]. Smartphones (in addition
to traditional call and messaging functionality) comprisea set
of rich media applications similar to computers. However,
performance and usability of mobile applications is still a
big concern. This is especially true with technologies initially
designed to run on conventional PCs. The contribution of
this work is evaluation of applicability of existing IP security
solutions to smartphones. By porting two HIP implementa-
tions to Symbian we also contribute to HIP deployment. Our
experience with the porting process might be useful for those
planning to bring open source software to Symbian OS.

The rest of the paper is structured as follows. In Section II,
we give a short background on HIP. Section III briefly de-
scribes Symbian OS networking architecture and our ports
of HIPL and OpenHIP implementations. Section IV contains
selected measurement results of the base HIP protocol and
their in-depth analysis. Section V concludes the paper witha
summary of key findings and future research directions.

II. H OST IDENTITY PROTOCOL

A. HIP Architecture

The Host Identity Protocol (HIP) [15], [16], [6] was pro-
posed to overcome the problem of using IP addresses simul-
taneously for host identification and routing. The idea behind
HIP is based on decoupling the network layer from the higher
layers in the protocol stack architecture (see Figure 1). HIP
defines a new global name space, the Host Identity name
space, thereby splitting the double meaning of IP addresses.
When HIP is used, upper layers do not any more rely on IP
addresses as host names. Instead, Host Identities (HI) are used
in the transport protocol headers for establishing connections.
IP addresses at the same time act purely as locators for routing
packets towards the destination. For compatibility with IPv6
legacy applications, Host Identity is represented by a 128-bit
long hash, the Host Identity Tag (HIT).

HIP offers several benefits including end-to-end security,
resistance to CPU and memory exhausting denial-of-service
(DoS) attacks, NAT traversal, mobility and multihoming sup-
port.

Fig. 1. HIP Architecture.

B. Base Exchange

To start communicating through HIP, two hosts must es-
tablish a HIP association. This process is known as the HIP
Base Exchange (BEX) [16] and it consists of four messages
transferred between the initiator and the responder. AfterBEX
is successfully completed, both hosts are confident that private
keys corresponding to Host Identifiers (public keys) are indeed
possessed by their peers. Another purpose of the HIP base
exchange is to create a pair of IPsec Encapsulated Security
Payload (ESP) Security Associations (SAs), one for each
direction. All subsequent traffic between communicating parts
is protected by IPsec. A new IPsec ESP mode, Bound End-to-
end Tunnel (BEET) [19] is used in HIP. The main advantage of
BEET mode is low overhead in contrast to the regular tunnel
mode.

Figure 1 illustrates the overall HIP architecture including the
BEX. The initiator may retrieve the HI/HIT of the responder
from a DNS directory [18] by sending a FQDN in a DNS
query. Instead of resolving the FQDN to an IP address, the
DNS server replies with a HI (FQDN→HI). Transport layer
creates a packet with the HI as the destination identifier.
During the next step HI is mapped to an IP address by the
HIP daemon on the Host Identity layer. Finally, the packet is
processed in the network layer and routed to the responder. As
a result, the conventional 5-tuple socket becomes{protocol,
source HI, source port, destination HI, destination port}.

C. Mobility and Multihoming

Since neither transport layer connections nor security as-
sociations (SAs) created after the HIP base exchange are
bound to IP addresses, a mobile client can change its IP
address (i.e., upon moving, due to a DHCP lease or IPv6
router advertisement) and continue transmitting ESP-protected
packets to its peer. HIP supports such mobility events by im-
plementing an end-to-end three-way signaling mechanism [17]
between communicating nodes. HIP multihoming uses the
same mechanisms as mobility for updating the peer with a
current set of IP addresses of the host.

III. HIP ON SYMBIAN OS

In this section we describe the key parts of the HIPL and
OpenHIP porting process and challenges that we faced while

migrating to Symbian platform.

A. Networking Architecture on Symbian OS

Symbian networking architecture is dominantly based on
a client-server communication model. Applications written as
clients usually connect to and exchange data with particular
servers (socket, telephony, serial communications, etc.). A
server then communicates with low-level entities such as
logical and physical device drivers (LDD and PDD) via an
interface of server plug-in modules. Different module types
include CSY (serial communications server), TSY (telephony
server), PRT (socket server), and MTM (message type) mod-
ules. Clients do not directly access the plug-in modules. The
latter are instead loaded by a server on demand [2].

The socket server (ESOCK) is responsible for socket APIs
on Symbian and provides two types of interfaces: a BSD-like
C socket API (based on Open C plug-in [5]) and an alternative
Symbian-native C++ socket API. The socket server works with
PRT protocol modules that are supplied in a form of dynamic
link libraries (DLLs) with a .PRT extension. The TCPIP.PRT
module comprises support of IPv4/v6, ICMP, TCP and UDP
protocols, as well as DNS infrastructure [2].

Our HIP implementations for Symbian are entirely based
on Open C plug-in that provides support of many standard
C socket APIs. The Open C plug-in serves as an interface
between the HIP daemon application and the PRT protocol
modules in the Symbian networking stack.

B. Main Porting Stages

The porting process comprised several stages such as in-
stallation of the development environment, examination ofthe
existing HIPL and OpenHIP source code, preparation of Sym-
bian project structure and makefiles, compilation, debugging
and testing.

1) Development Environment: We started with no prior
knowledge and experience of Symbian OS. To begin porting
process we needed to install an S60 3rd Edition Platform SDK
for Symbian OS, a Carbide.c++ IDE and an Open C SDK
plug-in for S60 3rd Edition SDK. The Open C plug-in brings
support of nine standard POSIX and middleware C libraries
to Symbian OS and allows easier porting of the existing C
applications to S60 3rd Edition devices [5]. The availability
of Open C plug-in played an essential role in our project as
it provided access to many standard C functions and allowed
to reuse the existing HIP implementations avoiding extensive
modifications.

2) Project Preparation: Before actual porting we recom-
mend to study existing software, its features and dependencies,
and identify potential limitations of the target platform.To
import the HIPL and OpenHIP code to the Carbide IDE and
start working on the project we created a set of Symbian
project files, bld.inf and *.mmp, which are platform and
compiler independent files in Symbian OS. To create those we
studied existing Linux makefiles in the HIP projects. Having
prepared the project files, one can build the project for different
Symbian platforms and compilers.

For OpenHIP we chose a set of source files needed to
run HIP in userspace mode, since we believed that this
mode should be compatible with any platform that supports
standard POSIX C libraries. We also included implementation
of security association database (SADB) and PFKEY [14]
protocol (with BEET mode support) for communication with
SADB.

3) Compilation: The most common cause for compilation
errors in the code was implicit data type conversions. Symbian
compiler needs an explicit type casting to be performed.
Furthermore, the Symbian compiler does not allow declaration
of data types in the middle of a function. To avoid the
compilation errors we had to add a few extra definitions to
the Open C header filenetinet6/in6.h for HIPL project.

OpenHIP architecture, in turn, was better suited for porting.
In fact, we did not change any system headers. Similarly with
HIPL, we have been using preprocessor logical statements to
separate system-specific code parts, and in case of missing
functionality reimplemented it.

4) Debugging: When debugging the HIPL code we found
a number of porting issues that arose only during execution of
the HIPL daemon. The errors were caused by a difference in
Linux and Symbian emulator compilers. The most interesting
issues were detected in data structures that contain an array of
zero elements. The first error type concerned the size of such
structures. In Linux, a structure member declared as an array
of zero elements (e.g.,uint8 t data[0]) does not increase the
size of whole structure. On the contrary, the size of the same
structure in the Symbian emulator was bigger due to the size
of the ”null” array treated by the Symbian emulator compiler
as one byte.

The second error type was related to memory alignment.
Upon referencing arrays of zero elements in a structure,
the program running on Linux and on Symbian emulator
tried to access different memory blocks within that structure.
Interestingly, we found that Symbian compiler always risesthe
total size of the structure elements preceding a ”null” array to
an even value by adding an extra memory byte. As a result,
to access a correct value recorded in the ”null” array we had
to shift the pointer appropriately. It is worth mentioning that
this specific feature has been detected only with themwcsym2
compiler that is used with the Symbian emulator. When the
HIPL code was built for the target hardware with theGCCE
compiler, the program behaved similarly with Linux and all
changes we have made for the emulator needed to be restored.

C. Limitations of the Prototypes

Both HIP implementations are entirely written in C and
consist of a HIP userspace daemon and several HIP libraries.
As the HIPL project was originally developed for Linux,
the implementation contained few platform-dependent features
such as theNETLINK socket for kernel and userspace com-
munication. To protect payload data, HIPL uses the IPsec
protocol that resides in Linux kernel. Due to limited public
Symbian SDK and restricted access to Symbian network
stack, our HIP prototypes for Symbian support only the base

TABLE I
TECHNICAL SPECIFICATIONS OFTESTEDPHONE MODELS

Smartphone Models→ E60 N80 E51

CPU Clock Rate, MHz 220 220 369

SDRAM / Free Exec RAM, MB 64/21 64/18 96/50

Battery Capacity, mAh 1020 860 1050

protocol part without ESP encapsulation of data packets in the
system kernel. However, with OpenHIP we ported a userspace
alternative – PFKEY protocol and SADB. As a result, we
were able to successfully encrypt/decrypt UDP encapsulated
incoming ESP packets.

Open C plug-in itself has a set of limitations that required
us to modify the existing source code and disable a part
of its functionality. Examples of unsupported or restricted
features in the Open C aresignals, fork() and exec(), wait()
and waitpid() functions, multipleI/O consoles [4]. Because
of Open C constraints our HIP ports for Symbian use only
UDP sockets to send HIP control packets excluding a raw-
socket alternative as in the original HIP software. In OpenHIP,
we used UDP encapsulation also for ESP packets, so that the
raw socket limitation can be bypassed for ESP as well. The
architecture of OpenHIP allowed us to support almost full-
featured HIP implementation on Symbian OS. However, to run
legacy applications over HIP an equivalent of Linux TUN/TAP
driver needs to be implemented.

The HIP code ported to Symbian OS requiresNetwork-
Service system capability, which identifies a functionality
for remote access to services that can produce cost to the
phone user, such as network usage. Both HIP implementations
compiled for the target hardware were signed with enabled
NetworkService capability against a specific phone Interna-
tional Mobile Equipment Identity (IMEI) number and, without
recompiling, cannot be used on any other S60 3rd edition
mobile phone. To install the HIP daemon on another phone
one has to sign the package with its own IMEI number at
www.symbiansigned.com.

IV. PERFORMANCEEVALUATION

This section presents results of our measurements with the
Host Identity Protocol on Symbian OS. First we introduce the
hardware platforms and the network setup used to carry out
experimentation. Then we report measurement results obtained
with HIPL and OpenHIP prototypes and analyze them.

A. Our Testbed

We have tested HIPL and OpenHIP code running on several
Symbian phones: Nokia E60, Nokia N80, and Nokia E51. The
first two devices are based on S60 3rd Edition platform and
Symbian OS v9.1, whereas Nokia E51 is a slightly newer
smartphone that runs Symbian OS v9.2 and uses S60 3rd
Edition Feature Pack 1 developer platform.

The general specifications of the tested phone models are
summarized in Table I. Nokia E60 has equivalent to N80

TABLE II
BASE EXCHANGE DURATION WITH HIPL AND OPENHIP

Nokia E51 Mean/Standard Deviation (s)

↓ Scenario/Implementation → HIPL OpenHIP

Phone→Server (Active) 3.17/0.11 3.09/0.17

Phone→Server (Standby) 1.68/0.06 1.90/0.12

Server→Phone (Active) 3.31/0.10 2.76/0.11

Server→Phone (Standby) 1.76/0.14 1.85/0.07

Phone→Phone (Active) 6.42/0.71 4.30/0.07

Phone→Phone (Standby) 3.78/0.13 3.50/0.12

hardware resources and shows similar performance. To obtain
competitive results we measured HIP performance on a more
powerful Nokia E51 phone. All phone models support IEEE
802.11 b/g connectivity standards with WPA2 encryption.

We measured the performance of HIP over WLAN. Our
experimental network consisted of a D-Link DGL-4300 access
router, three mobile phones, and an Intel(R) Xeon(TM) server
with 3.2 GHz CPU and2 GB of RAM. The server was placed
into the same network as cellular phones.

B. Measurements and Analysis

In basic scenarios, we established a HIP association between
each of the Nokia phones and the server. We evaluated each
stage of the base protocol separately including HIP daemon
initialization, asymmetric key pair creation, daemon idletime,
and protocol handshake (HIP base exchange). In this article,
we mostly report results obtained on Nokia E51 that showed
better performance than two other models.

With Nokia E51, we utilized Nokia Energy Profiler, a
convenient tool that runs on the phone in background and
allows monitoring hardware usage in real time, as well as
exporting data to a PC for future analysis. Profiling data
includes information about such parameters as power and
memory consumption, and CPU load.

1) HIP Base Exchange Duration: In this section, we an-
alyze HIP handshake duration in different scenarios. Surpris-
ingly, we found a significant difference in HIP base exchange
performance measured inactive and standby phone states.
We use terminology from [3] and slightly modify it. We call
a phone stateactive when its display is switched on and
refreshing (with backlight either on or off). In turn, we call
a phone statestandby when its display is in partial refresh
(backlight is off; either date and time, text or animation is
shown).

As Table II indicates, the total average time for HIPL
base exchange initiated from the E51 phone to the server
equals 3.17 sec in the active phone state. Switching the phone
to the standby mode reduces HIP base exchange duration
almost twice (1.68 sec). We believe the reason for such a
great difference in performance is that in the standby mode
no graphics are drawn and display is not refreshing, which
releases extra CPU cycles that are utilized by the HIP daemon.
On the other hand, in the active phone state, the processor load

TABLE III
KEY PAIR CREATION OF DIFFERENT SIZE ONNOKIA E51

Nokia E51 Mean/Standard Deviation (s)

Key Length (bits) → 512 1024 2048

DSA 4.90/1.46 31.48/16.54 389.99/308.61

RSA 0.51/0.13 3.56/1.28 40.73/31.20

is close to 100% due to constant display refreshing, which
prolongs processing time by the HIP daemon; we observed
such behavior by activating and deactivating the phone screen
with running Nokia Energy Profiler.

The scenario with E51 as a HIP initiator is more natural
for the Internet where lots of connections are initiated from
mobile clients to servers. In the opposite direction (server
→ phone) duration of the HIPL handshake slightly rises and
becomes 3.31 sec in the active and 1.76 sec in the standby state
(see Table II). Thus, time variation of the HIP base exchange
performed in two opposite directions is insignificant. In our
previous study [11] we obtained similar performance results
with merely equal HIP handshake duration measured in two
directions between a Nokia 770 Internet Tablet and a server.
Further comparison to our previous work [11] indicates that
the HIP base exchange performance on Linux-based Nokia
770 Internet Tablet is better than on Symbian-based Nokia E51
smartphone (1.40 vs. 1.68 sec), although the latter has more
CPU and RAM resources. We explain this phenomenon as an
impact of the Open C plug-in that is used with our Symbian
HIP ports to wrap C function calls to native Symbian APIs.

Further analysis of the results in Table II indicates that the
OpenHIP implementation shows slightly better performance
than HIPL in the active phone state establishing a HIP asso-
ciation between the E51 and the server on the average during
3.09 sec and in the opposite direction in 2.76 sec. Though the
effect of standby state in OpenHIP case is less significant than
with HIPL (OpenHIP 35% against HIPL 47% time decrease
when switching to standby mode).

A large part of the Internet traffic nowadays is generated
by P2P applications. Keeping that in mind we measured HIP
implementation performance running on two mobile phones.
Our preliminary tests show (see Table II) that two Nokia E51
smartphones in standby state are able to establish a HIPL
association in 3.78 sec and an OpenHIP association in 3.50
sec. Switching to the active mode significantly increases the
HIP handshake time for HIPL (6.42 sec) while not seriously
affecting OpenHIP (4.30 sec).

Although it is interesting to know the HIP base protocol
performance level in the standby phone state (i.e., when the
HIP daemon is implemented as an engine and runs in back-
ground) we have to rely on the results obtained in the active
state. This is because we expect user to interact with mobile
phone (thus, activating the display) while using applications
that might benefit from HIP.

2) Asymmetric Key Pair Creation: Table III includes du-
ration of creating public-private key pairs of different size

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

C
P

U
 lo

ad
 (

%
)

Time (s)

Fig. 2. HIPL Daemon Initialization. CPU Load on E51

on Nokia E51. The results indicate an exponential growth of
the key pair generation time with increasing the key length.
With conventional 1024-bits keys, an asymmetric DSA key
pair is created on E51 in 31.48 sec. The generation of an
equivalent RSA key pair is much faster and equals 3.56 sec
on the average. It is worth noting that the use of stronger
keys (e.g., with length of 2048 bits) would produce a delay of
several minutes with DSA and tens of seconds with RSA.

One might argue that keys are needed to be created only
once, e.g., upon installing HIP and this would not affect the
overall phone performance on the long run. Nevertheless, we
believe that stressing the mobile phone even for a short time
period is inconvenient and might be considered dangerous
in special cases when the phone functionality is crucial (as
with emergency calls). According to our practical experience,
generation and usage of lengthy keys on mobile phones with
lower amount of RAM and CPU power, such as E60 or
N80, seriously affects handset performance and can potentially
make the phone completely unresponsive for a long time.

3) Hardware Utilization: In this section, we report the
indicators of hardware utilization that were collected with
Nokia Energy Profiler on Nokia E51.

a) CPU Load: The CPU Load during HIPL daemon
initialization and asymmetric key pair creation on E51 is
presented in Figure 2. Most of the 2-minute time slot the
usage stays at 100% and this corresponds to generation of four
different public-private key pairs. The rest of the graph has
few random peaks that account for precreation of the HIP R1
packets. In idle time the HIPL daemon does not consume a lot
of processor power. We also noticed that switching the phone
to the active state rises the CPU load notably. CPU utilization
with OpenHIP implementation is similar to the HIPL case.

b) RAM Usage: Although each mobile phone has certain
amount of RAM memory, only a part of it is available to
applications. For example, on Nokia E60 only21 out of 64

MB are available to the executables. The rest of the memory
is reserved for exclusive use by the system. This approach
reduces the number of mobile S60 applications that can be
simultaneously ran on the device. According to our profiler
data, memory usage on N80 phone stays on the level of20 MB
during HIP daemon initialization, key creation and HIP hand-

 35.5

 36

 36.5

 37

 37.5

 38

 38.5

 39

 39.5

 0 10 20 30 40 50 60 70 80

M
em

or
y

(M
B

)

Time (s)

Fig. 3. OpenHIP Daemon Initialization with BEX. RAM Usage onE51

shake. Note that this value depicts the overall memory usage
by all running application. Assuming that other applications
are in the idle state, we can figure out the memory use by HIP
daemon. On Nokia E51, dynamics of memory use is almost
the same. The only difference is the amount of available RAM,
which is bigger on E51. According to technical specifications,
E51 allocates to the applications approximately50 MB out of
total 96 MB of RAM.

With OpenHIP, the time interval from8th to 50th second
in the initialization phase (see Figure 3) corresponds to the
key creation and serialization. The reader should take into
consideration a fact from previous paragraph and notice that
Figure 3 shows overall memory consumption. In fact, HIP
starts its initialization at point of36 MB. Since in OpenHIP
all precreated keys are stored in RAM (as well as serialized to
the file system) the memory use increases by 3 MB. However,
during the base exchange and idle time (Figure 3, the time
interval from 50th to 80th second) memory usage does not
grow drastically, and only increases by a slight amount during
BEX packets processing (which is freed afterward) and adding
SAs to SADB. In fact, we believe that using3 to 4 MB of
RAM is within the normal bounds and should not stress a
phone performance. As a result, we think that from RAM
utilization prospective both HIPL and OpenHIP could be run
on a Symbian mobile device without major changes to its
architecture.

c) Power Consumption: Figure 4 illustrates the power
consumed by the E51 phone with the running HIP daemon
during its initialization and idle time. The value of0.62 Watt
represents an average level of power consumption over a 2-
minutes measurement period. The peaks on the graph between
the 10th second and the52nd second timestamps show the
maximum power consumption over the measurement period
and they account for the creation of the DSA and RSA key
pairs.

To compare how HIP affects the battery life of the phone we
measured the average power consumption while phone was in
”normal” use (i.e., no HIP daemon was running) and with HIP
daemon doing the Base Exchange. As a result, we obtained
222mW/60mA and333mW/90mA correspondingly, or around
18 and12 hours of a 1050-mAh battery lifetime.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100 120

P
ow

er
 (

W
)

Time (s)

Fig. 4. HIPL Daemon Initialization. Power Consumption on E51

V. CONCLUSIONS

This paper presented measurements and performance evalu-
ation of two separate Host Identity Protocol ports on Symbian
OS. We found several interesting results. Most of them should
be regarded as recommendations on using IP security on
lightweight hardware such as Symbian OS mobile phones.

• The unmodified HIP protocol can be used in scenarios
where a lightweight mobile phone communicates with
the rest of the Internet through a single proxy server. A
single HIP Base Exchange is then sufficient for the whole
browsing session.

• For scenarios involving two mobile phones or multiple
parallel HIP associations, unmodified HIP is too heavy for
lightweight devices. Whilst the base exchange between
a phone and a server takes1.68 − 3.17 seconds, two
mobile phones require3.50 − 6.42 seconds to establish
an association.

• The public-private key pair generation might stress the
phone, especially with the key length greater than 1024
bits.

• Key creation stresses the CPU and consumes a lot of
power, but otherwise, the HIP daemon in idle mode
consumes few resources. However, WLAN transmission
impact has to be considered separately.

• The OpenHIP protocol implementation had been a lot
easier to port and showed slightly better performance over
HIPL.

• Better performance results could have been achieved if
HIP were implemented using native Symbian C++ APIs
rather than Open C plug-in. Open C is a wrapper to native
Symbian APIs and, thus, produces an additional overhead
comparing to native applications.

• We believe that our measurement results are applicable
to a wide range of IP security and mobility protocols in
addition to HIP, and to other Symbian S60 phone models
with similar hardware. Most such security protocols rely
on similar public-key and IPsec ESP operations as HIP.

In future research, we plan to compare our empirical results
with related work on evaluation of different security mecha-
nisms on mobile lightweight devices. It could provide insights

for reducing the overhead of public-key cryptography that we
observed in this paper.

ACKNOWLEDGMENTS

We thank Paras Tikmani and Sankalp Bose, our Indian
summer interns, for their contribution to the project. We are
grateful to Andrey Lukyanenko and Miika Komu who assisted
a lot during our debug sessions. We also thank our partners
from Nokia Research Center who contributed a lot of brain
power to the discussions on migration to Symbian.

REFERENCES

[1] Symbian Fast Facts Q2 2008, Mar. 2008. [Online] Available at: http:
//www.symbian.com/about/fast.asp.

[2] Forum Nokia. Symbian OS: Overview To Networking,
June 2005. [Online] Available at: http://sw.nokia.com/id/
c4536832-3dd0-45af-94be-1c4289cc3003/SymbianOS %Overview
To Networking v1 0 en.pdf.

[3] Forum Nokia. Nokia Energy Profiler Quick Start Guide, Feb. 2009.
[Online] Available: http://www.forum.nokia.com/Resources and
Information/Explore/Developmen%tProcessand User Experience/
Power Management/NokiaEnergy Profiler Quick Sta%rt.xhtml.

[4] Forum Nokia. Open C API Reference, Feb. 2009. [Online] Available:
http://www.forum.nokia.com/document/CDLExtensionS60 3rd Ed
FP2/?conte%nt=GUID-719955DA-415B-420E-9F9B-F6DB37615EC5/
html/Open C DocumentationIndexPag%e.html.

[5] Forum Nokia. Open C/C++ Documentation, Feb. 2009. [Online]
Available at: http://www.forum.nokia.com/Resourcesand Information/
Documentation/Open%C and C++.xhtml.

[6] A. Gurtov. Host Identity Protocol (HIP): Towards the Secure Mobile
Internet. Wiley and Sons, 2008.

[7] T. R. Henderson. Host mobility for IP networks: A comparison. IEEE
Network, 17(6):18–26, Nov. 2003.

[8] T. R. Henderson, J. M. Ahrenholz, and J. H. Kim. Experience with
the Host Identity Protocol for secure host mobility and multihoming. In
Proc. of the IEEE Wireless Communications and Networking Conference
(WCNC’03), Mar. 2003.

[9] P. Jokela, R. Moskowitz, and P. Nikander. Using the encapsulating
security payload (ESP) transport format with the host identity protocol
(HIP). IETF RFC 5202, Mar. 2008.

[10] P. Jokela, T. Rinta-Aho, T. Jokikyyny, J. Wall, M. Kuparinen, H. Mahko-
nen, J. Melen, T. Kauppinen, and J. Korhonen. Handover performance
with HIP and MIPv6. InProc. 1st International Symposium on Wireless
Communication Systems, ISWCS’04, Sept. 2004.

[11] A. Khurri, E. Vorobyeva, and A. Gurtov. Performance of Host Identity
Protocol on lightweight hardware. InMobiArch ’07: Proceedings of the
2nd ACM/IEEE International Workshop on Mobility in the Evolving
Internet Architecture, pages 1–8, New York, NY, USA, Aug. 2007.
ACM.

[12] J. Laganier and L. Eggert. Host identity protocol (HIP)rendezvous
extension. IETF RFC 5204, Mar. 2008.

[13] J. Laganier, T. Koponen, and L. Eggert. Host identity protocol (HIP)
registration extension. IETF RFC 5203, Apr. 2008.

[14] D. L. McDonald, C. W. Metz, and B. G. Phan. PFKEY key manage-
ment api, version 2: draft-mcdonald-pf-key-v2-05, Feb. 2005. Work in
progress.

[15] R. Moskowitz and P. Nikander. Host Identity Protocol architecture. RFC
4423, IETF, May 2006.

[16] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson.Experimental
host identity protocol (HIP). IETF RFC 5201, Apr. 2008.

[17] P. Nikander, T. Henderson, C. Vogt, and J. Arkko. End-host mobility
and multihoming with the host identity protocol (HIP). IETFRFC 5206,
Apr. 2008.

[18] P. Nikander and J. Laganier. Host identity protocol (HIP) domain name
system (DNS) extension. IETF RFC 5205, Mar. 2008.

[19] P. Nikander and J. Melen. A bound end-to-end tunnel (BEET) mode for
ESP: draft-nikander-esp-beet-mode-09, Aug. 2008. Work inprogress.

[20] P. Nikander, J. Ylitalo, and J. Wall. Integrating security, mobility, and
multi-homing in a HIP way. InProc. of Network and Distributed
Systems Security Symposium (NDSS’03), San Diego, CA, USA, Feb.
2003. Internet Society.

