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Abstract

This paper studies behavior of players in a common
exclusively-shared channel using a backoff protocol
for resolving collisions. We show that when players
have freedom to choose backoff parameters (or time
to send a next packet), they behave selfishly. The
system has an undesirable Nash equilibrium, where
every player tries to grasp as much channel as pos-
sible. Since the channel is exclusively shared, no
player would get a packet through (all packets will
collide). Although the result is seemingly obvious,
we were unable to find it in the literature. We also
evaluate a simple incentive mechanism based on an
arbiter model, which controls channel access by jam-
ming misbehaving players.

1 Introduction

The backoff protocol is a scheduling protocol for
simultaneous access to a multiple access channel
where simultaneous transmissions collide. To deal
with collisions, a backoff protocol was introduced
and adopted in such protocols as Aloha [2], Ether-
net [13] and IEEE 802.11 (Wi-Fi) [1]. As an exam-
ple, Aloha protocol uses a constant backoff protocol,
while IEEE 802.11 uses a truncated exponential bi-
nary backoff protocol.

Over past thirty years, the backoff protocol was
analyzed by several researchers [3–8]. Furthermore,
following the idea by Kwak et al. [11] we analyzed
general backoff protocols [12]. We studied optimality
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of a general backoff function instead of a fixed func-
tion. The analysis showed that the choice of the op-
timal protocol parameters depends on the number of
active stations in the network and may vary depend-
ing on the load of the network. Hence, permitting the
stations to choose the backoff parameters depending
on the channel load can increase throughput for in-
dividual stations and the network itself.

On the other hand, recent studies on game-
theoretic aspects of the backoff protocols showed that
the freedom to control backoff parameters leads to
selfish behavior of individual players (stations) [10].

In this paper we consider what if we give freedom
to manipulate general backoff parameters to each sta-
tion in the network. In other words, if a station is free
to use the channel at any time, what the resulting be-
havior would be?

Unlike in the backoff model, here we do not give
the history of interaction to a station. Hence, the
network model is a black box to the end station. A
station does not know had the packet collided before
the game is finished, stations know only the number
of other stations (players) and that every player in the
network wants to selfishly maximize its throughput.
Unfortunately, we omit consideration of the previous
history (backoff counter) because it makes the model
very complex otherwise. We believe that the model
still represents the choice of each player as with a gen-
eral backoff network without restrictions on behavior.
Under these conditions, we show that the game has
undesirable Nash equilibrium.

Additionally, we modify the model using a known
incentive mechanism — a common network arbiter,
which jams the channel if some player transmits too
much packets. We show that these incentives do not
give a unique Nash equilibrium solution, and one of
the possible equilibrium solutions still involves unde-
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sirable behavior.

2 Analysis

2.1 Model

Consider the following game model. N players try to
send packets through a shared channel during time
T . The whole time is divided into timeslots; the
length of each timeslot is 1, hence there are T slots
of length 1, which are synchronized and known to
each player. During one timeslot player can send one
packet. At the beginning of each game, every player
chooses timeslots for sending packets. We assume
that a player i decides to use ki slots for transmis-
sion. Knowing the number of slots to be used, the
exact slots for transmission are chosen randomly and
uniformly among other possible. There are

(

T
ki

)

com-
binations to place ki elements on T and probability
for every combination is equal. For such a game we
want to find which strategy (a number of packets to
send) a player will choose.

A similar problem was studied by Kolchin et al. in
the book “Random allocations” [9]. The difference
is that the book did not consider a game problem,
but used the same ki for every player. Even for such
problem, it is hard to analyze the collision probabil-
ity. In our case, the probability that k1 and k2 will

collide exactly in ∆ slots equals to
(k1

∆
)(T−k1

k2−∆
)

(T

k2)
.

2.2 Two-player game

Consider a particular case of the game above, when
the number of players is two. The first player de-
cides to send packets in k1 slots, the second in k2

slots. As in [9] consider the following random vari-
able µr be the number of slots, during which r pack-
ets are sent (0 ≤ r ≤ N). In case of two-player
game, there are at most two packets in a slot from
both players. Now, let us calculate µ2. If we define
as qi the event that two packets were sent in slot i,
then µ2 =

∑T

i=1
1{qi}, where 1{A} is an indicator

function for event A. Taking expectation from the
equation we get Eµ2 = TP{qi}, and for a two-player
game it is equal to Eµ2 = T k1

T
k2

T
= k1k2

T
.

That value is exactly the expected number of col-
lided packets. The expected number of successful
packets for the first player is k1 − k1k2

T
and for the

second player is k2−
k1k2

T
. Hence, we have the income

function H1(k1, k2) = k1(1 − k2

T
) for the first player

and H2(k1, k2) = k2(1 − k2

T
) for the second. It is

clear that unless one of players chooses T as a strat-
egy, the best income for another player is to choose
T as a strategy. This is a Nash equilibrium. Since
we assumed that players behave similarly, we can as-
sume that the Nash equilibrium is (T, T ). Each of
two players behaves selfishly.

2.3 N-player game

Now, consider an N-player game. It can be reduced
to a two-player game, if we consider the first player as
one player, and the rest of players as another player.
Hence, if we define ∆ as the number of slots taken by
the rest of the players, then the income for the first
player will be

H1(k1, k2, . . . , kN ) =

T
∑

∆=0

k1(1−
∆

T
)P{k2, . . . , kN occupies ∆} = k1(1−

E∆

T
).

Consider again, µr. Now we need to find µ0, the
number of free slots for players ¯2, N . Let qi be an
event that slot i is unoccupied by players ¯2, N . Then
µ0 =

∑T

i=1
1{qi}. The expectation of this value is

Eµ0 = TP{qi} = T
∏N

i=2
(1 − ki

T
). Thus, the ex-

pected number of free slots is T (1 −
∏N

i=2
(1 − ki

T
)),

and hence the income function for the first player is
H1(k1, k2, . . . , kN ) = k1

∏N

i=2
(1 − ki

T
). The income

for player j is

Hj(k1, k2, . . . , kN ) = kj

N
∏

i=1,i6=j

(1 −
ki

T
).

From here, we again see that unless one of the other
players chooses T as a strategy, any player is forced to
choose T . Because of similarity and as players cannot
know what other players choose, the expected Nash
equilibrium for the game will be (T, . . . , T ). Hence,
the N-player game leads to selfish behavior.
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2.4 On optimality and improvement

of the game

Using the equilibrium derived above, every player re-
ceives zero income. Consider the case when play-
ers behave equally. Every player chooses k as the
strategy; let us find the maximum possible profit for
a player. We need to find optimal points for func-
tion k

∏N

i=1,i6=j(1 − k
T

). The derivative for this func-

tion is equal to (1 − k
T

)N−2(1 − Nk
T

). The optimal

point is k = T
N

, and the income (if all players choose

that as an optimal point) is T
n
(1 − 1

n
)n−1 ≈ T

n
e−1.

That means that at most T
e

of the channel is di-
vided equally (utilization e−1 of the channel is a well-
known theoretical limit for shared channels). Now,
to get that optimal behavior as a Nash equilibrium
for all N players we need to change the income
function to the following form Hj(k1, k2, . . . , kN ) =

kj

∏N

i=1,i6=j(1−
ki

T
)1{kj ≤ T

N
}. It means that we give

nothing to a player who tries to use more than T
N

of
the channel. Unfortunately, this is hard to implement
in practice. A known way is to add an arbiter station
that jams the channel if some player uses more than
it should. In that case, the income function will get
the following form

Hj(k1, . . . , kN ) =



























kj

N
∏

i=1,i6=j

(1 −
ki

T
) kj <

T

N
,

T

N

N
∏

i=1,i6=j

(1 −
ki

T
) kj ≥

T

N
.

Unfortunately this equation does not restrict
( T

N
, . . . , T

N
) to be the only Nash equilibrium. A player

i can choose any value between T
N

and T .
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