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Abstract. This document discusses optimizations for a TCP sender that are most helpful in the presence

of delays spikes, but are seemingly suitable for general deployment. The motivation for this work is

increasing popularity of links (e.g. provided by cellular networks) that have delay spikes exceeding

the usual link latency by several times. The effect of a delay spike on TCP Tahoe, Reno, NewReno

and SACK is described. The document recommends timing every segment and restarting the retrans-

mit timer to achieve a more conservative RTO estimate. Furthermore, it discusses how a series of

DUPACKs should be treated.
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1. Introduction

The increasing number of users access the Internet via data links provided by cellular Wide Area

Wireless Networks (W-WANs). Due to link outages, handovers, and priority blocking delay spikes

in order of tens of seconds can occur leading to spurious TCP timeouts and unnecessary retrans-

missions.

Making TCP robust against delay spikes may include mechanisms on signalling [LU01a], de-

tection [LU01b] and response [LG01] [BA01c] to spurious timeouts. Recommendations made in

this documents are expected to be suitable for general deployment even when these mechanisms

are implemented.

This document proposes several mechanisms to increase the conservativeness of the TCP re-

transmission timer. It has a positive effect of making it more tolerable to delays spikes. However, a

more conservative RTO timer also has the drawback of a lengthy recovery in case the RTO has not

been spurious, i.e. occurred due to segment losses [AP99]. To avoid this performance drawback,

non-spurious RTOs should be avoided as much as possible. Thus, all relevant mechanisms that

reduce a probability of RTO in presence of packet losses are recommended. Two most important

such mechanisms are SACK [RFC2018] [BA01a] and the Limited Transmit algorithm [RFC3042].

The New Reno algorithm [RFC2582] may be used by the TCP sender when the SACK option is

not available on the connection. A list of other experimental methods for enhancing loss recovery

and avoiding non-spurious RTOs can be found in [RFC3155].

An important observation is that for W-WAN users and operators the battery power consumption

and radio resource usage are often as important as the throughput of the link. This suggests that the

amount of data sent over the wireless link should be minimized even at the trade-off of extra delay

in data delivery. With regard to this document it means that TCP features that avoid unnecessary

packet retransmissions have an extra value.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD

NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be

interpreted as described in [RFC2119]. A segment that acknowledges new data is referred as

an ACK. The DupThresh corresponds to the number of DUPACKs necessary to trigger the fast

retransmit algorithm, the default value is three DUPACKs.
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2. Sources of delay spikes

TCP does not react well to large delays (several times the usual RTT) that occur suddenly. Without

a chance to adapt its retransmission timer to such a delay, TCP has to assume that outstanding

segments were lost and retransmits them. There is a number of possible reasons why delay spikes

in order of tens of seconds can occur [GU01a].

(1) A long delay spike can be a result of link layer recovery from a link outage due to temporal

loss of radio coverage for example while driving into a tunnel or stepping into an elevator.

(2) During a handover the mobile terminal may have to perform some time-consuming actions

before data can be transmitted in a new cell. Many W-WANs in such a case try to provide seamless

mobility, that is internally re-route packets from the old to the new base station at the expense of

additional delay.

(3) Blocking by high-priority traffic may occur when an arriving circuit-switch call or higher

priority data user temporally preempts the radio channel.

Delay spikes in the Internet can occur for example due to routing changes, but are less frequent

than in cellular networks [AP99]. Delay spikes are often coupled with increased likelihood of

packets losses in the network. In addition, the network path conditions can change heavily after

a delay, for example the available bandwidth can shrink tenfold, after a handover from a fast to a

slower cell.

3. Delays and interactions with TCP mechanisms

This section briefly summarizes reaction of a conformant TCP to a delay spike. The Reno de-

scription is borrowed from [LK00]. Description of Tahoe, New Reno and SACK is based on

experiments in the NS2 simulator [NS] version 2.1b8. The experiment included inserting a delay

approximately three times the RTT in the beginning of the TCP connection without data losses.

The line rate was 9.6 kbps and the latency 300 ms. Traces are available at [GU01b].

When a sudden delay that exceeds the current value of the TCP retransmission timer occurs in

the data transfer, TCP times out and retransmits the oldest outstanding segment, as shown in Figure

1. Since data segments are delayed but not lost, the retransmission is unnecessary and the timeout is

spurious. The sender interprets the ACK generated by the receiver in response to a delayed segment

as related to the retransmission, not the original segment. This happens due to the retransmission

ambiguity problem as the ACK bears no information which segment, original or retransmitted,
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has generated it. Encouraged by arriving ACKs, TCP retransmits all outstanding segments using

the slow start algorithm. Also, a number of new segments allowed by the congestion window

are transmitted. Such a retransmission policy is called go-back-N since the sender forgets about

all segments it has earlier transmitted. When retransmitted segments arrive to the receiver they

generate DUPACKs since the original segments have already been delivered. When the threshold

of three DUPACKs is reached at the sender, a spurious fast retransmit is triggered. The presumably

missing segment is retransmitted and the congestion window is reduced that causes a pause in

transmission of new segments. From this point, TCP behavior depends on the flavor of the TCP

implementation.

TCP receiver sends DUPACKs in response to out-of-order segments. In other words, a DU-

PACK series appears due to unnecessary retransmissions, if segments have been duplicated by the

network, or due to a packet loss. A DUPACK series triggers a fast retransmit when the DupThresh

is reached, unless not prevented by the ”bug fix” or SACK information (Section 4.3).

TCP Tahoe in Figure 1(a) ignores arriving DUPACKs after the fast retransmit, as it does not im-

plement fast recovery. However, when partial ACKs start to arrive, Tahoe retransmits outstanding

segments unnecessary using the slow start algorithm. This in turn leads to a sequence of DUPACKs

causing a fast retransmit and repeating the cycle until the flight size is reduced to the point when the

fast retransmit cannot be triggered anymore. After that, the connection proceeds normally slowly

increasing the window in congestion avoidance.

TCP Reno in Figure 1(b) enters the fast recovery phase after the false fast retransmit and does

not perform any additional unnecessary retransmissions unless the RTO timer expired during fast

recovery (Section 4.4)

ACKs arriving after false fast retransmit are partial because they are not confirming the reception

of the foremost outstanding segment at that time. The New Reno [RFC2582] algorithm retrans-

mits the presumably missing segment at each new partial acknowledgment in Figure 1(c). A new

DUPACK series is triggered by these unnecessary retransmissions, in a similar way as for Tahoe.

This continues over and over until too few packets are in flight to trigger a spurious fast retransmit.

Fortunately, preventing the first false fast retransmit after the spurious timeout by the ”bug fix”

(Section 4.3) also solves the problem of continues unnecessary retransmits for Tahoe and New

Reno.

TCP SACK in Figure 1(d) can avoid the false fast retransmit but cannot avoid the go-back-N

behavior. The information on the retransmitted segments during go-back-N comes only in DU-

PACKs. Using the D-SACK extension of SACK (duplicate-SACK) allows reporting to the sender
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(c) NewReno
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(d) SACK

Figure 1: Response to a spurious timeout by different TCPs. Timestamps are enabled and the ”bug
fix” is disabled.
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the sequence number of a packet that triggered a DUPACK [RFC2883]. D-SACK info comes too

late to avoid go-back-N retransmissions, but it can be used to learn about unnecessary retransmis-

sions [BA01b] and adapt the for the future.

In our experience, the impact of delay spikes on real-world TCPs is worse than have been

described above. Almost every TCP tested against a delay spike revealed implementation bugs

[GU01b]. One goal of this document is to make the TCP developers aware of the negative effect

of delay spikes.

4. Making TCP robust against delay spikes

4.1 Restarting the retransmit timer

The obvious way to reduce the number of spurious RTOs in the presence of long sudden delays

is to make the RTO timer more conservative than [RFC2988], which recommends restarting RTO

only upon an ACK that acknowledges new data. Restarting the RTO timer also when a segment

is retransmitted or upon a DUPACK is clearly more conservative approach which is explicitly

allowed by [RFC2581].

Restarting the retransmit timer after performing fast retransmit gives a TCP sender more time to

wait for the retransmitted segment to be acknowledged. Otherwise, spurious RTO can occur during

fast recovery as shown in Figure 2(a), even when no delay spike is present and the RTT samples are

collected frequently. Figure 2(b) shows that restarting the retransmit timer when the fast retransmit

is triggered prevents the spurious timeout. Restarting the retransmit timer on fast retransmit is

a common implementation strategy among existing TCPs. The limited transmit algorithm can

increase fast recovery by two DUPACKs, thus raising the likelihood of a spurious RTO, especially

if the retransmit timer is not restarted.

Restarting the retransmit timer on DUPACKs is discussed in more detail in Section 4.3. The

general argument to consider here is that TCP would not want to timeout while it gets some feed-

back that segments are being delivered by the network. In addition, DUPACKs could have useful

SACK information.

Restarting the retransmit timer on partial ACKs is discussed in [RFC2582]. The Impatient vari-

ant of NewReno restarts the retransmit timer only on the first partial ACK, while the Slow-but-

Steady variant upon each partial ACK. The Impatient version may timeout during a lengthy fast

recovery, and proceed with the go-back-N and slow start. This may result in a quicker recovery

when a large number of segments is lost. The Slow-but-Steady version can stay in fast recovery for
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Figure 2: Fast retransmit due to a lost segment with and without reset of the retransmit timer. TCP
Reno with timestamps enabled.

a long time, however avoiding unnecessary retransmissions which are likely during go-back-N. If a

delay spike occurs during the fast recovery phase, the Impatient version is more likely experience a

spurious timeout. In the presence of delay spikes and when unnecessary retransmissions are costly,

the TCP MAY prefer the Slow-but-Steady version, that is restarting the timer on each DUPACK.

Recommendation: The retransmit timer SHOULD be restarted after fast retransmit. TCP MAY

restart the retransmit timer on partial ACKs when unnecessary retransmissions are costly and delay

spikes are likely.

4.2 Timing every segment

Traditionally, TCPs have been collecting one RTT sample per a window of data [Jac88]. This can

lead to underestimating the link RTT and spurious RTOs.

During the slow start phase the queuing delay is increasing rapidly and the RTO value applied

just before a new RTT sample is collected may underestimate the current RTT. Increasing the

RTTvar coefficient from two to four prevents a spurious timeout during the slow start [Jac88]
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(b) SACK

Figure 3: Response to a spurious timeout when timestamps are disabled.
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Figure 4: Fast retransmit in TCP Reno due to a lost segment with and without timestamps.
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assuming no delay spikes are present. Still, the standard RTO timer [RFC2988] may exceed the

link RTT only by a small edge allowing even a small RTT spike to cause a spurious timeout.

In congestion avoidance, a spurious RTO without a delay spike is still possible with the standard

RTO timer, however, only if a very large window is used on a bandwidth-limited link [Jac88].

Unfortunately, overbuffering is seems to be a frequent case for slow links [LU99].

Timing every segment eliminates the effect of lagging RTO behind a rapidly increasing link RTT,

thus decreasing the likelihood of a spurious timeout. Timing every segment can be implemented

with or without the timestamp option [RFC1323]. Using the timestamp option has the advantage

in allowing use of retransmitted segments for RTT measurement which is otherwise blocked by

the Karn’s algorithm [KP87].

Experiments using NS show that the RTT spike tolerated by TCP without a spurious timeout

could be twice higher when every segment is used for RTT estimation [GU01b]. Figure 3(a)

and 3(b) illustrate the response to the same delay spike as in Figure 1(b) and 1(d) when the RTT

sample is collected only once per window. The retransmit timer is clearly more aggressive without

timestamps, as the first retransmission occurs 4 secs earlier. Furthermore, both Reno and SACK

experience a second spurious RTO during a DUPACK sequence when timestamps are not used.

Figure 4(a) shows another example when the spurious RTO occurs during fast recovery. Waiting

for 5 secs more would avoid the timeout in this example. Using the timestamp option in Figure 4(b)

allows to complete the fast recovery phase without a spurious timeout.

Recommendation: TCP SHOULD collect RTT samples more frequently than once per RTT to

decrease the likelihood of a spurious RTO.

4.3 Treating a DUPACK series

Despite of a conservative retransmit timer, a spurious RTO can still occur. The resulting go-back-

N behavior produces a large number of DUPACKs triggered by unnecessary retransmissions. The

DUPACK series can cause a spurious fast retransmit and a spurious RTO.

Without SACK support on the connection, the receiver has no knowledge whether a DUPACK

has been due to a unnecessary retransmission or due to a lost segment. To prevent unnecessary

fast retransmits after a RTO, a ”bug fix” has been suggested [RFC2582]. The ”bug fix” disables

fast retransmits until all segments outstanding at the time when RTO occurred are acknowledged.

A less careful version of this restriction allows the fast retransmit when DUPACKs arrive for the

foremost outstanding packet, while a more careful version does not. A spurious timeout without
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Figure 5: Response to a spurious timeout when the ”bug fix” is enabled.

lost segments presents exactly the situation when DUPACKs arrive for the foremost outstanding

segment. The careful version is recommended [RFC2582]. Response to a spurious timeout with

the careful ”bug fix” is shown in Figure 5(a) and 5(b).

When SACK is supported by the connection, receiving a DUPACK without a SACK block or

with a D-SACK block pointing below the cumulative ACK indicates that the DUPACK was trig-

gered by a unnecessary retransmission (excluding a pathological case when the receiver has agreed

to use SACK but does not send SACK info). Thus, there is no reason to enter the loss recovery

phase, and the same behavior should be followed as without SACK when the fast retransmit is

prevented by the ”bug fix”.

At the moment, the safest way is to follow [RFC2582] and ignore DUPACKs not covering the

highest outstanding segment. Ignoring DUPACKs means no segment (re)transmission or changes

to congestion control state. However, if a TCP sender simply ignores DUPACKs arriving when

fast retransmit is disabled, it can lead to loosing the ACK clock. Whether incoming DUPACKs

can be used to trigger transmission of segments is an open problem, and below we provide some

facts to be considered. Note, that for DUPACKs before DupThresh, transmission of segments is

covered by the limited transmit algorithm. Using the limited transmit algorithm when the ”bug fix”
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is enabled shares the considerations below.

TCP Reno in NS2 uses DUPACKs to rigger transmission of segments during 37-50 secs as

shown in Figure 5(b). When an ACK arrives at 50 sec, the congestion window is deflated that

produces a pause in packet transmission during 50-58 sec. The alternative behavior when the

congestion window is not inflated is shown in Figure 5(a). Correspondingly, segments are not

transmitted upon DUPACKs and there is no pause due to deflating of the congestion window

when an ACK arrives at 50 sec. There is no clear benefit in either approach, as illustrated by the

equal download time for both connections. A possible modification is shown in Figure 6(a) when

DUPACKs trigger transmission of segments and the congestion window is not deflated. However,

this algorithm produces unstable behavior when evaluated in environment with congestion losses

and therefore cannot be recommended. In opposite, transmitting a new segment every second

DUPACK (similar to the Rate-Halving algorithm) reduces the transmission rate, but still preserves

the ACK clock. Experiments show that this approach is stable in presence of congestion losses and

improves the throughput.

If segments are transmitted on DUPACKs for the segment below the highest outstanding seg-

ment, they are retransmissions. If these retransmissions happen to be unnecessary, a new DUPACK

series is created later. On the other hand, segments transmitted upon DUPACKs for the highest out-

standing segment are new transmissions. Thus, one option would be to allow transmitting segments

on DUPACKs only for the highest outstanding segment.

The retransmit timer may be restarted safely upon DUPACKs if no segments are transmitted after

DupThresh. Restarting the timer decreases likelihood of spurious RTOs during a DUPACK series

when delay spikes occur. However, timing every segment and restarting the timer on reaching

DupThresh seem to provide a conservative enough retransmit timer in many cases. Restarting the

retransmit timer on DUPACKs can lead to a lengthy recovery when the segment was lost.

The reason for banning transmission of a segment AND restarting the retransmit timer on DU-

PACKs is a situation when the last outstanding segment is lost. The receiver will keep sending

DUPACKs until the lost segment is received. A newly transmitted segment on a DUPACK will

trigger another DUPACK in the future creating an endless loop. The retransmit timer in this case

serves as an back-up way to interrupt the loop. With SACK, this problem can appear only in a

pathological case when the receiver does not report losses.

Recommendation: TCP without SACK SHOULD implement the careful version of the ”bug

fix”. TCP with SACK SHOULD NOT enter the loss recovery phase when DUPACKs do not have

a SACK block indicating a lost segment. TCP MAY restart the retransmit timer upon receiving

a DUPACK. Transmitting segments upon DUPACKs above the oldest outstanding segment is an
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Figure 6: Effect of DUPACKs when the ”bug fix” is enabled.

open issue. However, TCP MUST NOT transmit a new segment and restart the retransmit timer

for DUPACKs above the DupThresh.

4.4 Ignoring DUPACKs for oldest outstanding segment after RTO

TCP can time out during a series of DUPACKs, either during fast recovery phase as shown in Fig-

ure 2(a) and 4(a), or after a large number of unnecessary retransmissions as shown in Figure 4(a).

If DUPACKs are delayed or lost, RTO can occur despite of restarting the retransmit timer upon

DUPACKs. RTO in this situation may or may not be spurious; the recommendation in this section

applies in both cases.

The proper behavior after RTO is specified in [RFC2581], that is to retransmit the oldest out-

standing segment, wait for an ACK and back-off the RTO timer if it expires again. However, a

fairly common behavior among TCPs is to use DUPACKs arriving after RTO to inflate the con-

gestion window and clock out retransmissions of segments, as happens in Figure 4(a) at 25 secs.

This behavior is observed at least in current versions of FreeBSD, Windows, and NS2 TCPs. This

behavior can be a special case of the problem as unnecessary fast retransmits which is discussed in
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Table 1: Summary of recommendations.

Mechanism Use SACK Section
Restarting the retransmit timer
after DUPACK for DupThresh SHOULD both 4.1
after partial ACK MAY both 4.1
after DUPACK above DupThresh MAY both 4.3
Timing every segment SHOULD both 4.2
Careful ”bug fix” SHOULD w/o 4.3
No recovery on DUPACKs without loss info SHOULD with 4.3
New segment on every second DUPACK MAY both 4.3
(without restarting the retransmit timer)
Ignoring DUPACKs after RTO SHOULD both 4.4

Section 4.3. In this situation the fast retransmit does not make sense, since only a single segment

retransmitted after RTO is assumed to be outstanding, and cannot cause enough DUPACKs to trig-

ger the fast retransmit. Furthermore, since RTO is taken as an indication of severe congestion, it is

unwise to retransmit segments on DUPACKs after RTO without getting any feedback for the first

retransmission.

It has been observed with real TCPs that transmitting segments on DUPACKs after RTO can lead

to a series of spurious timeouts as follows. TCP times out during a long DUPACK series caused

by go-back-N retransmissions. After RTO, DUPACKs are triggering unnecessary retransmission

of segments; resulting DUPACKs in the future cause RTO again. When DUPACKs are ignored

after RTO as shown in Figure 6(b), a spurious RTO during a DUPACK series can only lead to

unnecessary reduction of the congestion window and slow start threshold, but does not produce a

series of spurious RTOs.

Recommendation: TCP SHOULD ignore DUPACKs for the oldest outstanding segment after

RTO.

5. Conclusions

A TCP connection can experience delay spikes due to various reasons like handovers, priority

blocking, temporal link outages or route changes. We described the response of Tahoe, Reno, New

Reno and SACK TCP to a spurious timeout resulting from a delay spike. We have studied the

behavior of the retransmit timer and ways to treat a DUPACK series using the NS simulator. The

resulting summary of recommendations is shown in Table 1.
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