
 1

Lifetime Packet Discard for Efficient
Real-Time Transport over Cellular Links

Abstract
Mobile cellular users often experience significant
delay jitter that undermines quality of real-time
applications. Delay jitter can cause unnecessary
delivery of stale packets with passed playout deadline
and duplicate packets retransmitted by the end host
after experiencing a timeout. With Lifetime Packet
Discard (LPD) a flow adaptive link can tailor the
tradeoff between the maximum delay jitter and
reliability if quality of service requirements of a flow
are known. We propose using the IP timestamp option
to communicate the flow requirements to the link
layer. The packet lifetime is set to the minimum of the
data lifetime determined by the application and the
retransmission timeout value determined by the
transport protocol if selective reliability is supported.
For congestion-sensitive flows, the link transmits only
headers of “discarded” packets to prevent unnecessary
triggering of end-to-end congestion control. Our
simulations show that LPD is efficient in reducing
stale data delivery and increases the number of
packets delivered in time for real-time flows. For
semi-reliable flows throughput and goodput are
improved because duplicate packet delivery is
prevented.

1. Introduction
By definition, the usefulness of real-time data is
limited by a certain time limit that we call lifetime.
For example, for a video streaming application data
lifetime is determined by the size of the play out
buffer at the receiver. For a telemetric application, old
measurement samples become obsolete when a new
one is recorded. If delivery across the network takes
longer than the data lifetime, data become stale and is
typically discarded by the receiver.

Slow access links, especially in cellular wireless
networks, often have significant delay jitter. For
example, a measurement study of dial-up connections

reports occasional delay jitter of several seconds due
to link-layer error recovery by a modem [19].
Frequent delay spikes of 3 to 15 s were observed in a
wide-area cellular network due to handovers [11].

Consider Figure 1 showing delay jitter of UDP
packets transmitted at 30 kbps over a cellular link.
The trace is about an hour long, with 20 min of
walking, 20 min in stationary conditions and 20 min
in a moving train. Packets of 500 bytes are transmitted
at a constant bit rate downstream on a GPRS link [3].
Delay spikes of several seconds are clearly visible in
mobile conditions. About 8% of all packets were lost.
To confirm that delays were not purely due to
congestion, we repeated measurements using a
congestion-sensitive TFRC flow [8] and still observed
significant delay jitter.

Many real-time applications account for delay
jitter in the network by buffering data at the receiver.
However, extensive buffering increases a start-up
delay and harms interactivity for rewind operations.
For certain types of media such as live streaming,
conversational audio or stock quote updates,
significant delaying of the playout may not be an
option.

In summary, we believe that eventual disruptions
to delivery of real-time data in a wireless environment
are inevitable. The goal of our work is to make sure
that such disruptions bring minimum dissatisfaction to
the user.

The approach that we explore in this paper is to
assign a delivery lifetime to each packet at the
sending host. This gives the link layer the necessary
information on how persistent it should be on
transmitting each packet. We show that Lifetime
Packet Discard improves performance by nearly
eliminating delivery of stale and duplicate data over
an expensive cellular link. Although the idea of LPD
is not entirely new [37][34], we are not aware of its
systematic evaluation. We provide extensive
simulations of LPD for CBR, TCP and TFRC flows.

 2

Furthermore, a solution to the problem of spurious
timeouts in transport protocols is proposed using
LPD. We show that LPD can unnecessarily trigger
end-to-end congestion control and suggest a solution.

The rest of the paper is organized as follows. In
Section 2, our view of the architecture for delivery of
real-time data over cellular links is presented. Section
3 motivates this paper by describing problems
solvable by our approach. Section 4 shows how LPD
avoids delivery of stale and duplicate data in practice.
In Section 5 we evaluate the effect of LPD on
performance of various types of flows. Section 6
presents ideas for future work. Section 7 concludes
the paper.

2. The Architecture for Real-Time Transport
Generally speaking, limited bandwidth and battery
power are two primary concerns for wireless users.
Therefore, an efficient architecture would do best to
satisfy QoS requirements of all flows at the minimum
cost of bandwidth and battery power.

2.1 Network Architecture
We assume the network architecture displayed in
Figure 2 that resembles the architecture of a GPRS
cellular network [3]. The Radio Link Control (RLC)
protocol provides recovery of error losses on the radio
link between the mobile station (MS) and the Base
Station Controller (BSC). The Logical Link Control
(LLC) protocol spans from the mobile station to the
last-hop router and retransmits lost data primary
during handovers.

The last-hop router implements LPD by dropping
packets with remaining lifetime less than it would

take to deliver the packet over the cellular link. The
packet lifetime can be used for several other purposes
in the access router such as the earliest deadline
scheduling [17]. In this paper, we only consider using
packet lifetime for discarding stale and duplicate data.

When the real-time server is located in the
Internet, clock synchronization between the access
router and the server would be typically required. The
network time protocol [27] (NTP) can provide
sufficient accuracy for our goals. When the real-time
server is located close to the access network or the
network delay to the server is static and known, clock
synchronization is not necessary. In our experience, it
is a common practice for network operators to locate
servers as close as possible to their intended users.

In this paper we focus on downlink flows from
the real-time server to the client. In practice, the client
and the mobile station are often combined in a single
device; thus, removing stale data from the bottleneck
queue is straightforward for uplink flows. For
downlink flows, a real-time server has no direct
control over data buffered in access router; therefore,
a mechanism to inform the router of packet lifetime is
needed.

Real-time
Server

Client Last-hop
Router

Internet

Mobile
Station

NTP
Server

RLC
LLC

Figure 2. Network architecture.

0

1

2

3

4

5

6

7

8

9

10

0 5000 10000 15000 20000 25000 30000
Packet number

Ti
m

e
in

 fl
ig

ht
, s

Walking Stationary Train

(a) One-way delay of data packets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

Time in flight, s

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

(b) Cumulative distribution of one-way delay

Figure 1. Delay jitter in a streaming test in a live GPRS network.

 3

Unfortunately, the time-to-live (TTL) field in
IPv4 and IPv6 is too short to provide sufficient
accuracy for packet lifetime. The IP timestamp option
[36][30] provides exactly what we need to inform the
last-hop router about the packet lifetime1. The IPv4
standard allows using a custom format for this
option2. We exploit this opportunity to set the packet
lifetime in milliseconds in IP datagrams. Using the IP
option does not cause a layering violation, in contrast
to using transport-layer timestamps. As routers
operate on the networking layer, they are not
supposed to examine other packet headers than the IP
header [5]. A drawback of the IP timestamp option is
that it costs 8 bytes of overhead and may load a router
due to slow-path processing.

2.2 End-to-end Real-Time Transport
We believe that future transport protocols for real-
time data will support selective reliability and TCP-
friendly congestion control.

It is widely recognized that real-time data can
have tight delivery constrains; recovery of lost
packets through retransmissions is not always
feasible. However, it was shown that selective
reliability is highly beneficial for certain types of data
such as a compressed MPEG-4 video stream [7]. By
recovering important packets within the playout
delay, perceived playout quality of the application can
be significantly enhanced. SR-RTP is a backward-
compatible RTP extension that supports selective
reliability [7]. PR-SCTP is another example of a
partially reliable transport protocol [35].

Congestion control is a general requirement to all
Internet flows in the future [9]. However, the
oscillatory nature of TCP AIMD congestion control
may not be desirable by real-time applications. The
notion of TCP-friendliness permits smoother
transmission rate as long as on the average the rate of
the flow is same as of a TCP flow in similar
conditions. TFRC is one of the proposed slowly
responsive equation-based congestion control
algorithms [8]. DCCP is a new unreliable transport

1 The IPv4 option contains a 32-bit timestamp. By default, the

time is in milliseconds since midnight UT. However, any
custom time format can be used if the high order bit of the
timestamp is set.

2 The timestamp option for IPv6 has not yet been defined. We are
working on implementing it.

protocol that allows applications to use TFRC
congestion control [16].

SR-RTP

DCCP

IP

Application

Packet lifetime

Data lifetime

Figure 3. End-to-end transport for real-time flows.

Figure 3 shows how SR-RTP and DCCP fit into
our architecture. The application passes a data object
to SR-RTP for transmission indicating a maximum
tolerable delivery delay (data lifetime). The SR-RTP
protocol verifies if data can be delivered with the
lifetime. If retransmissions are possible within the
data lifetime, SR-RTP sets the packet lifetime to the
value of the retransmission timeout. Otherwise, the
data lifetime is copied to packet lifetime. The DCCP
protocol provides TCP friendly rate control to SR-
RTP.

3. Motivation of the Approach
In this section we argue why controlling packet
lifetime in the network is the right approach from an
architectural point of view. A practical argument is
that since many wireless networks employ charging
based on amount of transferred data, users become
particularly concerned about the usefulness of data
they receive.

3.1 Flow Adaptive Link Layer
It is well known that wireless links can potentially
introduce high loss rates on data traffic. To effectively
carry IP traffic most modern wireless networks deploy
retransmissions at the link layer. The link persistency
is defined as how long in time the link protocol
attempts to recover a corrupted packet before
discarding it and proceeding with transmission of
other packets. Previous work has shown that the link
layer operating on smaller data blocks than IP MTU is
more efficient than relying on purely end-to-end error
recovery [23].

 4

A natural problem for a link carrying a mixture of
reliable and real-time traffic is how persistent it
should be on a given packet. It was shown that high
persistency is needed for reliable transport protocols
such as TCP. In opposite, real-time flows favor timely
delivery over reliability and require low persistency.

Existing link layers do not discriminate among
data packets and use the same persistency for reliable
and real-time data thus giving a non-optimal tradeoff.
A concept of a flow-adaptive link layer was proposed
to tailor link behavior to demands of different
application flows [22]. The proposed solution is a
simple heuristic of being highly persistent on TCP
packets and low persistent on UDP packets. It also
recognized that this crude discrimination is not
sufficient as there are UDP applications (e.g. NFS)
that assume nearly reliable delivery from the network.
Furthermore, the choice of persistency is arbitrary and
may not correspond to actual requirements of
applications.

With our approach, each packet has the exact
information about its maximum tolerable delay. This
allows a flow-adaptive link to optimally control delay
vs. loss probability due to wireless errors in the best
suitable way to the application.

3.2 Competing Error Recovery
Another problem related with uncontrolled link layer
retransmissions is the competition between link layer
and end-to-end error recovery. Because link error
recovery is seen as delay jitter by the end hosts, the
retransmission timer of a transport protocol may
expire prematurely triggering unnecessary
retransmissions and congestion control.

The Eifel algorithm [20] was proposed as an end-
to-end solution for detecting [25] and recovering of
spurious TCP timeouts [26][13]. The Eifel algorithm
uses the TCP timestamp option to determine if
arriving ACKs after a timeout refer to original or to
retransmitted segments. F-RTO is an alternative end-
to-end proposal for the problem of spurious timeouts
in TCP [33].

There are several advantages of our approach vs.
end-to-end solutions for real-time protocols:

• End-to-end protocols rely on delivery of old
packets in the network after a delay. We
allow the end host to retransmit a fresh
version of the data after a delay.

• End-to-end solutions proposed so far are for
TCP, which is a window-based protocol

acknowledging every or at least every other
packet. Our solution suits well for rate-based
real-time protocols having infrequent ACKs.
End-to-end proposals would be inefficient for
such a protocol because their operation is
affected by waiting for ACKs.

• Ideally, our approach allows to entirely avoid
delivery of duplicate packets. End-to-end
solutions often require several unnecessary
retransmissions to detect that a timeout was
spurious.

The strong side of end-to-end solutions is that
false congestion control actions can be easily undone
at the sender. However, our approach can be
complemented by a mechanism to undo congestion
control at the end hosts.

3.3 Application Empowerment
A popular paper on the next generation of protocols
[4] argues that the application should be given control
over recovery from lost and delayed packets. Indeed,
the application may not need recovery of that
particular data object or can re-generate a fresh
version of it for retransmission. Our approach
supports this principle by empowering the application
to control for how long the network should try to
deliver the data.

Another tradeoff that should be under control of
the application is a maximum transmission burst size
vs. a maximum queuing delay. The size of the link
buffer sets this tradeoff in the network. Having a
small buffer reduces the queuing delay and possibly
the amount of stale data delivered to the receiver.
However, a small link buffer can also cause
undesirably high packet loss rates for a bursty real-
time application with a variable bit rate data encoding.
With our approach, the network buffer can be
sufficiently large to accommodate bursty sources
because the application can explicitly limit the
maximum queuing delay.

4. Lifetime Packet Discard
4.1 Preventing Stale Packet Delivery
In this section, we show how LPD can improve
performance of CBR flows. A delay spike has two
negative effects on such flows:

• Packets buffered in the network become stale
and are unnecessarily transmitted after the
delay spike ends. This wastes resources.

 5

• Transmission of stale data delays delivery of
fresh arriving data.

Figure 4 (a) shows a receiver trace from ns2 of a
CBR flow when a 10-second delay spike is
introduced. In this example packet lifetime is set to 5
s, which is the interval at which the application
regenerates new data objects. The rcv_data shows
packet sequence numbers at the receiver, and the
rcv_ttl shows the remaining lifetime of arriving
packets. Negative values mean that the packet is stale
and should be discarded. When the delay starts at 16th
sec, no messages are delivered until the delay ends,
but newly arriving messages get queued in the access
router. When the delay ends at 26th sec, for the next
15 sec the link delivers only expired messages. The
backlog of stale packets prevents fresh updates to be
delivered to the receiver.

 Figure 4 (b) shows a similar experiment when the
router implements LPD. Immediately when the delay
ends, fresh updates are delivered to the receiver.
Furthermore, no stale packets are sent over the
cellular link, which saves resources.

4.2 Preventing Duplicate Packet Delivery
Transports protocols such as TCP, SR-RTP [7], HPF
[18] and PR-SCTP [35] provide some degree of
reliability by retransmitting lost packets. A packet is
considered lost when a retransmission timer expires at
the sender. When the delay in the network varies, the
timer can expire prematurely. As a result, two or more
duplicate packets can be transmitted over the access
link wasting resources. Below we describe this
situation for TCP in detail.

When a sudden delay occurs in the network that
exceeds the current value of the TCP retransmission
timer, the oldest outstanding segment is retransmitted.
Since data segments are delayed but not lost, the
retransmission is unnecessary and the timeout is
spurious. A spurious TCP timeout is shown in Figure
5 (a). Segment numbers in the receiver trace are offset
to prevent an overlap with segment numbers of the
sender. The delay in generated between 10th and 20th
sec in this test. The first retransmission that happens
at the 17th sec is also delayed. The sender interprets
the ACK generated by the receiver in response to the
delayed segment as related to the retransmission, not
the original segment. Because of the retransmission
ambiguity problem, an ACK bears no information on
which segment, original or retransmitted, has
generated it. Encouraged by arriving ACKs, TCP
retransmits all outstanding segments using the slow
start algorithm. Such a retransmission policy is
refereed to as go-back-N since the sender forgets
about all segments it has earlier transmitted. At 28th
sec retransmitted segments arrive to the receiver and
generate duplicate ACKs as the original segments
have already been delivered.

In summary, spurious timeouts in a semi-reliable
transport protocol cause two problems:

• Unnecessary end-to-end retransmissions
result into duplicate packets delivery over a
cellular link.

• Congestion control is disturbed. In the short
run, retransmissions can overload the network
if transmitted using the slow start. In the
longer run the network can be underutilized.

-10

0

10

20

30

40

50

5 15 25 35 45

Time of Day (s)

Li
fe

tim
e

(s
) /

 S
eq

ue
nc

e
N

um
be

r

Rcv_Data

Rcv_Ttl

delay

(a) Without LPD

-10

0

10

20

30

40

50

5 15 25 35 45

Time of Day (s)

Li
fe

tim
e

(s
) /

 S
eq

ue
nc

e
N

um
be

r

Rcv_Data
Rcv_Ttldelay

(b) With LPD
Figure 4. Disruption introduced to a CBR flow by a delay spike.

 6

Figure 5 (b) shows the same TCP flow with LPD.
Here, packet lifetime is set to the retransmission
timeout value at the TCP sender. When the sender
times out and retransmits the first segment at 17th sec,
the access router has dropped all old outstanding
segments. When the delay ends, the sender
immediately gets an ACK for the fresh retransmitted
segment and continues retransmitting segments using
the go-back-N. Since all originally transmitted
segments are dropped, no duplicate packets are
delivered to the receiver.

LPD alone does not solve the second problem
presented by spurious timeouts. In this experiment the
problem is not significant because the bandwidth-
delay product of the path is small. However, reduction
of the slow start threshold after a spurious timeout can
harm performance on paths with a larger bandwidth-
delay product. In Section 4.3 we discuss how this
problem can be alleviated.

Another possible complication is that setting
packet lifetime correctly can be difficult for transport
protocols for which the retransmit timer is updated
after a segment had been sent. During bulk data
transmission in TCP, the retransmit timer is offset by
one RTT because the timer is restarted upon a new
ACK [24][29]. Furthermore, the retransmit timeout
value can be updated more frequently than once per
RTT. For optimal performance (to avoid occasional
dropping of valid packets and delivery of duplicates)
the transport protocol should not collect new RTT
samples nor restart the timer until the oldest
outstanding segment is acknowledged. However, if
RTT suddenly increases, the timer has to be updated
to avoid plentiful spurious timeouts.

4.3 Interactions with End-to-end Congestion
Control
End-to-end congestion control in the Internet is based
on an assumption that almost all packet losses are due
to congestion [15]. Hence, discarding expired packets
in the network incorrectly triggers reduction of the
transmission rate at the sender. In this section we
examine how an end-to-end congestion control reacts
to packets drops by LPD.

Figure 6 (a) shows a sender trace of a TFRC flow
when a 10-second delay spike is introduced. We
assume application data lifetime of 5 s in this
example. Thus, at the sender lifetime in packets is set
to 5 s. The sender gets no feedback during the delay
and gradually slows down to eventually transmit one
packet per RTT. When the delay spike ends, a burst of
ACKs that were delayed comes to the sender. It takes
about 15 sec after the delay ends for the sender to get
to the normal transmission rate. Because the receiving
application discards stale data in this case, the
transport protocol does not see any data loss in the
network. Since the receiver reports no loss events, the
sender does not further invoke congestion control.

Figure 6 (b) shows the same flow when the router
drops stale packets. Until the delay ends, the sender’s
behavior is identical to Figure 6 (a), as expected. But
later feedback packets report packet losses and the
sender keeps the transmission rate reduced. Still, the
sender is able to reach a higher sequence number than
without LPD because unnecessary transmission of
stale packets is eliminated. However, in tests with
higher link bandwidth we observed that unnecessary
triggering of congestion control harms performance.

S
eg

m
en

t n
um

be
r

0
10
20
30
40
50
60
70
80

0 5 10 15 20 25 30 35 40 45

Time of Day (s)

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

delay

(a) Without LPD

Se
gm

en
t n

um
be

r

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40 45
Time of Day (s)

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

delay

(b) With LPD

Figure 5. Preventing duplicate packet delivery for a TCP flow after a delay spike.

 7

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50
Time of Day (s)

Se
qu

en
ce

 N
um

be
r

Snd_Data
Snd_Ackdelay

Figure 7. Interference of LPD with end-to-end congestion

control is resolved by transmitting headers of stale packets.

Figure 7 shows how the undesired triggering of
end-to-end congestion control can be avoided. We call
our solution headercasting. The idea of headercasting
is to transmit only IP and transport headers of
‘discarded’ packets3. The receiver knows upon getting
a header that there was no packet loss due to
congestion and there is no reason to trigger
congestion control at the sender. A flow uses a bit in
the IP timestamp option to indicate if it is interested in
headercasting or its packets may be simply dropped.

5. Performance Evaluation
We run an extensive set of ns2 simulations to explore
effects of LPD on CBR, TCP and TFRC flows. Figure
8 shows the topology we have used; it resembles the
setup of a GPRS user. We used the state-of-the-art
TCP with Sack, delayed acknowledgements, limited
transmit, timestamps, MSS of 1000 bytes and
unlimited receiver window. Delay jitter was
introduced by inserting a 7 s delay spike every 30 s

3 This may require re-computing the packet checksum and may

not work in presence of IPsec.

according to real-world traces in Figure 1. All queues
are Drop-Tail; existing active queue management
algorithms are not easily applicable when the level of
statistical multiplexing is low [37]. LPD is executed in
R1. Our simulation scripts are publicly available.

3 Mbps

50 ms
MS R2 R1

S2

S1

3Mbps
10 ms

30 Kbps
150ms 3 Mbps50 ms

Sources
Sink

TCP

TFRC/CBR

Figure 8. Simulation setup in ns2.

5.1 CBR Flows
In this section we evaluate performance of a CBR
flow in presence of delay jitter in the network. We are
interested in two main performance indicators. A
fraction of valid packets (received within their
lifetime) describes the playout quality of the
application. A fraction of packets delivered stale
describes how efficient is the use of the cellular link
bandwidth and battery power of the mobile terminal.

Figure 9 shows performance of a 27 kbps CBR
flow with different values of data lifetime. In this test,
packet lifetime is determined by the application
according to the playback buffer available. With a
Drop-Tail buffer fewer packets are delivered valid
when data lifetime becomes tighter. Furthermore, the
number of valid packets quickly decreases with
increasing of the buffer size in the bottleneck buffer.
The number of stale packets increases with a smaller
data lifetime or a larger buffer size. Eventually,
almost all packets are delivered stale.

When LPD is enabled, performance for different
data lifetimes and buffer sizes is stable and nearly
optimal. About 90% of packets are delivered valid. At

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50
Time of Day (s)

Se
qu

en
ce

 N
um

be
r

Snd_Data
Snd_Ackdelay

(a) Without LPD

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50
Time of Day (s)

Se
qu

en
ce

 N
um

be
r

Snd_Data
Snd_Ackdelay

(b) With LPD

Figure 6. Undesired interactions with end-to-end congestion control in a TFRC flow after a delay spike.

 8

the same time, no stale packets are sent over the
cellular link.

5.2 TCP Flows
In this section we examine how LPD can prevent
delivery of duplicate segments in presence of spurious
TCP timeouts. We compare performance of TCP over
LPD with the standard TCP and TCP with the Eifel
algorithm. The download time reflects perceived user
performance of the application. The number of
duplicate segments received shows how resource-
efficient a solution is. The lifetime in packets is set to
the retransmission timeout value of the TCP sender.

In Figure 10 the download time of TCP over
Drop-Tail is 10-30% higher than over LPD. TCP with
the Eifel algorithm has only slightly higher download
time than TCP over LPD. However, when the
congestion control is not undone after a spurious
timeout for the Eifel algorithm (“Eifel-CC”), then the
download time is variable and up to 100% higher than

of TCP over LPD.
The number of duplicate segments for standard

TCP grows quickly with a larger buffer size. Up to
15% of all delivered segments are duplicates. Both the
Eifel algorithm and TCP over LPD perform equally
well in reducing the number of duplicate segments
delivered.

We want to note that our goal was not to
significantly beat end-to-end solutions such as Eifel
for TCP. We believe that Eifel works fine for fully
reliable protocols. Instead, the main benefits of LPD
are for real-time flows as described in Section 3.1.
The reason why we used TCP is because semi-reliable
protocols are not yet well supported in ns2.

5.3 TFRC and TCP Flows
In this section we compare concurrent TCP and TFRC
flows with and without LPD. For TCP flows, we use
the download time and the number of duplicate
segments received as performance metrics. The packet

Figure 9. Effect of LPD on performance of a single CBR flow with different packet lifetimes.

Figure 10. Comparison of TCP with LPD, TCP with the Eifel algorithm and standard TCP. Packet lifetime equals TCP RTO.

 9

lifetime of TCP segments is set to the TCP
retransmission timeout value. For TFRC flows, we
look at the total size of stale packets received to
reflect the behavior of headercasting. Packet lifetime
of TFRC packets is set to 3, 5, 8, or 10 s to
correspond to different application data lifetime.

In Figure 11 two top graphs show TFRC
performance and two bottom graphs show TCP
performance. TFRC flows over Drop-Tail have less
valid packets than over LPD for a given data lifetime.
The difference is growing with an increase in the
router buffer size. Similarly, the number of bytes
delivered stale is high for Drop-Tail. This number is
small for LPD indicating that headercasting is a
feasible way to avoid unnecessary triggering of end-
to-end congestion control.

For TCP, the download time over LPD is similar
to Drop-Tail, but decreases when the lifetime of the
TFRC flow is lower. The number of unnecessary
retransmissions is low and stable for all TCP flows
over LPD, but grows quickly over Drop-Tail.

Figure 12 shows in detail why performance with
LPD is better. Unnecessary go-back-N
retransmissions are prevented for TCP flows when
LPD is enabled. Stale packets of the TFRC flow are
transmitted only as headers when LPD is enabled,
which saves bandwidth and prevents problems with
end-to-end congestion control. Finally, throughputs of
TCP and TFRC flows are closer to each other, which
is a crude indicator that LPD improves fairness
between flows.

6. Considerations for Future Work
6.1 Deployment Concerns
As for many new proposals, LPD raises some
deployment concerns. The sender end host has to be
modified to set the packet lifetime. The last-hop
router needs a modification to check for expired
packets. However, real-time transport protocols
supporting TCP-friendly congestion control and
selective reliably are still in the development stage.
Therefore, it is not a significant burden to
complement them now with packet lifetime

Figure 11. Effect of LPD on performance on concurrent TCP and TFRC flows with different packet lifetimes.

 10

functionality. Furthermore, in our experience software
in infrastructure nodes in cellular networks is updated
frequently which facilitates deploying LPD.

We recognize that it is not feasible to require that
all nodes and routers be upgraded in order to deploy a
new solution. Fortunately, LPD can be incrementally
deployed starting from a limited number of real-time
servers.

The sending end host can discover if routers in the
path to destination support, or at least tolerate,
carrying packet lifetime as an IP option. The IP
timestamp option is a part of the standard [30] and
should be supported by all Internet routers. However,
some broken routers or firewalls may discard IP
datagrams with IP options. To avoid unnecessary
overhead if LPD is not supported and prevent
dropping of packets if routers do not tolerate an IP
option, the sender host should first probe the
destination by sending a train of knowingly stale and
valid packets. Based on the transport layer
acknowledgements or ICMP ‘packet discarded’
notifications the sender host can decide whether to
send the IP timestamp option with packet lifetime for
a given destination.

6.2 Congestion Control with Packet Lifetime
Capability of fine-grain control of packet lifetime in
the network brings exciting opportunities for new
developments in end-to-end congestion control.
Actually, ideas for using packet lifetime for
congestion control appeared in the early days of the
Internet [28]. They were seemingly forgotten after a
widespread deployment of loss-based congestion
control [15].

A possible approach is to set the packet lifetime
close to the minimum observed RTT of the path. If
queuing delay increases in routers due to congestion
then low-priority traffic gets expired and dropped
preserving the capacity for best effort traffic. Such
low-priority traffic is useful for ‘scavenger’
applications that utilize leftover bandwidth without
slowing down other traffic.

Another possible application of packet lifetime is
congestion control for ACK packets of a transport
protocol. Currently, TCP suffers on asymmetric paths
due to fixed rate of ACKs to the data segments [2].
Including packet lifetime in ACKs can prevent heavy
congestion on the thin backward link.

6.3 Discard of Application Data Units
The concept of application-level framing argues that
data objects should be delivered for an application
over the network as application data units (ADU) [4].
One ADU corresponds to the data entity convenient
for the application, such as a video frame. The ADU
size can exceed the IP MTU of the network. Large
ADU are transmitted as several IP datagrams, or as
fragments of a single datagram.

A congested router in today’s Internet drops IP
datagrams arbitrary between ADUs. When the
application has tight real-time constrains, there is no
possibility to recover lost ADU fragments. Therefore,
the receiver host might drop many large ADUs with
only a few missing fragments. Consequently, the
playout quality of the application can detiorate to an
unacceptable level. A similar problem appeared
previously in the context of dropping ATM cells from
TCP segments [32].

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Tcp_Snd_Data
Tcp_Snd_Ack
Tfrc_Snd_Data
Tfrc_Snd_Ack

(a) Without LPD

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Tcp_Snd_Data
Tcp_Snd_Ack
Tfrc_Snd_Data
Tfrc_Snd_Ack

(b) With LPD
Figure 12. LPD improves goodput, throughput and fairness of TCP and TFRC flows when delay spikes occur in the network.

Packet lifetime of the TFRC flow is 5 s. Packet lifetime of the TCP flow is set to the RTO value.

 11

To prevent this problem, the router could drop
entire ADUs while possibly taking their priority and
lifetime in consideration. However, if ADU framing is
done at the transport layer, the router cannot sort
packets into ADUs without snooping into transport
headers. Such ‘layering violation’ is undesirable form
a point of view of the Internet architecture [5].

A possible solution is to rely on IP fragmentation
for delivery of large ADUs. In this case the router can
identify and discard an entire ADU based on the
datagram id without snooping into upper level
headers. We are investigating possible performance
gains of this approach for real-time data transport.

7. Conclusions
Emerging real-time transport protocols combine
selective retransmissions with TCP-friendly
congestion control. In our architecture for efficient
real-time transport over cellular links, new transport
protocols are reinforced with Lifetime Packet Discard
at the wireless link layer. In this paper we evaluated
effects of LPD on bulk CBR, TCP and TFRC flows.

The lifetime of a packet is set to the minimum of
the data lifetime determined by the application and the
retransmission timeout value determined by the
transport protocol. The packet lifetime coordinates
operation of the link and transport-layers. A flow
adaptive link can use packet lifetime for deciding on
the number of retransmission attempts, data encoding
and scheduling of transmissions. The transport
protocol can recover lost packets quicker by
deploying a more aggressive retransmission timer [24]
because the cost of spurious timeouts is minimal with
LPD.

End-to-end congestion control in the Internet is
based on the assumption that most packet losses are
due to congestion. Therefore, discarding stale data in
the network can incorrectly trigger end-to-end
congestion control causing a reduction of the
transmission rate at the sender. We show that
transmitting only headers of packets with expired
lifetime prevents interactions with congestion control
and still provides remarkable efficiency gains.

The benefit of LPD is most significant for larger
sizes of the bottleneck buffer. Here we provide some
arguments on why using a very small buffer is not a
desirable solution.

• A small buffer causes a short congestion
avoidance cycle that generates frequent
packet drops.

• A small buffers is inadequate for smoothing
bursty traffic generated by variable bit rate
codecs.

• A larger buffer can accommodate bandwidth
variation occurring during vertical handovers
[14].

• The current practice is to use very large
buffers in cellular links [21]. A per-user
buffer of 50-200 KB in live GPRS networks
was measured [11].

Using an active queue management algorithm such as
RED [10] may seem an attractive alternative to LPD.
However, RED does not work well in an environment
with a low level of statistical multiplexing [11][37].
Drop From Head (DFH) could be used together with
LPD to increase performance.

In future work, we will consider use of explicit
loss notification [1] as an alternative to headercasting
for avoiding unnecessary triggering of congestion
control by expiration losses. The cumulative explicit
transport error notification [6] takes a different
approach from providing fine-grain feedback per each
discarded packet. The idea is that routers tell to the
sender the average fraction of lost packets due to
transmission errors. The sender makes a smaller
decrease in the congestion window on individual loss
events. Preliminary evaluation of this approach
suggests that it is effective in improving TCP
throughput over links with error losses while
remaining congestion-friendly to other TCPs. We
expect these results to be directly applicable to our
work.

Acknowledgements
Thanks to Rajiv Chakravorty and members of the
Sahara project at UCB for valuable comments.

References
[1] H. Balakrishnan, R. Katz, Explicit Loss Notification

and Wireless Web Performance, In Proceedings of
IEEE Globecom Internet Mini-Conference, November
1998.

[2] H. Balakrishnan, V. Padmanabhan, G. Fairhurst, M.
Sooriyabandara, TCP Performance Implications of
Network Path Asymmetry, RFC 3449, December
2002.

[3] G. Brasche, B. Walke. Concepts, services and
protocols of the new GSM phase 2+ General Packet
Radio Service, IEEE Communications Magazine, Vol
35, No 8, pages 94-104, August 1997.

 12

[4] D. D. Clark, D. L. Tennenhouse. Architectural
considerations for a new generation of protocols, In
Proceedings of ACM SIGCOMM’90, August 1990.

[5] D. D. Clark, The Design Philosophy of the DARPA
Internet Protocols, CCR, Vol. 18, No. 4, August 1988,
pp. 106–114.

[6] W. Eddy, S. Ostermann, M. Allman, New Techniques
for Making Transport Protocols Robust to Corruption-
Based Loss. July 2003. Under submission.

[7] N. Feamster, H. Balakrishnan, Packet Loss Recovery
for Streaming Video, 12th International Packet Video
Workshop, April 2002.

[8] S. Floyd, M. Handley, J. Padhye, J. Widmer,
Equation-Based Congestion Control for Unicast
Applications, SIGCOMM, August 2000.

[9] S. Floyd, K. Fall, Promoting the Use of End-to-End
Congestion Control in the Internet, IEEE/ACM
Transactions on Networking, August 1999.

[10] S. Floyd, V. Jacobson, Random Early Detection
gateways for Congestion Avoidance, IEEE/ACM
Transactions on Networking, V.1 N.4, August 1993.

[11] A. Gurtov, TCP Performance in the Presence of
Congestion and Corruption Losses, Master's Thesis,
University of Helsinki, December 2000.

[12] A. Gurtov, M. Passoja, O. Aalto, M. Raitola, Multi-
Layer Protocol Tracing in a GPRS Network, In
Proceedings of IEEE Vehicular Technology
Conference (VTC'02), September 2002.

[13] A. Gurtov, R. Ludwig, Responding to Spurious
Timeouts in TCP, IEEE INFOCOM'03, March 2003.

[14] A. Gurtov, J. Korhonen, Measurement and Analysis of
TCP-Friendly Rate Control for Vertical Handovers,
submitted for publication.

[15] V. Jacobson, Congestion Avoidance and Control,
ACM SIGCOMM, August 1988.

[16] E. Kohler, M. Handley, S. Floyd, J. Padhye, Datagram
Congestion Control Protocol (DCCP),
http://www.icir.org/kohler/dcp/.

[17] K. Lee, M. Zarki, Scheduling real-time traffic in IP-
based cellular networks, The 11th IEEE International
Symposium on Personal, Indoor and Mobile Radio
Communications, 2000.

[18] J. Li, S. Ha, V. Bharghavan, HPF: A Transport
Protocol for Heterogeneous Packet Flows in the
Internet, INFOCOM 1999.

[19] D. Loguinov, H. Radha, Measurement Study of Low-
bitrate Internet Video Streaming, In Proceedings of
the ACM SIGCOMM Internet Measurement
Workshop, November 2001.

[20] R. Ludwig, R. Katz, The Eifel Algorithm: Making
TCP Robust Against Spurious Retransmissions, ACM
Computer Communications Review, Vol. 30, No. 1,
January 2000.

[21] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, A.
Joseph, Multi-layer Tracing of TCP over a Reliable
Wireless Link. ACM SIGMETRICS 1999.

[22] R. Ludwig, B. Rathonyi, Link Layer Enhancements
for TCP/IP over GSM, INFOCOM 1999.

[23] R. Ludwig, A. Konrad, A. D. Joseph, R. H. Katz,
Optimizing the End-to-End Performance of Reliable
Flows over Wireless Links, Kluwer/ACM Wireless
Networks Journal Vol. 8, Nos. 2/3 , March-May 2002.

[24] R. Ludwig, K. Sklower, The Eifel Retransmission
Timer. Appears in ACM Computer Communications
Review, Vol. 30, No. 3, July 2000.

[25] R. Ludwig, M. Meyer, The Eifel Detection Algorithm
for TCP, RFC 3522, April 2003.

[26] R. Ludwig, A. Gurtov, The Eifel Response Algorithm
for TCP, draft-ietf-tsvwg-tcp-eifel-response-03.txt ,
work in progress.

[27] D. Mills, Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI, RFC2030, October
1996.

[28] J. Nagle, On Packet Switches With Infinite Storage.
RFC970, December 1985.

[29] V. Paxson, M. Allman, Computing TCP's
Retransmission Timer, RFC 2988, November 2000.

[30] J. Postel, Internet Protocol (IP), RFC-791, September
1981.

[31] K. Ramakrishnan, S. Floyd, D. Black, The Addition of
Explicit Congestion Notification (ECN) to IP,
RFC3168.

[32] A. Romanow, S. Floyd, Dynamics of TCP Traffic
over ATM Networks, IEEE JSAC, V. 13 N. 4, May
1995, p. 633-641.

[33] P. Sarolahti, M. Kojo, K. Raatikainen. F-RTO: A New
Recovery Algorithm for TCP Retransmission
Timeouts, University of Helsinki, Department of
Computer Science, Technical Report C-2002-07.

[34] B. Smith, Cyclic-UDP: A Priority-Driven Best-Effort
Protocol, Tech. report, Cornell University, 1995

[35] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, P.
Conrad, SCTP Partial Reliability Extension,
http://www.ietf.org/internet-drafts/draft-stewart-
tsvwg-prsctp-03.txt.

[36] Z. Su, A Specification Of The Internet Protocol (IP)
Timestamp Option, RFC 781, May 1981.

[37] M. Sågfors, R. Ludwig, M. Meyer, J. Peisa, Queue
Management for TCP Traffic over 3G Wireless Links,
In Proceedings of IEEE WCNC, March 2003.

[38] J. Wong, Y. Liu, Deadline based network resource
management, In Proceedings of the Ninth
International Conference on Computer
Communications and Networks, 2000.

