
Effect of Delays on TCP Performance

Andrei Gurtov
Cellular Systems Development, Sonera Corporation

Key words: TCP, delay, GPRS, Eifel.

Abstract: This paper has several contributions. First, we report that long sudden delays
during data transfers are not uncommon in the GPRS wireless WAN. Long
sudden delays can lead to spurious TCP timeouts and unnecessary
retransmissions. Second, we show that the New Reno algorithm increases the
penalty of spurious TCP timeouts and that an aggressive TCP retransmission
timer may trigger a chain of spurious retransmissions. Third, we test how four
widely deployed TCP implementations recover from a spurious timeout and
notice that two of them have severe problems to recover. Finally, we discuss
several existing ways to alleviate the problems.

1. INTRODUCTION

The number of nomadic users that access the Internet using wireless
technology grows rapidly. Nowadays Wireless Wide Area Networks (W-
WAN) are the primary means for nomadic users to access the data services.
With all advantages, mobile computing introduces an environment quite
different from the one found in fixed networks due to scarce radio bandwidth
and intermittent connectivity. Data services provided by W-WANs allow for
a rather low link speed; error losses, changing line rate and variable delays
present additional challenges for an efficient data transport. The Global
System for Mobile Communications (GSM) is a widely successful effort to
build a W-WAN system with millions of users in Europe and worldwide [20,
25]. GSM data, High Speed Circuit Switch Data (HSCSD), and General
Packet Radio Service (GPRS) [4] are data transmission services offered by
GSM.

Many popular Internet applications including World-Wide Web (WWW),
File Transfer Protocol (FTP) and email require reliable data delivery over the
network. The Transmission Control Protocol (TCP) is the most widely used
transport protocol for this purpose; traffic studies in the Internet report that
the dominant fraction of the traffic belongs to TCP [29]. TCP was designed
and tuned to perform well in fixed networks, where the key functionality is
to utilize the available bandwidth and avoid overloading the network.
However, nomadic users want to run their favorite applications that are built
on TCP over a wireless connection, as well. Packet losses due to

2 Andrei Gurtov

transmission errors, high latency and long sudden delays occurring on the
wireless link may confuse TCP and yield throughput far from the available
line rate. Some wireless networks try to hide all data losses from the sender
by performing link-level retransmissions, seamless mobility and deep
buffering inside the network. The reliability comes at the cost of variable
delays in data transmission that can create problems for TCP. While
optimizing TCP for a wireless environment has been an active research area
for the last few years, not much attention has been paid to ensure that TCP
implementations react well to long sudden delays, since sudden delays are
not typical in fixed networks.

The rest of the paper is organized as follows. In Section 2 we give the
background information on the TCP protocol and list possible sources of
delays in W-WANs. In Section 3 we describe the reaction of TCP to large
sudden delays. In Section 4 the effect of the New Reno algorithm and the
TCP retransmission timer on spurious TCP timeouts is considered. In
Section 5 we test how four widely deployed TCP implementations recover
from spurious timeouts. Section 6 discusses several existing methods to
strengthen TCP against spurious timeouts.

2. BACKGROUND

2.1 TCP

The Transmission Control Protocol (TCP) [24, 3, 2] is the most used
transport protocol in the Internet. TCP provides applications with reliable
byte-oriented delivery of data on the top of the Internet Protocol (IP). TCP
sends user data in segments not exceeding the Maximum Segment Size
(MSS) of the connection. Each byte of the data is assigned a unique
sequence number. The receiver sends an acknowledgment (ACK) upon
reception of a segment. TCP acknowledgments are cumulative; the sender
has no information whether some of the data beyond the acknowledged byte
has been received. TCP has an important property of self-clocking; in the
equilibrium condition each arriving ACK triggers a transmission of a new
segment. Data are not always delivered to TCP in a continuous way; the
network can lose, duplicate or re-order packets. Arrived bytes that do not
begin at the number of the next unacknowledged byte are called out-of-order
data. As a response to out-of-order segments, TCP sends duplicate
acknowledgments (DUPACK) that curry the same acknowledgment number
as the previous ACK. In combination with a retransmission timeout (RTO)
on the sender side, ACKs provide reliable data delivery [3]. The
retransmission timer is set up based on the smoothed round trip time (RTT)
and its variation. RTO is backed off exponentially at each unsuccessful

Effect of Delays on TCP Performance 3

retransmit of the segment [22]. When RTO expires, data transmission is
controlled by the slow start algorithm described below. To prevent a fast
sender from overflowing a slow receiver, TCP implements the flow control
based on a sliding window [28]. When the total size of outstanding
segments, segments in flight (FlightSize), exceeds the window advertised by
the receiver, further transmission of new segments is blocked until ACK that
opens the window arrives.

Early in its evolution, TCP was enhanced by congestion control
mechanisms to protect the network against the incoming traffic that exceeds
its capacity [10]. A TCP connection starts with a slow-start phase by sending
out the initial window number of segments. The current congestion control
standard allows the initial window of one or two segments [2]. During the
slow start, the transmission rate is increased exponentially. The purpose of
the slow start algorithm is to get the “ACK clock” running and to determine
the available capacity in the network. A congestion window (cwnd) is a
current estimation of the available capacity in the network. At any point of
time, the sender is allowed to have no more segments outstanding than the
minimum of the advertised and congestion windows. Upon reception of an
acknowledgment, the congestion window is increased by one, thus the
sender is allowed to transmit the number of acknowledged segments plus
one. This roughly doubles the congestion window per RTT. The slow start
ends when a segment loss is detected or when the congestion window
reaches the slow-start threshold (ssthresh). When the slow start threshold is
exceeded, the sender is in the congestion avoidance phase and increases the
congestion window roughly by one segment per RTT. When a segment loss
is detected, it is taken as a sign of congestion and the load on the network is
decreased. The slow start threshold is set to the half of the current congestion
window. After a retransmission timeout, the congestion window is set to one
segment and the sender proceeds with the slow start.

TCP recovery was enhanced by the fast retransmit and fast recovery
algorithms to avoid waiting for a retransmit timeout every time a segment is
lost [26]. Recall that DUPACKs are sent as a response to out-of-order
segments. Because the network may re-order or duplicate packets, reception
of a single DUPACK is not sufficient to conclude a segment loss. A
threshold of three DUPACKs was chosen as a compromise between the
danger of spurious loss detection and a timely loss recovery. Upon the
reception of three DUPACKs, the fast retransmit algorithm is triggered. The
DUPACKed segment is considered lost and is retransmitted. At the same
time congestion control measures are taken; the congestion window is
halved. The fast recovery algorithm controls the transmission of new data
until a non-duplicate ACK is received. The fast recovery algorithm treats
each additional arriving DUPACK as an indication that a segment has left
the network. This allows inflating the congestion window temporarily by one
MSS per each DUPACK. When the congestion window is inflated enough,

4 Andrei Gurtov

each arriving DUPACK triggers a transmission of a new segment, thus the
ACK clock is preserved. When a non-duplicate ACK arrives, the fast
recovery is completed and the congestion window is deflated.

2.2 Sources of delays

The latency of W-WAN links is typically close to a second, which is several
times higher than on a typical route in the wireline Internet. TCP adapts well
to this type of more or less constant delay. This is because the TCP
retransmission timeout is updated dynamically based on the smoothed mean
and variance of RTT samples of the connection. The TCP retransmission
timer can be considered overly conservative [17]. However, TCP does not
react well to large delays (several times the usual RTT) that occur suddenly.
Without a chance to adapt its retransmission timer to such a delay, TCP has
to assume that outstanding segments were lost and retransmits them. There is
a number of possible reasons for such type of delays in W-WANs.

Link-level error recovery. This is the most widely known source of
varying delays as it presents a possibility for competing of link-level and
end-to-end protocols in recovering error losses on a data link [14]. For
example, an error burst requiring a high number of link-level retransmissions
may be caused by a partial loss of the radio signal while driving into a
tunnel. If the persistence of link-level error recovery exceeds the typical
RTO of TCP over the given connection, spurious timeouts may result.
Although studies report that cases of competing error recovery are infrequent
in the basic GSM data service [16], the situation may be different for other
W-WANs. Some wireless networks can include two or more layers of
protocols capable of error recovery at the link level. For example, the GPRS
wireless network includes both the Radio Link Control (RLC) protocol
operating with small-sized frames at the lower level and the Logical Link
Control (LLC) protocol operating with IP datagrams at the higher level [4].
Both protocols can be used in reliable or unreliable mode and the maximum
number of retransmissions can be set as a network parameter. Optimally
configuring the persistence of individual protocol sublayers may be a
difficult task for a network operator. Thus, the TCP protocol in not
guaranteed against operation over a highly persistent link introducing long
delays in data transfers.

Handovers. During a handover the mobile terminal may have to perform
some time-consuming actions before data can be transmitted in a new cell.
These include, for example, collection of signal quality, transmitting it to the
new base station, authentication, etc. Many W-WANs in such a case try to
provide seamless mobility, that is internally re-route packets from the old to
the new base station at the expense of additional delay. As the result, the
data transfer can be suspended for tens of seconds.

Effect of Delays on TCP Performance 5

Blocking by high-priority traffic. When packet-switched and voice calls
have to co-exist in a W-WAN network, in most cases the network operator
assigns a higher priority to voice calls. An incoming voice call can
temporarily preempt radio resources from packet-switched traffic, thus
causing a delay in data transfer in the order of tens of seconds. Currently the
support for Quality of Service (QoS) is being introduced into packet-
switched W-WANs. Interactive traffic, for example web browsing, may have
higher priority over best-effort bulk data transfers. There can be situations
when the lower-priority traffic is delayed when higher-priority connections
become active.

3. TCP AND DELAYS

3.1 TCP reaction on delays

As large sudden delays have not been a concern in the past, the only detailed
study is presented in [15]. Here we briefly summarize results of that study.
First, however, the method to visualize TCP traces has to be described. TCP
traces in this paper are collected using tcpdump [11] program and presented
as a time-sequence plot. The highest sequence number of a data segment
versus capture time is plotted, compared to the acknowledgment number and
advertised window for an ACK. TCP traces collected at the sender and at the
receiver look differently, as can be seen in Figure 1. In the rest of the paper
we present only sender-side plots, as they provide a better picture of the
behavior of the TCP connection. However, receiver-side traces are used to
verify that all segments have arrived to the receiver and not lost in the
network. More details on displaying TCP traces can be found in [14, p. 52].

When a sudden delay that exceeds the current value of TCP
retransmission timer occurs in the data transfer, TCP times out and
retransmits the oldest outstanding segment. Since data segments are delayed
but not lost, the retransmission is unnecessary and the timeout is spurious. A
spurious TCP timeout is shown in Figure 1 taken from [15]. The delay in this
test was generated by the hiccup tool, and delayed segments are marked with
+ in the plot. The first retransmission that happens at the 42nd second is also
delayed. The sender interprets the ACK generated by the receiver in
response to delayed segment (1) as related to the retransmission, not the
original segment. This happens due to the retransmission ambiguity problem
as the ACK bears no information which segment, original or retransmitted,
has generated it. Encouraged by arriving ACKs, TCP retransmits all
outstanding segments using the slow start algorithm. Also, a number of new
segments allowed by the congestion window are transmitted. Such

6 Andrei Gurtov

retransmission policy is refereed to as go-back-N since the sender forgets
about all segments it has earlier transmitted.

24000

29000

34000

39000

44000

49000

54000

27 32 37 42 47 52 57 62
Time of Day (s)

S
eq

u
en

ce
 N

u
m

b
er

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

(1)

(2)

Figure 1. Reaction of TCP on a 13-second delay (sender and receiver traces) [15].

At time (2) retransmitted segments arrive to the receiver and generate
DUPACKs as the original segments have already been delivered. When the
threshold of three DUPACKs is reached at the sender on the 50th second, a
spurious fast retransmit is triggered. The presumably missing segment is
retransmitted and the congestion window is reduced that causes a pause in
transmission of new segments (about 5 seconds starting from the 54th
second) before the connection returns to normal. The BSDi3.0 TCP
implementation used in this experiment has recovered relatively well from a
spurious timeout.

3.2 Delays in a live network

During evaluation of the new GPRS wireless packet-switched data service
[13] we frequently observed pauses during bulk data transfers using TCP.
Tests were performed in a public GPRS network operated by Sonera in
stationary conditions and while driving is Helsinki surroundings. The test
configuration is shown in Figure 2.

Typically, blackout periods had some packet losses causing a
performance slow down. However, here we are most interested in cases
when packets are not lost, but delivered after a long delay. We have
observed several such cases, one example is shown in Figure 3.
Approximately 20 seconds after beginning of the connection, there is a 13-
second sudden delay. No segments are actually lost during the delay, but the

Effect of Delays on TCP Performance 7

TCP connection cannot recover from the delay for its lifetime unnecessary
retransmitting many segments. Our preliminary measurement results indicate
that the handover delay in the live GPRS network can exceed 10 seconds and
thus is a likely reason for spurious TCP timeouts. Figure 4 shows the
handover delay measured between two cells using the standard ping program
with 32-byte packets. While in general the round trip time is stable at 1.3
seconds, it soars up to 10 seconds and more every time when the cell
reselection is forced from the mobile terminal.

WinNT4.0

serial link LAN
Host

Mobile

Win98

Fixed
Host

network
GPRS

Figure 2. Configuration of measurements in the live GPRS network.

While every effort should be done to identify and remove sources of such
delay spikes, it is unlikely that they can be completely eliminated.
Furthermore, it is hardly possible to avoid spurious TCP timeouts occurring
at such delay spikes, as it would require an extremely conservative TCP
retransmission timer hampering the recovery of lost data. Thus, it is actual to
ensure that existing and future TCP implementations recover reasonably
from spurious timeouts.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 3. A delay during a downlink bulk TCP transfer in the GPRS network.

8 Andrei Gurtov

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350

Ping sequence number

R
T

T
, s

ec
on

ds

Figure 4. RTT spikes in GPRS when cell reselection is forced from the mobile terminal.

4. INTERACTION WITH TCP ALGORITHMS

This section examines the effect of several TCP algorithms on recovery from
a spurious retransmission timeout.1

4.1 Effect of New Reno

New Reno [6] is a small but important modification to the TCP fast recovery
algorithm. “Normal” fast recovery suffers from timeouts when multiple
packets are lost from the same flight of segments [5]. New Reno can recover
from multiple losses at the rate of one packet per round trip time. If during
fast recovery the first non-duplicate ACK does not acknowledge all
outstanding data prior to the fast retransmit, such an ACK is called a partial
acknowledgment. The New Reno algorithm is based on an observation that a
partial acknowledgment is a strong indication that another segment was also
lost. During the recovery phase New Reno retransmits the presumably
missing segment and transmits new data if the congestion window allows it.
The recovery phase ends when all segments outstanding before the fast
retransmit are acknowledged or the retransmission timer expires.

The description of a TCP spurious timeout in Section 3.1 is missing an
important point if the New Reno algorithm is implemented at the sender.
When the first DUPACK in Figure 1 arrives, the sender has six segments
outstanding. Non-duplicate acknowledgments start to arrive at the 55th

1 Ideas discussed in this section were presented on the end-to-end interest list in August 1-3,

2000

Effect of Delays on TCP Performance 9

second. From the point of view of the New Reno algorithm, these
acknowledgments are partial because they are not confirming the reception
of the foremost outstanding segment at that time. Thus, the algorithm
retransmits the presumably missing segment at each new partial
acknowledgment. In this case, the number of unnecessary retransmitted
segments increases from 10 to 15, thus increasing the penalty of a spurious
timeout by half. The practical example of spurious New Reno
retransmissions is shown in Figure 8 and discussed later in the paper.

Multiple fast retransmits in the context of segment losses are considered
in [6, Section 5]. Here we extend the discussion to TCP recovery after a
spurious timeout. A variant of New Reno, which does not transmit new
segments on partial ACKs2, could further worsen the recovery. Note that
segments retransmitted on partial ACKs also generate DUPACKs for the
foremost outstanding segment. When later on three DUPACKs arrive to the
sender, another false fast retransmit is triggered followed by New Reno
retransmissions. This would continue over and over until too few packets are
in flight to trigger a spurious fast retransmit3. Fortunately, preventing the
first false fast retransmit after the spurious timeout makes this problem a
non-issue.

4.2 Spurious timeouts during fast recovery

A long delay in a TCP transfer triggers a spurious timeout, go-back-N
retransmissions and a spurious fast retransmit. TCP implementations with an
aggressive TCP retransmission timer may time out one or more times during
the fast recovery while DUPACKs generated by go-back-N retransmissions
are arriving. Such a spurious timeout causes more damage than just
unnecessary retransmitting the outstanding segments. Retransmissions create
a new series of DUPACKs that can be long enough to cause another spurious
RTO. Such behavior continues through the connection life time until no
more segments are left in flight to trigger a new spurious timeout. We
suggest that this problem is independent of the problem of spurious New
Reno retransmissions and multiple spurious fast retransmits discussed above.
That is, preventing them does not necessary prevent a chain of spurious
RTOs.

A practical example of such behavior is shown in Figure 6 and discussed
later in this paper. A TCP connection experiencing such problems can send
all data over two or three times, while not a single packet is actually lost. To
avoid spurious timeouts during fast recovery, it may be useful to reset the

2 RFC2582 permits sending new segments on partial ACKs if allowed by the congestion window. The available space in the congestion

window depends on whether retransmitted segments are counted into it, which is not clearly said in RFC2581. Not sending new

segments on partial ACKs seems to be a more conformant version of New Reno.

3 This idea was generated by Reiner Ludwig in private communication

10 Andrei Gurtov

retransmission timer when a DUPACK arrives, which is not currently
considered in [22]. Absence of spurious timeouts during fast recovery would
stop the chain of spurious retransmissions. We have to note, however, that
the RTO can expire only during the exceptionally long fast recovery,
especially if the RTO has been backed off during the preceding delay.
Furthermore, resetting the RTO on DUPACKs makes it more conservative
thus delaying recovery of lost segments in some scenarios.

5. TEST OF TCP IMPLEMENTATIONS

5.1 Test setup

The Software Emulator for Analyzing Wireless Data transfers (Seawind)
[12] replaces the actual wireless link with a model that allows examining
TCP behavior in a configurable and controlled environment. Indeed,
capturing an exact scenario where a delay is present on the real data link is
difficult, and performance comparison of different TCP implementations
may not be valid. Seawind reproduces the basic properties of a wireless data
link such as the limited line rate and a large propagation delay, and also
allows placing a long sudden delay at a certain time in the connection.
Seawind intercepts the flow of packets between a mobile host and a server
and delays IP packets emulating the effect of a wireless link. An advantage
of the emulation approach over tests for example with the NS simulator [9]
is in ability to experiment with and compare the performance of different
existing TCP implementations.

Linux 2.2

LAN
link
serial

Mobile
Host

Seawind
emulator

Fixed
Host

Linux 2.4Linux 2.2, Linux 2.4
Win98, FreeBSD4.1

Figure 5. Configuration of measurements with an emulated W-WAN link.

We have configured Seawind to emulate a link with similar characteristics
as provided by data services of GSM. The line rate was set to 9600 bps, the
propagation delay to 300 ms. Further on, a 10-second delay is introduced
after 5 seconds of the beginning of the TCP connection. For testing we have
selected four major TCP implementations that together form a larger part of
all deployed TCPs: FreeBSD 4.1, Windows 98, Linux 2.2, and Linux 2.4.

Effect of Delays on TCP Performance 11

The TCP implementation in Linux has undergone a major revision from the
kernel release 2.2 to 2.4. The Linux distribution was RedHat 6.2.

TCP parameters in the experiment were as follows: MSS of 256 bytes, the
receiver window of 16 kilobytes, and the SACK option disabled. The New
Reno algorithm was enabled on Linux, disabled in FreeBSD and of unknown
status in Windows 98. A bulk data transfer sending 100 kilobytes of data
from the mobile to the fixed host was generated by ttcp [27].

5.2 Test results

During the delay, the behavior of tested TCPs was generally in accordance
with Figure 1. The TCP timer expires approximately after five seconds of the
delay and the oldest outstanding segment is retransmitted. When ACKs to
delayed segments arrive, all outstanding segments are retransmitted
according to the go-back-N policy. From this point, tested TCP
implementations differ in behavior.

FreeBSD 4.1 (Figure 6) showed particularly poor performance. The huge
initial window (discussed in Section 5.3) leads to a large number of
outstanding segments when the delay occurs. The go-back-N retransmissions
generated enough DUPACKs so that after a spurious fast retransmit, the
RTO has expired two times. Upon each timeout, the outstanding segments
are retransmitted although no non-duplicate ACKs have arrived, which is a
clear implementation fault. Extensive number of unnecessary
retransmissions has triggered a series of spurious fast retransmits and
timeouts collapsing the throughput. Double or triple transmissions of
segments are separated by idle times due to congestion avoidance procedures
done at each timeout and fast retransmit. This continues until the point when
not enough segments are in flight to trigger another spurious timeout.

Windows 98 (Figure 7) is having similar problems after a delay as
FreeBSD, although a small initial window is used. A large number of
spurious retransmissions in this case can be caused by the incorrect RTO
computation or by a strange version of the New Reno algorithm, since
segments were retransmitted after reception of the first partial ACK. At the
point of time between the 50th and 60th second, TCP has stopped
retransmitting segments due to unknown reasons. After that the connection
proceeds normally. In live network tests we have observed the behavior
similar to shown in Figure 3 in a major part of the traces; data segments were
transmitted several times over the link resulting in inadequate throughput.

12 Andrei Gurtov

0 50 100 150 200 250
0

2

4

6

8

10

12
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 6. Recovery of TCP in FreeBSD 4.1 from a spurious timeout (complete connection).

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 7. Recovery of TCP in Windows 98 from a spurious timeout (zoomed, total
connection time 191 seconds).

Effect of Delays on TCP Performance 13

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 8. Recovery of TCP in Linux 2.2.12 from a spurious timeout (zoomed, total
connection time 115 seconds).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 9. Recovery of TCP in Linux 2.4.0 from a spurious timeout (zoomed, total connection
time 114 seconds).

14 Andrei Gurtov

Linux 2.2 (Figure 8) recovers relatively well from the spurious timeout.
Arriving DUPACKs trigger a spurious fast retransmit followed by additional
retransmissions caused by the New Reno algorithm. One old and one new
segment is transmitted per each partial ACK thus resulting in nine additional
unnecessary retransmissions. A 10-second pause after partial ACKs is
caused by congestion avoidance procedures. However, from this point the
connection proceeds normally without additional retransmissions.

Linux 2.4 (Figure 9) is similar to Linux 2.2, except that there is no
spurious fast retransmit and no spurious New Reno retransmissions. When
we have noticed the problem in Linux 2.2, it was reported to developers and
corrected in the kernel release 2.4 by implementing the careful version of the
restriction described in Section 6.

5.3 TCP implementation faults

Here we present a number of TCP “features” that were noticed while
examining TCP traces during measurements in the live GPRS network and
during tests with Seawind. Some of these implementation problems are
already discussed in [23, 21].

A huge initial window. We were surprised to observe that FreeBSD used
the initial window of 16 kilobytes instead of one or two segments currently
allowed [2]. Apparently, the initial window is set to this value when the
sender and receiver are located in the same IP subnetwork. This is clearly
not desired when the TCP connection is established over a slow PPP link, as
it has been in our case. The default initial window can be set to a proper
value by changing a system parameter.

Receiver window overruns. We can see in Figure 3 that the TCP sender
exceeds the receiver advertised window in two places, at 38th and 97th
second. We have observed this with Windows 98 and NT in many of
examined TCP traces. Exceeding the advertise window is not allowed and
may create additional performance problems with TCP implementations that
discard TCP segments outside their advertised window.

An incorrect retransmission timeout. One part of the problem with
excessive spurious retransmissions on Windows may be caused by incorrect
calculation of the retransmission timer. On the official support page of
Microsoft, the problem is described as follows [19]. Windows 95, Windows
98, Windows NT4.0 TCP/IP may retransmit packets prematurely as the
retransmit timer is computed incorrectly because of a math error. This can
result in unnecessary retransmissions and lower throughput over high-delay
networks.

Early fast retransmit. In order to avoid spurious fast retransmits when
packets are re-ordered in the network, TCP is required to collect a threshold
of three DUPACKs before a presumably missing segment is retransmitted

Effect of Delays on TCP Performance 15

[2]. Examining TCP traces showed that Windows 98 always has been
triggering a fast retransmit already after the second DUPACK, while
Windows NT after the first DUPACK.

6. METHODS TO STRENGTHEN TCP AGAINST
SPURIOUS TIMEOUTS

Careful version of RFC 2582. Due to performance considerations, fast
retransmits in TCP should be disabled after an RTO until all packets
transmitted earlier are acknowledged [6]. A less careful version of this
restriction allows the fast retransmit when DUPACKs arrive for the foremost
outstanding packet, while a more careful version does not. As we can see in
Figure 1, a spurious timeout presents exactly the situation when DUPACKs
arrive for the foremost outstanding segment. Using the more careful version
of the restriction [6, Section 5] would not allow a spurious fast retransmit in
the case of spurious timeouts limiting the penalty to go-back-N
retransmissions. However, there is still a possibility of a second spurious
RTO if the retransmission timer is not reset upon DUPACKs. Another
scenario unrelated to spurious timeouts where the more careful version
avoids unnecessary retransmissions is given in [8, p. 69]. This empirical
evidence suggests that the careful version should be implemented in all
TCPs.

D-SACK. The Selective Acknowledgment option (SACK) [18] in TCP
allows conveying the information to the sender on exactly which packets are
missing at the receiver. The D-SACK extension of SACK (duplicate-SACK)
allows reporting the sequence number of a packet that triggered a DUPACK
[7]. The sender can use this information to determine whether the segment
has been unnecessary retransmitted and avoid further unnecessary
retransmissions. In our case a spurious fast retransmit and New Reno
retransmits can be avoided. However, D-SACK does not help to prevent the
go-back-N behavior after a spurious timeout, as the retransmission
ambiguity problem is not resolved.

Eifel. The Eifel algorithm [15] is using a timestamp option to distinguish
between original data and retransmissions. It resolves the retransmission
ambiguity problem and entirely avoids unnecessary retransmissions after a
spurious timeout. When an ACK after the first retransmitted segment is
received, its timestamp is compared to the timestamp of the first
retransmission. If the ACK is older than the retransmission, the ACK was
generated by the original transmission and the timeout was spurious. The
Eifel algorithm allows to detect and abort spurious retransmissions, thus
preventing the go-back-N behavior and spurious fast retransmits.

16 Andrei Gurtov

Packet lifetime. Assigning appropriate lifetime to packets inside a W-
WAN network and discarding expired packets makes TCP to apply loss
recovery mechanisms in an intended way, which is more efficient than
recovery from a spurious timeout. For example, GPRS specifications support
packet lifetime in the network components [1]. A long delay exceeding RTO
of TCP would also exceed the lifetime of packets in the network. The TCP
timeout ceases to be spurious, as it leads to retransmission of discarded
segments. No DUPACKs are generated in this case avoiding problems seen
in TCP traces.

7. CONCLUSION

Long sudden delays in data transfers are not typical in wireline networks and
their effect on the TCP protocol has not been extensively studied. Such
delays are not uncommon in W-WANs due to link-level retransmissions,
handovers and temporal resource preemption by high-priority packet traffic
or voice calls. As an example, we give preliminary measurements of the cell
reselection delay in the GPRS network. We have shown that the New Reno
algorithm increases the amount of retransmissions after the spurious timeout
roughly by half and that an aggressive retransmission timer may expire
during the fast recovery generating a chain of spurious retransmissions. We
have tested four widespread TCP implementations in their reaction to a long
delay. All four implementations, FreeBSD 4.1, Windows 98, Linux 2.2 and
Linux 2.4 have exhibited go-back-N retransmissions while the following
behavior has been different. FreeBSD and Windows are recovering
especially poorly, partly due to implementation problems that we also have
listed. We have to highlight the importance of the Eifel algorithm as the only
known solution that prevents go-back-N retransmissions thus nearly
altogether eliminating the penalty of a spurious TCP timeout. We
recommend that all TCPs implement the careful version of New Reno, as it
prevents many of the discussed problems. Resetting the retransmission timer
upon a reception of DUPACK would avoid spurious timeouts during fast
recovery, but we have to study the effect of this modification in more detail.
Future work will include examination of delay sources in the GPRS and
UMTS wireless networks, as well as designing new algorithms to improve
the response of TCP to long sudden delays.

Acknowledgments

Many thanks to Reiner Ludwig, Sally Floyd, Mark Allman, Alexey
Kuznecov, Rod Ragland, Venkat Venkatsubra, Pasi Sarolahti for their
comments and suggestions on the material presented in this paper.

Effect of Delays on TCP Performance 17

Experiment with the live GPRS network could not be done without Olli
Aalto and Heimo Laamanen. I am grateful to Timo Alanko for checking the
paper and invaluable advice on research methodology.

References

[1] BSS GPRS protocol (BSSGP). 3GPP TS 08.18 V8.4.0, October 2000.
[2] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. IETF RFC 2581, April

1999.
[3] R. Braden. Requirements for internet hosts-- communication layers. IETF RFC 1122,

October 1989.
[4] G. Brasche and B. Walke. Concepts, services and protocols of the new GSM phase 2+

general packet radio service. IEEE Communications Magazine, pages 94--104, August
1997.

[5] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno, and SACK TCP.
ACM Computer Communication Review, July 1996.

[6] S. Floyd and T. Henderson. The NewReno modification to TCP's fast recovery algorithm.
IETF RFC 2582, April 1999.

[7] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An extension to the selective
acknowledgment (SACK) option for TCP. IETF RFC 2883, July 2000.

[8] A. Gurtov. TCP performance in presence of congestion and corruption losses. Master's
thesis, Department of Computer Science, University of Helsinki, December 2000.
Available at: http://www.cs.Helsinki.FI/group/iwtcp/papers/.

[9] ISI at University of South California. Network simulator 2. Available at:
http://www.isi.edu/nsnam/ns/.

[10] V. Jacobson. Congestion avoidance and control. In Proceedings of ACM SIGCOMM '88,
pages 314--329, August 1988.

[11] V. Jacobson, C. Leres, and S. McCanne. tcpdump. Available at http://ee.lbl.gov/, June
1997.

[12] M. Kojo, A. Gurtov, J. Mannner, P. Sarolahti, T. Alanko, and K. Raatikainen. Seawind: a
wireless network emulator. Submitted to MMB 2001.

[13] J. Korhonen, O. Aalto, A. Gurtov, and H. Laamanen. Measured performance of GSM
HSCSD and GPRS. In Proceedings of the IEEE International Conference on
Communications, 2001. To appear.

[14] R. Ludwig. Eliminating Inefficient Cross-Layer Interactions in Wireless Networking.
PhD thesis, Aachen University of Technology, April 2000.

[15] R. Ludwig and R. H. Katz. The Eifel algorithm: Making TCP robust against spurious
retransmissions. ACM Computer Communication Review, 30(1), January 2000. Available
at: http://www.acm.org/sigcomm/ccr/archive/2000/jan00/ccr-200001-ludwig.html.

[16] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Joseph. Multi-layer tracing of TCP
over a reliable wireless link. In Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computing Systems (SIGMETRICS-99),
volume 27,1 of SIGMETRICS Performance Evaluation Review, pages 144--154, New
York, May 1—4 1999. ACM Press.

[17] R. Ludwig and K. Sklower. The Eifel retransmission timer. ACM Computer
Communication Review, 30(3), July 2000.

[18] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledgement
options. IETF RFC 2018, October 1996. Standards Track.

18 Andrei Gurtov

[19] Microsoft. TCP/IP may retransmit packets prematurely. Available at:

http://support.microsoft.com/support/kb/articles/Q236/9/26.ASP.
[20] M. Mouly and M. Pautet. The GSM System for Mobile Communications. Europe Media

Duplication S.A., 1992.
[21] V. Paxson. Automated packet trace analysis of TCP implementations. In Proceedings of

the ACM SIGCOMM Conference: Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM-97), volume 27 of Computer
Communication Review, pages 167--180, Cannes, France, Sept. 14--18 1997. ACM Press.

[22] V. Paxson and M. Allman. Computing TCP's retransmission timer. IETF RFC 2988,
November 2000. Standards Track.

[23] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heavens, K. Lahey, J.
Semke, and B. Volz. Known TCP implementation problems. IETF RFC 2988, Mar. 1999.

[24] J. Postel. Transmission control protocol. IETF RFC 793, 1981. Standard.
[25] M. Rahnema. Overview of the GSM system and protocol architecture. IEEE

Communications Magazine, 31(4):92--100, April 1993.
[26] W. Stevens. TCP slow start, congestion avoidance, fast retransmit, and fast recovery

algorithms. IETF RFC 2001, Jan. 1997.
[27] R. H. Stine. FYI on a network management tool catalog: Tools for monitoring and

debugging TCP/IP internets and interconnected devices. IETF RFC 1147, Apr. 1990.
[28] A. S. Tanenbaum. Computer Networks. Prentice-Hall International, 1996.
[29] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic patterns and

characteristics. IEEE Network, 11(6):10--23, November/December 1997.

