
Andrei Gurtov (gurtov@icsi.berkeley.edu)
University of Helsinki/ICSI

Eliminating Aborted Data Delivery Eliminating Aborted Data Delivery
Over Cellular LinksOver Cellular Links

2. The Idea
� TCP receiver generates RST packets after

receiving and discarding segments from
aborted connections

� The last-hop router intercepts RST packets
and discards buffered segments from aborted
connections

� Works for any TCP application such as HTTP,
FTP, peer-to-peer

� A similar implementation in the mobile client
for uplink TCP transfers

� Can be adopted for other connection-oriented
transport protocols such as SCTP and DCCP

1. Motivation
� Cellular wireless links are still slow and expensive
� Packets from aborted transport connections are delivered

unnecessarily over the wireless link
� Analysis of backbone Internet traces show that 15-30% of

all TCP connections are aborted
� The average length of completed and aborted connections

was 12 packets; resets are not merely connection refusals
� Due to higher response times over cellular links, users get

impatient easily; up to 50 % of received data is aborted
� WWW is the dominant generator of aborted data

� Clicking “Stop”, “Reload”, “Back”, or another web link

� Measurements in Linux using Netscape over GPRS (30 kbps)
� An abort generates 5-30 RST packets distributed over 1-4
TCP connections
� 1-10 sec is wasted before a new web page starts loading

� With Fast Reset, 1-2 RST packets are sufficient
� Response time can be reduced by 20 %
� Battery of the mobile terminal is preserved
� Money savings (billing is according to data volume)

4. Evaluation
� TCP resets are not adequately represented in
Internet research

� Most importantly, HTTP traffic generators should
be extended to include aborts

� One approach is to select an appropriate
distribution of thinking time, that can also have
negative values

� More data at http://www.cs.helsinki.fi/~gurtov

5. Future Work

3. Fast Reset

last-hop router
(all changes here)

mobile client Internet server

TCP ACKs and RSTs

TCP data segments 2

1

3

4

5

1. Application at the mobile client opens a TCP connection and requests a web object
2. Server receives the request and starts transmitting data to client
3. Data packets are buffered in the access router and transmitted to the client
4. The user decides to abort the download, for example by pressing a 'Reload' button.
 TCP receiver sends RST packets to the server
5. The last-hop router notices a RST and discards buffered packets in the downlink
direction that belong to the aborted connection. It then forwards RST toward the server.
6. Server receives RST and stops transmitting data on the aborted connection.

6

Effect of Link Buffer Size
� Overhead of aborted data depends on
the link buffer size

� Active Queue Management can keep
the average queue size low

� Cellular links require a buffer about
2*bandwidth*delay for efficient ARQ

Another Layering Violation?

� Yes, the router has to examine
transport-layer headers

� But Fast Reset is as useful an
optimization as header compression

� No layering violation if the layer-3 is
connection-oriented as in ISO CONP

0
5

10
15
20
25
30
35
40
45
50

1217 1222 1227 1232 1237
Time, s

Se
qu

en
ce

 N
um

be
r,

KB

seg
ack
rst

Downlink TCP transfer over
a GPRS link is aborted
 (receiver trace)

Fast Reset
stops the flow here

Lost RST packets

� What if a RST packet gets lost?

� The sender would retransmit a data
segment after a retransmit timeout

� The Fast Reset algorithm does not keep state
of aborted connections

� A newly arriving data packet is forwarded to
the receiver and generates another RST

� No harm to new TCP connections if the
client reuses ports from aborted connections

� In summary: Fast Reset is robust to packet
losses and sender’s misbehavior

