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Abstract—Internet architecture is facing at least three major
challenges. First, it is running out of IPv4 addresses. IPv6 offers
a long-term solution to the problem by offering a vast amount of
addresses but is neither supported widely by networking software
nor has been deployed widely in different networks. Second,
end-to-end connectivity is broken by the introduction of NATs,
originally invented to circumvent the address depletion. Third,
the Internet architecture lacks a mechanism that supports end-
host mobility and multihoming in a coherent way between IPv4
and IPv6 networks.

We argue that an identifier-locator split can solve these three
problems based on our experimentation with the Host Identity
Protocol. The split separates upper layer identifiers from lower
network layer identifiers, thus enabling network-location and IP-
version independent applications.

Our contribution consists of recommendations to the present
HIP standards to utilize cross-family mobility more efficiently
based on our implementation experiences. To the best of our
knowledge we are also the first ones to show a performance
evaluation of HIP-based cross-family handovers.

I. INTRODUCTION

The IPv6 address space is drastically larger than for IPv4,
but IPv6 has not experienced a wide-scale deployment yet.
Concurrent use of both addressing families cause problems for
both network software and management due to non-uniform
addressing. Existing legacy software is hard-coded to use IPv4
addresses and some of it can never be updated to support IPv6
due to its proprietary nature. The fact that IPv4 address space
is almost exhausted does not make things any easier because a
host might acquire only an IPv6 address in future networks. As
a consequence, proprietary network software may have trouble
to access the Internet in the future.

End-to-end communication between two hosts is not guar-
anteed anymore, even considering protocols for traversing
NATs. To make things even more complicated, end-host
mobility arises as a new requirement for the Internet. Users
are used to staying continuously in contact with each other
using cellular phones and may also want the same with other
portable devices. Users may want to benefit from access
technologies, such as WLAN and 3G, available on phones
and other devices. Multiaccess is desirable for users, for
example, to reduce monetary costs, to assess benefits from
device proximity, or to obtain a faster connection. Even though
cellular networks support mobility transparently, the same does
not apply to WLAN mobility.

In the current Internet, an IP address both identifies and
locates a host. However, this binding breaks when the address
of the host changes. This is a problem both for relocating
the mobile host and for maintaining long-term transport layer
connections, which break upon such an event.

The identifier-locator split decouples the host identifier from
its topological location. The new host identifier is present
at the transport and upper layers to provide applications a
fixed identifier independent of network location. The identifier-
locator split introduces a layer between the transport and the
network layers, and transforms identifiers dynamically into
routable addresses and vice versa.

The concept of the Host Identity Protocol (HIP) [1],
[2] is based on identity-locator split. It provides security,
global end-host mobility, multihoming, NAT traversal, and
Rendezvous/Relay services. The HIP stardard [3] describes
end-host mobility and multihoming but handovers across IP
families are left for further study. In this paper, we describe
HIP-based cross-family handovers based on our implementa-
tion experimentation and performance evaluation. Compared
to previous work [4], [5], [6], we focus on Linux rather than
the BSD networking stack.

We proceed as follows in the rest of paper. In Section II, we
describe HIP base exchange and mobility management as well
as summarize the related work. In Section III, we outline the
shortcomings in current HIP mobility specifications, propose
a simple solution and share our experience in implementing
cross-family handovers with Linux networking stack. We eval-
uate performance of intra-family and cross-family handovers
for TCP flows in Section IV. Section V concludes the paper
with a summary of our contributions.

II. BACKGROUND

Host Identity Protocol (HIP) [1], [7] introduces a cryp-
tographic namespace based on public-private key pairs. An
identifier in the namespace is the public key of a public-private
key that the end-host creates for itself. This identifier is called
Host Identifier (HI).

The protocol employs two fixed-length representations of
HIs because varying length identifiers are inconvenient in
networking APIs for existing legacy stacks and protocol header
encodings [8]. The first representation type is Host Identity
Tag (HIT). It has the same size as an IPv6 address. The HIT
is generated by hashing the HI and concatenating it with an



orchid prefix (2001:10::/28) [9]. The second representation
type is Local Scope Identifier (LSI) that is the size of an
IPv4 address to support legacy applications. LSIs are valid
only within the local host due to high collision probability of
two hosts choosing the same LSI.

To use HITs and LSIs, an application uses the existing
system resolver to resolve names to HITs and IP addresses
using host files, DNS [10] or OpenDHT [11]. When the
application uses a HIT or a LSI to establish new outgoing
communications, networking stack intercepts the packet and
triggers a base exchange (BEX) in the networking stack to set
up symmetric keys for the IPsec tunnel.

A. Base Exchange

HIP Base EXchange (BEX) [1] is a secure Diffie-Hellman
exchange that authenticates the end-hosts to each other using
their public keys, and negotiates algorithms and symmetric
keys for IPsec ESP [12]. The BEX is protected against replay
attacks and authenticated with public-key signatures.

In HIP terminology, the client-side is referred as Initiator
and the server-side as Responder. The BEX consists of four
messages. First, the Initiator starts the base exchange with
an I1 packet. Second, The Responder replies with its public
key and Diffie-Hellman key material in an R1. Third, the
Initiator responds with an I2 packet that contains its public
key and Diffie-Hellman key material. Fourth, the Responder
concludes the BEX with an R2 packet. After this, the HIP
state (HIP association) can transition to ESTABLISHED state
on both sides. The end-hosts have agreed on SPI numbers and
symmetric keys for IPsec ESP. Finally, the applications can
commence communication over the created IPsec tunnel.

After the BEX, the hosts lose their role as Initiator and
Responder because there is no need for such separation. Now,
the end-hosts can process mobility related packets which
requires different kind of state handling as discussed in the
next section.

B. Mobility Management

This section summarizes HIP-based mobility as described
in RFC5206 [3]. We use Mobile IP terminology [13], [14]
for denoting two communicating end-hosts, i.e., Mobile Node
is a moving node and Correspondent Node is an immobile
node. It should be noticed that the terminology can be a bit
misleading because HIP architecture allows both hosts to move
simultaneously. We use the HIP state machine terminology [1],
[3] extensively here. We also refer to routable IP addresses as
locators.

The core idea in HIP-based mobility is that when a mobile
node detects a change in its locators, it sends its complete
new set of locators to all of its correspondent nodes. A
correspondent node receives the new locator set and verifies
each address in the set for reachability by sending an UPDATE
packet with random nonce (echo request) to the mobile node.
The mobile node responds with a packet containing the same
nonce (echo response). These packets containing echo request
and response packets protect the correspondent node from

replay attacks because they allow it to securely verify that the
mobile node is in the location it claims to be. This procedure is
also referred as the return routability test. It should be noticed
that there are no separate return routability tests for addresses
used in the BEX because the BEX itself acts as an implicit
return routability test.

In HIP-based mobility, a locator pair has ACTIVE, DEP-
RECATED and UNVERIFIED states. Fig. 1 illustrates HIP-
based mobility from the view point of locator pair state. For
simplicity, retransmissions and optional negotiation of new D-
H key material are excluded from the figure.
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Fig. 1. Return routability tests and locator state.

When the mobile node moves (in step 1, Figure 1), its set
of locators changes and it builds a LOCATOR parameter that
contains the new locator set. The mobile node can exclude
some locators from the LOCATOR parameter according to
local policies. As an example, mobile node might not advertise
expensive links for all correspondent nodes, or it might ex-
clude some locators for privacy reasons. Corresponding node
transitions the state of locator to DEPRECATED, when the
mobile node excludes the particular locator from its locator
set (not shown in Figure 1). In step 2, the mobile node
sends an initial UPDATE, containing the LOCATOR parameter
listing the locator set which the mobile node publishes to its
correspondent nodes.

Now, the correspondent node receives the UPDATE packet
and validates the packet by verifying packet checksum, cor-
rectness of the signature, sequence number and comparison of
SPI number with existing SAs (step 3 in Figure 1). Then, the
correspondent node processes the LOCATOR parameter from
the UPDATE packet.

The correspondent node marks all received locators as
UNVERIFIED and deprecates existing locators excluded from
the new locator set (not shown in Figure 1). Next, the
correspondent node builds an UPDATE packet containing an
ECHO_REQUEST parameter (E_RQ in Figure 1) containing
a random nonce value and sends it to mobile node’s locator
to be tested for reachability (step 4). The correspondent node
repeats this for all of the locators contained in the locator set
of the mobile node.

In step 5, the mobile node receives the packet and echoes
the same nonce in an ECHO_RESPONSE parameter to corre-



spondent node in step 6. The correspondent node receives the
UPDATE packet and validates it. In step 7, the correspondent
node finds the response sent by mobile node and verifies the
nonce. The correspondent node transitions now the state of
the peer locator to ACTIVE. If the mobile node does respond
within a certain time, the correspondent node deprecates the
locator and removes the locator from its peer locator list.

It should be noticed that locators can be present already in
the base exchange. When a locator has a so called preferred
bit set, the sender of the locator enforces the recipient to use
the specific locator for HIP-related communications for e.g.
load-balancing purposes.

C. Related work

In Mobile IP [13], [15], each node has a home address that
identifies the node independently of its location. When the
mobile is not located in its home address, the mobile node
informs its Home Agent (HA) on its current address (Care-of-
Address). Datagrams destined to the mobile node are tunneled
to its current address through its home agent. MIPv6 includes
an optimization that two allows end-hosts to route MIPv6-
related traffic directly between them without triangular routing
through the home agent. IPsec and MOBIKE [16] [17] can be
used to protect Mobile IP traffic.

The MOBIKE protocol offers similar behavior in mobility
as HIP. For example, the LOCATOR is similar to ADDI-
TIONAL_*_ADDRESS (where * is IPV4 or IPV6) and the
return routability test is similar as in HIP. The MOBIKE
standards allow the mobile node to send additional addresses
of different family than those currently in use [18].

A MIPv4 extension [19] introduces dual stack mobility by
tunneling IPv6 over IPv4. This approach needs dual stack HA
and triangular routing to offer movement between IPv4 and
dual stack networks. Cross-family handovers, where nodes
move from IPv4 network to IPv6 networks or vice versa, is
left somewhat unclear in the specification.

Teredo is an IPv6-over-IPv4 tunneling protocol that includes
a mechanism to avoid triangular routing [20]. Teredo uses
UDP encapsulation and encodes additional information into
the IPv6 addresses. Teredo defines a dedicated IPv6 prefix
(2001:0::/32) for the tunnel which can be used by any IPv6-
capable networking software.

SHIM6 [21] is a layer 3 multihoming protocol that offers
locator agility for the transport protocols. SHIM6 has multiple
similarities when compared with HIP, for example the initiat-
ing handshake. At the time of writing SHIM6 did not have
specification for the usage of IPv4. In our opinion, our work
with cross-family handovers is beneficial also for the SHIM6,
when the usage of IPv4 is specified in SHIM6.

Jokela et al. [22] first discussed about cross-family han-
dovers in HIP but showed no performance or implementation
evaluation. Their primary environment was FreeBSD, while
we have implemented cross-family handovers for the Linux
networking stack. Furthermore, we specifically focus on the
fault tolerance aspects of handovers rather than load balancing.

III. CROSS-FAMILY IPV4/IPV6 HANDOVERS

A. Scope of HIP Handovers

In this paper, a handover refers to a change in the locator
set of an end-host. When the locator set changes, the host
can perform a handover procedure to sustain HIP and upper
layer connectivity. A vertical handover describes end-host
movement between different link-layer access technologies,
such as WLAN and UMTS, and a horizontal handover refers
to movement within the same type of access technology de-
vices. HIP can support both vertical and horizontal handovers
because it operates above link layer.

In a make-before-break handover a host obtains a new loca-
tor before it loses its current address. In a break-before-make
handover, the host loses its current address before it obtains a
new address. The latter results in a gap in connectivity during
which host is not reachable which causes disruption to existing
connections at the transport layer.

B. Cross-Family Handovers

HIP specifications [1], [3] offer a possibility to include
LOCATOR parameters in the R1 and I2 packets. However,
these two documents explain only the load balancing case
with the preferred bit set. When the a host sets the preferred
locator, its peer is forced to switch to it immediately and this
complicates handling of alternative locators. We argue that a
host should send its locators in the base exchange with all
preferred bits unset by default.

When a host receives locators with all preferred bits unset,
they should be considered as alternative addresses for the peer.
The host does not have to use these locators immediately,
but can use them for fault tolerance or load balancing pur-
poses. This aids also cross-family handovers because then two
communicating hosts know all the available addresses of each
other.

On the Responders side the LOCATOR parameter could be
placed into the R2 packet instead of the R1. The LOCATOR in
the R2 packet facilitates mobile devices to serve as Responders
better. For instance, a mobile node could disable an expensive
link until the base exchange completes. Also, the mobile node
employing precreate spools of R1 packets does not have to
recreate its pools upon mobility events when the locator is
absent from the R1.

Using the LOCATOR parameter in the base exchange
benefits also HIP NAT traversal [23], which forbids preferred
bits in NATted environments. De la Oliva et al. [24] also
proposed a shceme for sending all the locators early in the
communication in order to maximize the fault tolerance.

C. Peer Locator Learning

It is possible to delay the exposure of additional locators
to the peer. This can occur e.g. for privacy reasons to avoid
exposing of the topology of the corporation of the end-host.
Alternatively, the end-host can even be unaware of some its
locators in NATted environments [23] where the peers of the
end-host observe the address of a NAT middlebox and not
actual end-host address. In either case, a correspondent node



should be able to inform about its additional locators after the
base exchange without sending addional locators.

As an example, let us consider that two hosts have estab-
lished the base exchange over IPv6 without additional locators.
Then, one of the hosts becomes mobile and moves to an IPv4-
only network. The mobile node informs correspondent node
on its new location with an UPDATE. Now, the correspondent
node can choose to break connectivity for privacy reasons or
send an echo request from its previously unadvertised IPv4
address.

This case is not defined in the HIP mobility standard [3].
To achieve better flexibility, we propose that correspondent
node should be able to send echo requests from previously
unadvertised addresses and the mobile node should reply to
them with echo responses.

As an example of scenario, NAT middleboxes alter source
addresses of UDP encapsulated HIP packets and the end-host
sending the packets may be unaware of this. As a consequence,
the packet receiver learns a new address of the originating host
that was not advertised in the included LOCATOR parameter.

D. Teredo Experiments

In general, basic Teredo-based connectivity was successful
in our experimentation. We discovered some problems as well,
for example, when the mobile node moved into an IPv6-only
network and could not derive a Teredo address in the absence
of an IPv4 address. The mobile node sent an UPDATE packet
to the Teredo address of the correspondent node, but the local
router did not know what to do with the non-routable Teredo
address. In order to work, this case would have required a
Teredo relay in the network of the mobile node or a global
IPv6 address for the corresponding node.

Miredo, the Teredo implementation for Linux, decreased
the troughput due to the tunneling overhead and unoptimized
implementation. Especially in make-before-break handovers,
it took 30 seconds at the maximum for the Miredo software
to notice a mobility event that required changing the topology-
dependent Teredo address. HIP daemon reacted instantly by
sending an UPDATE packet advertising the old but unfortu-
nately invalid Teredo address. As a summary, there is room
for performance improvements in the Miredo implementation.

IV. PERFORMANCE MEASUREMENTS

In this section, we describe the measured impact of cross-
family handovers. To avoid issues with TCP timeouts doc-
umented in detail elsewhere [25], we just measured UDP
throughput.

We conducted the measurements on two identical laptops
(Intel Core 2, 2 GHz CPU). We concentrated on the processing
cost by minimizing the network latency (RTT 0.484 ± 0.143
ms), and therefore the laptops were connected via single
Gigabit router to each other. Both machines were running
Ubuntu Jaunty Jackalope Linux with 2.6.28 kernel and HIPL
release 1.0.3.

We triggered handovers using ip from ip-tools package that
allows manipulation of the network interfaces. In the test cases

the CN sent UDP packets continuously to the MN. We used
the Wireshark to capture the traffic and to analyze the gathered
data. The handover is measured to start from the sending of
the first UPDATE control packet with LOCATOR parameter
(step 2 in Figure 1) and to stop when the first ESP is received
using the new address (step 8 in Figure 1).

Tables I and II show that cross-family Make Before Break
(MBB) and Break Before Make (BBM) handovers tend to last
8 milliseconds longer than handovers where the family does
not change.

TABLE I
DURATIONS OF INTRA-FAMILY HANDOVERS.

Direction Duration, ms
MBB IPv4 to IPv4 53± 12
MBB IPv6 to IPv6 56± 6
BBM IPv4 to IPv4 41± 12
BBM IPv6 to IPv6 40± 6

Total average 47± 10

TABLE II
DURATIONS OF CROSS-FAMILY HANDOVERS.

Direction Duration, ms
MBB IPv4 to IPv6 56± 6
MBB IPv6 to IPv4 53± 16
BBM IPv4 to IPv6 56± 8
BBM IPv6 to IPv4 54± 11

Total average 55± 11

We observed that it took 10 ms (±1) from sending the UP-
DATE control packet with LOCATOR parameter and receiving
of the UPDATE control packet with ECHO_REQUEST (steps
2 - 4 in Figure 1). Handling of the ECHO_REQUEST and cre-
ation of needed SAs took 19 ms (±5) in intra-family handovers
and 40 ms (±8) in cross-family handovers (step 5 in Figure 1).
It took 6 ms (±2) from sending of the ECHO_RESPONSE to
the receiving of the first ESP packet (steps 6-8 in Figure 1).
Most of the processing time was spent in processing of the
UPDATE control packet with ECHO_REQUEST parameter,
as Pääkkönen et al. [26] have also observed. We suspect that
the processing time is doubled in cross-family handovers due
to unoptimized code.

V. CONCLUSIONS

Cross-family handovers can be used as a transition mech-
anism towards IPv6 now that IPv4 address space is almost
depleted. In this paper, we have shown three key contributions.
1) We described a shortcoming in current HIP mobility spec-
ifications preventing cross-family handovers and suggested a
simple solution to it. 2) Our performance evaluation on our im-
plementation indicates that HIP-based cross-family handovers
perform as well as intra-family handovers. 3) Our approach is
compatible with NATted networks because it can make use of
Teredo-based end-to-end tunnels.
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