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Abstract: This paper has several contributions. First, we report that long sudden delays 
during data transfers are not uncommon in the GPRS wireless WAN. Long 
sudden delays can lead to spurious TCP timeouts and unnecessary 
retransmissions. Second, we show that the New Reno algorithm increases the 
penalty of spurious TCP timeouts and that an aggressive TCP retransmission 
timer may trigger a chain of spurious retransmissions. Third, we test how four 
widely deployed TCP implementations recover from a spurious timeout and 
notice that two of them have severe problems to recover. Finally, we discuss 
several existing ways to alleviate the problems. 

1. INTRODUCTION 

The number of nomadic users that access the Internet using wireless 
technology grows rapidly. Nowadays Wireless Wide Area Networks (W-
WAN) are the primary means for nomadic users to access the data services. 
With all advantages, mobile computing introduces an environment quite 
different from the one found in fixed networks due to scarce radio bandwidth 
and intermittent connectivity. Data services provided by W-WANs allow for 
a rather low link speed; error losses, changing line rate and variable delays 
present additional challenges for an efficient data transport. The Global 
System for Mobile Communications (GSM) is a widely successful effort to 
build a W-WAN system with millions of users in Europe and worldwide [20, 
25]. GSM data, High Speed Circuit Switch Data (HSCSD), and General 
Packet Radio Service (GPRS) [4] are data transmission services offered by 
GSM. 

Many popular Internet applications including World-Wide Web (WWW), 
File Transfer Protocol (FTP) and email require reliable data delivery over the 
network. The Transmission Control Protocol (TCP) is the most widely used 
transport protocol for this purpose; traffic studies in the Internet report that 
the dominant fraction of the traffic belongs to TCP [29]. TCP was designed 
and tuned to perform well in fixed networks, where the key functionality is 
to utilize the available bandwidth and avoid overloading the network. 
However, nomadic users want to run their favorite applications that are built 
on TCP over a wireless connection, as well. Packet losses due to 
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transmission errors, high latency and long sudden delays occurring on the 
wireless link may confuse TCP and yield throughput far from the available 
line rate. Some wireless networks try to hide all data losses from the sender 
by performing link-level retransmissions, seamless mobility and deep 
buffering inside the network. The reliability comes at the cost of variable 
delays in data transmission that can create problems for TCP. While 
optimizing TCP for a wireless environment has been an active research area 
for the last few years, not much attention has been paid to ensure that TCP 
implementations react well to long sudden delays, since sudden delays are 
not typical in fixed networks. 

The rest of the paper is organized as follows. In Section 2 we give the 
background information on the TCP protocol and list possible sources of 
delays in W-WANs. In Section 3 we describe the reaction of TCP to large 
sudden delays. In Section 4 the effect of the New Reno algorithm and the 
TCP retransmission timer on spurious TCP timeouts is considered. In 
Section 5 we test how four widely deployed TCP implementations recover 
from spurious timeouts. Section 6 discusses several existing methods to 
strengthen TCP against spurious timeouts.  

2. BACKGROUND 

2.1 TCP 

The Transmission Control Protocol (TCP) [24, 3, 2] is the most used 
transport protocol in the Internet. TCP provides applications with reliable 
byte-oriented delivery of data on the top of the Internet Protocol (IP). TCP 
sends user data in segments not exceeding the Maximum Segment Size 
(MSS) of the connection. Each byte of the data is assigned a unique 
sequence number. The receiver sends an acknowledgment (ACK) upon 
reception of a segment. TCP acknowledgments are cumulative; the sender 
has no information whether some of the data beyond the acknowledged byte 
has been received. TCP has an important property of self-clocking; in the 
equilibrium condition each arriving ACK triggers a transmission of a new 
segment. Data are not always delivered to TCP in a continuous way; the 
network can lose, duplicate or re-order packets. Arrived bytes that do not 
begin at the number of the next unacknowledged byte are called out-of-order 
data. As a response to out-of-order segments, TCP sends duplicate 
acknowledgments (DUPACK) that curry the same acknowledgment number 
as the previous ACK. In combination with a retransmission timeout (RTO) 
on the sender side, ACKs provide reliable data delivery [3]. The 
retransmission timer is set up based on the smoothed round trip time (RTT) 
and its variation. RTO is backed off exponentially at each unsuccessful 
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retransmit of the segment [22]. When RTO expires, data transmission is 
controlled by the slow start algorithm described below. To prevent a fast 
sender from overflowing a slow receiver, TCP implements the flow control 
based on a sliding window [28]. When the total size of outstanding 
segments, segments in flight (FlightSize), exceeds the window advertised by 
the receiver, further transmission of new segments is blocked until ACK that 
opens the window arrives. 

Early in its evolution, TCP was enhanced by congestion control 
mechanisms to protect the network against the incoming traffic that exceeds 
its capacity [10]. A TCP connection starts with a slow-start phase by sending 
out the initial window number of segments. The current congestion control 
standard allows the initial window of one or two segments [2]. During the 
slow start, the transmission rate is increased exponentially. The purpose of 
the slow start algorithm is to get the “ACK clock” running and to determine 
the available capacity in the network. A congestion window (cwnd) is a 
current estimation of the available capacity in the network. At any point of 
time, the sender is allowed to have no more segments outstanding than the 
minimum of the advertised and congestion windows. Upon reception of an 
acknowledgment, the congestion window is increased by one, thus the 
sender is allowed to transmit the number of acknowledged segments plus 
one. This roughly doubles the congestion window per RTT. The slow start 
ends when a segment loss is detected or when the congestion window 
reaches the slow-start threshold (ssthresh). When the slow start threshold is 
exceeded, the sender is in the congestion avoidance phase and increases the 
congestion window roughly by one segment per RTT. When a segment loss 
is detected, it is taken as a sign of congestion and the load on the network is 
decreased. The slow start threshold is set to the half of the current congestion 
window. After a retransmission timeout, the congestion window is set to one 
segment and the sender proceeds with the slow start. 

TCP recovery was enhanced by the fast retransmit and fast recovery 
algorithms to avoid waiting for a retransmit timeout every time a segment is 
lost [26]. Recall that DUPACKs are sent as a response to out-of-order 
segments. Because the network may re-order or duplicate packets, reception 
of a single DUPACK is not sufficient to conclude a segment loss. A 
threshold of three DUPACKs was chosen as a compromise between the 
danger of spurious loss detection and a timely loss recovery. Upon the 
reception of three DUPACKs, the fast retransmit algorithm is triggered. The 
DUPACKed segment is considered lost and is retransmitted. At the same 
time congestion control measures are taken; the congestion window is 
halved. The fast recovery algorithm controls the transmission of new data 
until a non-duplicate ACK is received. The fast recovery algorithm treats 
each additional arriving DUPACK as an indication that a segment has left 
the network. This allows inflating the congestion window temporarily by one 
MSS per each DUPACK. When the congestion window is inflated enough, 
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each arriving DUPACK triggers a transmission of a new segment, thus the 
ACK clock is preserved. When a non-duplicate ACK arrives, the fast 
recovery is completed and the congestion window is deflated. 

2.2 Sources of delays 

The latency of W-WAN links is typically close to a second, which is several 
times higher than on a typical route in the wireline Internet. TCP adapts well 
to this type of more or less constant delay. This is because the TCP 
retransmission timeout is updated dynamically based on the smoothed mean 
and variance of RTT samples of the connection. The TCP retransmission 
timer can be considered overly conservative [17]. However, TCP does not 
react well to large delays (several times the usual RTT) that occur suddenly. 
Without a chance to adapt its retransmission timer to such a delay, TCP has 
to assume that outstanding segments were lost and retransmits them. There is 
a number of possible reasons for such type of delays in W-WANs. 

Link-level error recovery. This is the most widely known source of 
varying delays as it presents a possibility for competing of link-level and 
end-to-end protocols in recovering error losses on a data link [14]. For 
example, an error burst requiring a high number of link-level retransmissions 
may be caused by a partial loss of the radio signal while driving into a 
tunnel. If the persistence of link-level error recovery exceeds the typical 
RTO of TCP over the given connection, spurious timeouts may result. 
Although studies report that cases of competing error recovery are infrequent 
in the basic GSM data service [16], the situation may be different for other 
W-WANs. Some wireless networks can include two or more layers of 
protocols capable of error recovery at the link level. For example, the GPRS 
wireless network includes both the Radio Link Control (RLC) protocol 
operating with small-sized frames at the lower level and the Logical Link 
Control (LLC) protocol operating with IP datagrams at the higher level [4]. 
Both protocols can be used in reliable or unreliable mode and the maximum 
number of retransmissions can be set as a network parameter. Optimally 
configuring the persistence of individual protocol sublayers may be a 
difficult task for a network operator. Thus, the TCP protocol in not 
guaranteed against operation over a highly persistent link introducing long 
delays in data transfers. 

Handovers. During a handover the mobile terminal may have to perform 
some time-consuming actions before data can be transmitted in a new cell. 
These include, for example, collection of signal quality, transmitting it to the 
new base station, authentication, etc. Many W-WANs in such a case try to 
provide seamless mobility, that is internally re-route packets from the old to 
the new base station at the expense of additional delay. As the result, the 
data transfer can be suspended for tens of seconds. 
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Blocking by high-priority traffic. When packet-switched and voice calls 
have to co-exist in a W-WAN network, in most cases the network operator 
assigns a higher priority to voice calls. An incoming voice call can 
temporarily preempt radio resources from packet-switched traffic, thus 
causing a delay in data transfer in the order of tens of seconds. Currently the 
support for Quality of Service (QoS) is being introduced into packet-
switched W-WANs. Interactive traffic, for example web browsing, may have 
higher priority over best-effort bulk data transfers. There can be situations 
when the lower-priority traffic is delayed when higher-priority connections 
become active. 

3. TCP AND DELAYS 

3.1 TCP reaction on delays 

As large sudden delays have not been a concern in the past, the only detailed 
study is presented in [15]. Here we briefly summarize results of that study. 
First, however, the method to visualize TCP traces has to be described. TCP 
traces in this paper are collected using tcpdump [11] program and presented 
as a time-sequence plot. The highest sequence number of a data segment 
versus capture time is plotted, compared to the acknowledgment number and 
advertised window for an ACK. TCP traces collected at the sender and at the 
receiver look differently, as can be seen in Figure 1. In the rest of the paper 
we present only sender-side plots, as they provide a better picture of the 
behavior of the TCP connection. However, receiver-side traces are used to 
verify that all segments have arrived to the receiver and not lost in the 
network. More details on displaying TCP traces can be found in [14, p. 52]. 

When a sudden delay that exceeds the current value of TCP 
retransmission timer occurs in the data transfer, TCP times out and 
retransmits the oldest outstanding segment. Since data segments are delayed 
but not lost, the retransmission is unnecessary and the timeout is spurious. A 
spurious TCP timeout is shown in Figure 1 taken from [15]. The delay in this 
test was generated by the hiccup tool, and delayed segments are marked with 
+ in the plot. The first retransmission that happens at the 42nd second is also 
delayed. The sender interprets the ACK generated by the receiver in 
response to delayed segment (1) as related to the retransmission, not the 
original segment. This happens due to the retransmission ambiguity problem 
as the ACK bears no information which segment, original or retransmitted, 
has generated it. Encouraged by arriving ACKs, TCP retransmits all 
outstanding segments using the slow start algorithm. Also, a number of new 
segments allowed by the congestion window are transmitted. Such 
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retransmission policy is refereed to as go-back-N since the sender forgets 
about all segments it has earlier transmitted. 
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Figure 1. Reaction of TCP on a 13-second delay (sender and receiver traces) [15]. 

At time (2) retransmitted segments arrive to the receiver and generate 
DUPACKs as the original segments have already been delivered. When the 
threshold of three DUPACKs is reached at the sender on the 50th second, a 
spurious fast retransmit is triggered. The presumably missing segment is 
retransmitted and the congestion window is reduced that causes a pause in 
transmission of new segments (about 5 seconds starting from the 54th 
second) before the connection returns to normal. The BSDi3.0 TCP 
implementation used in this experiment has recovered relatively well from a 
spurious timeout. 

3.2 Delays in a live network 

During evaluation of the new GPRS wireless packet-switched data service 
[13] we frequently observed pauses during bulk data transfers using TCP. 
Tests were performed in a public GPRS network operated by Sonera in 
stationary conditions and while driving is Helsinki surroundings. The test 
configuration is shown in Figure 2. 

Typically, blackout periods had some packet losses causing a 
performance slow down. However, here we are most interested in cases 
when packets are not lost, but delivered after a long delay. We have 
observed several such cases, one example is shown in Figure 3. 
Approximately 20 seconds after beginning of the connection, there is a 13-
second sudden delay. No segments are actually lost during the delay, but the 
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TCP connection cannot recover from the delay for its lifetime unnecessary 
retransmitting many segments. Our preliminary measurement results indicate 
that the handover delay in the live GPRS network can exceed 10 seconds and 
thus is a likely reason for spurious TCP timeouts. Figure 4 shows the 
handover delay measured between two cells using the standard ping program 
with 32-byte packets. While in general the round trip time is stable at 1.3 
seconds, it soars up to 10 seconds and more every time when the cell 
reselection is forced from the mobile terminal. 

WinNT4.0

serial link LAN
Host

Mobile

Win98

Fixed
Host

network
GPRS

 

Figure 2. Configuration of measurements in the live GPRS network. 
 

While every effort should be done to identify and remove sources of such 
delay spikes, it is unlikely that they can be completely eliminated. 
Furthermore, it is hardly possible to avoid spurious TCP timeouts occurring 
at such delay spikes, as it would require an extremely conservative TCP 
retransmission timer hampering the recovery of lost data. Thus, it is actual to 
ensure that existing and future TCP implementations recover reasonably 
from spurious timeouts.  
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Figure 3. A delay during a downlink bulk TCP transfer in the GPRS network. 
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Figure 4. RTT spikes in GPRS when cell reselection is forced from the mobile terminal. 

4. INTERACTION WITH TCP ALGORITHMS 

This section examines the effect of several TCP algorithms on recovery from 
a spurious retransmission timeout.1 

4.1 Effect of New Reno 

New Reno [6] is a small but important modification to the TCP fast recovery 
algorithm. “Normal” fast recovery suffers from timeouts when multiple 
packets are lost from the same flight of segments [5]. New Reno can recover 
from multiple losses at the rate of one packet per round trip time. If during 
fast recovery the first non-duplicate ACK does not acknowledge all 
outstanding data prior to the fast retransmit, such an ACK is called a partial 
acknowledgment. The New Reno algorithm is based on an observation that a 
partial acknowledgment is a strong indication that another segment was also 
lost. During the recovery phase New Reno retransmits the presumably 
missing segment and transmits new data if the congestion window allows it. 
The recovery phase ends when all segments outstanding before the fast 
retransmit are acknowledged or the retransmission timer expires. 

The description of a TCP spurious timeout in Section 3.1 is missing an 
important point if the New Reno algorithm is implemented at the sender. 
When the first DUPACK in Figure 1 arrives, the sender has six segments 
outstanding. Non-duplicate acknowledgments start to arrive at the 55th 

 
1 Ideas discussed in this section were presented on the end-to-end interest list in August 1-3, 

2000 
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second. From the point of view of the New Reno algorithm, these 
acknowledgments are partial because they are not confirming the reception 
of the foremost outstanding segment at that time. Thus, the algorithm 
retransmits the presumably missing segment at each new partial 
acknowledgment. In this case, the number of unnecessary retransmitted 
segments increases from 10 to 15, thus increasing the penalty of a spurious 
timeout by half. The practical example of spurious New Reno 
retransmissions is shown in Figure 8 and discussed later in the paper. 

Multiple fast retransmits in the context of segment losses are considered 
in [6, Section 5]. Here we extend the discussion to TCP recovery after a 
spurious timeout. A variant of New Reno, which does not transmit new 
segments on partial ACKs2, could further worsen the recovery. Note that 
segments retransmitted on partial ACKs also generate DUPACKs for the 
foremost outstanding segment. When later on three DUPACKs arrive to the 
sender, another false fast retransmit is triggered followed by New Reno 
retransmissions. This would continue over and over until too few packets are 
in flight to trigger a spurious fast retransmit3. Fortunately, preventing the 
first false fast retransmit after the spurious timeout makes this problem a 
non-issue.  

4.2 Spurious timeouts during fast recovery 

A long delay in a TCP transfer triggers a spurious timeout, go-back-N 
retransmissions and a spurious fast retransmit. TCP implementations with an 
aggressive TCP retransmission timer may time out one or more times during 
the fast recovery while DUPACKs generated by go-back-N retransmissions 
are arriving. Such a spurious timeout causes more damage than just 
unnecessary retransmitting the outstanding segments. Retransmissions create 
a new series of DUPACKs that can be long enough to cause another spurious 
RTO. Such behavior continues through the connection life time until no 
more segments are left in flight to trigger a new spurious timeout. We 
suggest that this problem is independent of the problem of spurious New 
Reno retransmissions and multiple spurious fast retransmits discussed above. 
That is, preventing them does not necessary prevent a chain of spurious 
RTOs. 

A practical example of such behavior is shown in Figure 6 and discussed 
later in this paper. A TCP connection experiencing such problems can send 
all data over two or three times, while not a single packet is actually lost. To 
avoid spurious timeouts during fast recovery, it may be useful to reset the 

 
2 RFC2582 permits sending new segments on partial ACKs if allowed by the congestion window. The available space in the congestion 

window depends on whether retransmitted segments are counted into it, which is not clearly said in RFC2581. Not sending new 

segments on partial ACKs seems to be a more conformant version of New Reno. 

3 This idea was generated by Reiner Ludwig in private communication 
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retransmission timer when a DUPACK arrives, which is not currently 
considered in [22]. Absence of spurious timeouts during fast recovery would 
stop the chain of spurious retransmissions. We have to note, however, that 
the RTO can expire only during the exceptionally long fast recovery, 
especially if the RTO has been backed off during the preceding delay. 
Furthermore, resetting the RTO on DUPACKs makes it more conservative 
thus delaying recovery of lost segments in some scenarios. 

5. TEST OF TCP IMPLEMENTATIONS 

5.1 Test setup 

The Software Emulator for Analyzing Wireless Data transfers (Seawind) 
[12] replaces the actual wireless link with a model that allows examining 
TCP behavior in a configurable and controlled environment. Indeed, 
capturing an exact scenario where a delay is present on the real data link is 
difficult, and performance comparison of different TCP implementations 
may not be valid. Seawind reproduces the basic properties of a wireless data 
link such as the limited line rate and a large propagation delay, and also 
allows placing a long sudden delay at a certain time in the connection. 
Seawind intercepts the flow of packets between a mobile host and a server 
and delays IP packets emulating the effect of a wireless link. An advantage 
of the emulation approach over tests for example with the NS simulator [9] 
is in ability to experiment with and compare the performance of different 
existing TCP implementations. 

Linux 2.2

LAN
link
serial

Mobile
Host

Seawind
emulator

Fixed
Host

Linux 2.4Linux 2.2, Linux 2.4
Win98, FreeBSD4.1

 

Figure 5. Configuration of measurements with an emulated W-WAN link. 

We have configured Seawind to emulate a link with similar characteristics 
as provided by data services of GSM. The line rate was set to 9600 bps, the 
propagation delay to 300 ms. Further on, a 10-second delay is introduced 
after 5 seconds of the beginning of the TCP connection. For testing we have 
selected four major TCP implementations that together form a larger part of 
all deployed TCPs: FreeBSD 4.1, Windows 98, Linux 2.2, and Linux 2.4. 
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The TCP implementation in Linux has undergone a major revision from the 
kernel release 2.2 to 2.4. The Linux distribution was RedHat 6.2.  

TCP parameters in the experiment were as follows: MSS of 256 bytes, the 
receiver window of 16 kilobytes, and the SACK option disabled. The New 
Reno algorithm was enabled on Linux, disabled in FreeBSD and of unknown 
status in Windows 98. A bulk data transfer sending 100 kilobytes of data 
from the mobile to the fixed host was generated by ttcp [27]. 

5.2 Test results 

During the delay, the behavior of tested TCPs was generally in accordance 
with Figure 1. The TCP timer expires approximately after five seconds of the 
delay and the oldest outstanding segment is retransmitted. When ACKs to 
delayed segments arrive, all outstanding segments are retransmitted 
according to the go-back-N policy. From this point, tested TCP 
implementations differ in behavior.  

FreeBSD 4.1 (Figure 6) showed particularly poor performance. The huge 
initial window (discussed in Section 5.3) leads to a large number of 
outstanding segments when the delay occurs. The go-back-N retransmissions 
generated enough DUPACKs so that after a spurious fast retransmit, the 
RTO has expired two times. Upon each timeout, the outstanding segments 
are retransmitted although no non-duplicate ACKs have arrived, which is a 
clear implementation fault. Extensive number of unnecessary 
retransmissions has triggered a series of spurious fast retransmits and 
timeouts collapsing the throughput. Double or triple transmissions of 
segments are separated by idle times due to congestion avoidance procedures 
done at each timeout and fast retransmit. This continues until the point when 
not enough segments are in flight to trigger another spurious timeout.  

Windows 98 (Figure 7) is having similar problems after a delay as 
FreeBSD, although a small initial window is used. A large number of 
spurious retransmissions in this case can be caused by the incorrect RTO 
computation or by a strange version of the New Reno algorithm, since 
segments were retransmitted after reception of the first partial ACK. At the 
point of time between the 50th and 60th second, TCP has stopped 
retransmitting segments due to unknown reasons. After that the connection 
proceeds normally. In live network tests we have observed the behavior 
similar to shown in Figure 3 in a major part of the traces; data segments were 
transmitted several times over the link resulting in inadequate throughput.  
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Figure 6. Recovery of TCP in FreeBSD 4.1 from a spurious timeout (complete connection). 
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Figure 7. Recovery of TCP in Windows 98 from a spurious timeout (zoomed, total 
connection time 191 seconds). 
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Figure 8. Recovery of TCP in Linux 2.2.12 from a spurious timeout (zoomed, total 
connection time 115 seconds). 
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Figure 9. Recovery of TCP in Linux 2.4.0 from a spurious timeout (zoomed, total connection 
time 114 seconds). 
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Linux 2.2 (Figure 8) recovers relatively well from the spurious timeout. 
Arriving DUPACKs trigger a spurious fast retransmit followed by additional 
retransmissions caused by the New Reno algorithm. One old and one new 
segment is transmitted per each partial ACK thus resulting in nine additional 
unnecessary retransmissions. A 10-second pause after partial ACKs is 
caused by congestion avoidance procedures. However, from this point the 
connection proceeds normally without additional retransmissions.  

Linux 2.4 (Figure 9) is similar to Linux 2.2, except that there is no 
spurious fast retransmit and no spurious New Reno retransmissions. When 
we have noticed the problem in Linux 2.2, it was reported to developers and 
corrected in the kernel release 2.4 by implementing the careful version of the 
restriction described in Section 6. 

5.3 TCP implementation faults 

Here we present a number of TCP “features” that were noticed while 
examining TCP traces during measurements in the live GPRS network and 
during tests with Seawind. Some of these implementation problems are 
already discussed in [23, 21]. 

A huge initial window. We were surprised to observe that FreeBSD used 
the initial window of 16 kilobytes instead of one or two segments currently 
allowed [2]. Apparently, the initial window is set to this value when the 
sender and receiver are located in the same IP subnetwork. This is clearly 
not desired when the TCP connection is established over a slow PPP link, as 
it has been in our case. The default initial window can be set to a proper 
value by changing a system parameter.  

Receiver window overruns. We can see in Figure 3 that the TCP sender 
exceeds the receiver advertised window in two places, at 38th and 97th 
second. We have observed this with Windows 98 and NT in many of 
examined TCP traces. Exceeding the advertise window is not allowed and 
may create additional performance problems with TCP implementations that 
discard TCP segments outside their advertised window.  

An incorrect retransmission timeout. One part of the problem with 
excessive spurious retransmissions on Windows may be caused by incorrect 
calculation of the retransmission timer. On the official support page of 
Microsoft, the problem is described as follows [19]. Windows 95, Windows 
98, Windows NT4.0 TCP/IP may retransmit packets prematurely as the 
retransmit timer is computed incorrectly because of a math error. This can 
result in unnecessary retransmissions and lower throughput over high-delay 
networks.  

Early fast retransmit. In order to avoid spurious fast retransmits when 
packets are re-ordered in the network, TCP is required to collect a threshold 
of three DUPACKs before a presumably missing segment is retransmitted 
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[2]. Examining TCP traces showed that Windows 98 always has been 
triggering a fast retransmit already after the second DUPACK, while 
Windows NT after the first DUPACK. 
 

6. METHODS TO STRENGTHEN TCP AGAINST 
SPURIOUS TIMEOUTS 

Careful version of RFC 2582. Due to performance considerations, fast 
retransmits in TCP should be disabled after an RTO until all packets 
transmitted earlier are acknowledged [6]. A less careful version of this 
restriction allows the fast retransmit when DUPACKs arrive for the foremost 
outstanding packet, while a more careful version does not. As we can see in 
Figure 1, a spurious timeout presents exactly the situation when DUPACKs 
arrive for the foremost outstanding segment. Using the more careful version 
of the restriction [6, Section 5] would not allow a spurious fast retransmit in 
the case of spurious timeouts limiting the penalty to go-back-N 
retransmissions. However, there is still a possibility of a second spurious 
RTO if the retransmission timer is not reset upon DUPACKs. Another 
scenario unrelated to spurious timeouts where the more careful version 
avoids unnecessary retransmissions is given in [8, p. 69]. This empirical 
evidence suggests that the careful version should be implemented in all 
TCPs.  

D-SACK. The Selective Acknowledgment option (SACK) [18] in TCP 
allows conveying the information to the sender on exactly which packets are 
missing at the receiver. The D-SACK extension of SACK (duplicate-SACK) 
allows reporting the sequence number of a packet that triggered a DUPACK 
[7]. The sender can use this information to determine whether the segment 
has been unnecessary retransmitted and avoid further unnecessary 
retransmissions. In our case a spurious fast retransmit and New Reno 
retransmits can be avoided. However, D-SACK does not help to prevent the 
go-back-N behavior after a spurious timeout, as the retransmission 
ambiguity problem is not resolved.  

Eifel. The Eifel algorithm [15] is using a timestamp option to distinguish 
between original data and retransmissions. It resolves the retransmission 
ambiguity problem and entirely avoids unnecessary retransmissions after a 
spurious timeout. When an ACK after the first retransmitted segment is 
received, its timestamp is compared to the timestamp of the first 
retransmission. If the ACK is older than the retransmission, the ACK was 
generated by the original transmission and the timeout was spurious. The 
Eifel algorithm allows to detect and abort spurious retransmissions, thus 
preventing the go-back-N behavior and spurious fast retransmits.  
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Packet lifetime. Assigning appropriate lifetime to packets inside a W-
WAN network and discarding expired packets makes TCP to apply loss 
recovery mechanisms in an intended way, which is more efficient than 
recovery from a spurious timeout. For example, GPRS specifications support 
packet lifetime in the network components [1]. A long delay exceeding RTO 
of TCP would also exceed the lifetime of packets in the network. The TCP 
timeout ceases to be spurious, as it leads to retransmission of discarded 
segments. No DUPACKs are generated in this case avoiding problems seen 
in TCP traces. 

7. CONCLUSION 

Long sudden delays in data transfers are not typical in wireline networks and 
their effect on the TCP protocol has not been extensively studied. Such 
delays are not uncommon in W-WANs due to link-level retransmissions, 
handovers and temporal resource preemption by high-priority packet traffic 
or voice calls. As an example, we give preliminary measurements of the cell 
reselection delay in the GPRS network. We have shown that the New Reno 
algorithm increases the amount of retransmissions after the spurious timeout 
roughly by half and that an aggressive retransmission timer may expire 
during the fast recovery generating a chain of spurious retransmissions. We 
have tested four widespread TCP implementations in their reaction to a long 
delay. All four implementations, FreeBSD 4.1, Windows 98, Linux 2.2 and 
Linux 2.4 have exhibited go-back-N retransmissions while the following 
behavior has been different. FreeBSD and Windows are recovering 
especially poorly, partly due to implementation problems that we also have 
listed. We have to highlight the importance of the Eifel algorithm as the only 
known solution that prevents go-back-N retransmissions thus nearly 
altogether eliminating the penalty of a spurious TCP timeout. We 
recommend that all TCPs implement the careful version of New Reno, as it 
prevents many of the discussed problems. Resetting the retransmission timer 
upon a reception of DUPACK would avoid spurious timeouts during fast 
recovery, but we have to study the effect of this modification in more detail. 
Future work will include examination of delay sources in the GPRS and 
UMTS wireless networks, as well as designing new algorithms to improve 
the response of TCP to long sudden delays. 
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