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Abstract 
Mobile cellular users often experience significant 
delay jitter that undermines quality of real-time 
applications. Delay jitter can cause unnecessary 
delivery of stale packets with passed playout deadline 
and duplicate packets retransmitted by the end host 
after experiencing a timeout. With Lifetime Packet 
Discard (LPD) a flow adaptive link can tailor the 
tradeoff between the maximum delay jitter and 
reliability if quality of service requirements of a flow 
are known. We propose using the IP timestamp option 
to communicate the flow requirements to the link 
layer. The packet lifetime is set to the minimum of the 
data lifetime determined by the application and the 
retransmission timeout value determined by the 
transport protocol if selective reliability is supported. 
For congestion-sensitive flows, the link transmits only 
headers of “discarded” packets to prevent unnecessary 
triggering of end-to-end congestion control. Our 
simulations show that LPD is efficient in reducing 
stale data delivery and increases the number of 
packets delivered in time for real-time flows. For 
semi-reliable flows throughput and goodput are 
improved because duplicate packet delivery is 
prevented. 

 

1. Introduction 
By definition, the usefulness of real-time data is 
limited by a certain time limit that we call lifetime. 
For example, for a video streaming application data 
lifetime is determined by the size of the play out 
buffer at the receiver. For a telemetric application, old 
measurement samples become obsolete when a new 
one is recorded. If delivery across the network takes 
longer than the data lifetime, data become stale and is 
typically discarded by the receiver. 

Slow access links, especially in cellular wireless 
networks, often have significant delay jitter. For 
example, a measurement study of dial-up connections 

reports occasional delay jitter of several seconds due 
to link-layer error recovery by a modem [19]. 
Frequent delay spikes of 3 to 15 s were observed in a 
wide-area cellular network due to handovers [11].  

Consider Figure 1 showing delay jitter of UDP 
packets transmitted at 30 kbps over a cellular link. 
The trace is about an hour long, with 20 min of 
walking, 20 min in stationary conditions and 20 min 
in a moving train. Packets of 500 bytes are transmitted 
at a constant bit rate downstream on a GPRS link [3]. 
Delay spikes of several seconds are clearly visible in 
mobile conditions. About 8% of all packets were lost. 
To confirm that delays were not purely due to 
congestion, we repeated measurements using a 
congestion-sensitive TFRC flow [8] and still observed 
significant delay jitter. 

Many real-time applications account for delay 
jitter in the network by buffering data at the receiver. 
However, extensive buffering increases a start-up 
delay and harms interactivity for rewind operations. 
For certain types of media such as live streaming, 
conversational audio or stock quote updates, 
significant delaying of the playout may not be an 
option. 

In summary, we believe that eventual disruptions 
to delivery of real-time data in a wireless environment 
are inevitable. The goal of our work is to make sure 
that such disruptions bring minimum dissatisfaction to 
the user. 

The approach that we explore in this paper is to 
assign a delivery lifetime to each packet at the 
sending host. This gives the link layer the necessary 
information on how persistent it should be on 
transmitting each packet. We show that Lifetime 
Packet Discard improves performance by nearly 
eliminating delivery of stale and duplicate data over 
an expensive cellular link. Although the idea of LPD 
is not entirely new [37][34], we are not aware of its 
systematic evaluation. We provide extensive 
simulations of LPD for CBR, TCP and TFRC flows. 
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Furthermore, a solution to the problem of spurious 
timeouts in transport protocols is proposed using 
LPD. We show that LPD can unnecessarily trigger 
end-to-end congestion control and suggest a solution. 

The rest of the paper is organized as follows. In 
Section 2, our view of the architecture for delivery of 
real-time data over cellular links is presented. Section 
3 motivates this paper by describing problems 
solvable by our approach. Section 4 shows how LPD 
avoids delivery of stale and duplicate data in practice. 
In Section 5 we evaluate the effect of LPD on 
performance of various types of flows. Section 6 
presents ideas for future work. Section 7 concludes 
the paper. 

 
2. The Architecture for Real-Time Transport 
Generally speaking, limited bandwidth and battery 
power are two primary concerns for wireless users. 
Therefore, an efficient architecture would do best to 
satisfy QoS requirements of all flows at the minimum 
cost of bandwidth and battery power. 
 
2.1 Network Architecture 
We assume the network architecture displayed in 
Figure 2 that resembles the architecture of a GPRS 
cellular network [3]. The Radio Link Control (RLC) 
protocol provides recovery of error losses on the radio 
link between the mobile station (MS) and the Base 
Station Controller (BSC). The Logical Link Control 
(LLC) protocol spans from the mobile station to the 
last-hop router and retransmits lost data primary 
during handovers.  

The last-hop router implements LPD by dropping 
packets with remaining lifetime less than it would 

take to deliver the packet over the cellular link. The 
packet lifetime can be used for several other purposes 
in the access router such as the earliest deadline 
scheduling [17]. In this paper, we only consider using 
packet lifetime for discarding stale and duplicate data. 

When the real-time server is located in the 
Internet, clock synchronization between the access 
router and the server would be typically required. The 
network time protocol [27] (NTP) can provide 
sufficient accuracy for our goals. When the real-time 
server is located close to the access network or the 
network delay to the server is static and known, clock 
synchronization is not necessary. In our experience, it 
is a common practice for network operators to locate 
servers as close as possible to their intended users. 

In this paper we focus on downlink flows from 
the real-time server to the client. In practice, the client 
and the mobile station are often combined in a single 
device; thus, removing stale data from the bottleneck 
queue is straightforward for uplink flows. For 
downlink flows, a real-time server has no direct 
control over data buffered in access router; therefore, 
a mechanism to inform the router of packet lifetime is 
needed. 

Real-time
Server

Client Last-hop
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Internet

Mobile
Station

NTP
Server
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Figure 2. Network architecture. 
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Figure 1. Delay jitter in a streaming test in a live GPRS network. 
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Unfortunately, the time-to-live (TTL) field in 
IPv4 and IPv6 is too short to provide sufficient 
accuracy for packet lifetime. The IP timestamp option 
[36][30] provides exactly what we need to inform the 
last-hop router about the packet lifetime1. The IPv4 
standard allows using a custom format for this 
option2. We exploit this opportunity to set the packet 
lifetime in milliseconds in IP datagrams. Using the IP 
option does not cause a layering violation, in contrast 
to using transport-layer timestamps. As routers 
operate on the networking layer, they are not 
supposed to examine other packet headers than the IP 
header [5]. A drawback of the IP timestamp option is 
that it costs 8 bytes of overhead and may load a router 
due to slow-path processing. 

 
2.2 End-to-end Real-Time Transport  
We believe that future transport protocols for real-
time data will support selective reliability and TCP-
friendly congestion control. 

It is widely recognized that real-time data can 
have tight delivery constrains; recovery of lost 
packets through retransmissions is not always 
feasible. However, it was shown that selective 
reliability is highly beneficial for certain types of data 
such as a compressed MPEG-4 video stream [7]. By 
recovering important packets within the playout 
delay, perceived playout quality of the application can 
be significantly enhanced. SR-RTP is a backward-
compatible RTP extension that supports selective 
reliability [7]. PR-SCTP is another example of a 
partially reliable transport protocol [35]. 

Congestion control is a general requirement to all 
Internet flows in the future [9]. However, the 
oscillatory nature of TCP AIMD congestion control 
may not be desirable by real-time applications. The 
notion of TCP-friendliness permits smoother 
transmission rate as long as on the average the rate of 
the flow is same as of a TCP flow in similar 
conditions. TFRC is one of the proposed slowly 
responsive equation-based congestion control 
algorithms [8]. DCCP is a new unreliable transport 

                                                                 
1 The IPv4 option contains a 32-bit timestamp. By default, the 

time is in milliseconds since midnight UT. However, any 
custom time format can be used if the high order bit of the 
timestamp is set.  

2 The timestamp option for IPv6 has not yet been defined. We are 
working on implementing it. 

protocol that allows applications to use TFRC 
congestion control [16]. 
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Figure 3. End-to-end transport for real-time flows. 

Figure 3 shows how SR-RTP and DCCP fit into 
our architecture. The application passes a data object 
to SR-RTP for transmission indicating a maximum 
tolerable delivery delay (data lifetime). The SR-RTP 
protocol verifies if data can be delivered with the 
lifetime. If retransmissions are possible within the 
data lifetime, SR-RTP sets the packet lifetime to the 
value of the retransmission timeout. Otherwise, the 
data lifetime is copied to packet lifetime. The DCCP 
protocol provides TCP friendly rate control to SR-
RTP. 

 
3. Motivation of the Approach 
In this section we argue why controlling packet 
lifetime in the network is the right approach from an 
architectural point of view.  A practical argument is 
that since many wireless networks employ charging 
based on amount of transferred data, users become 
particularly concerned about the usefulness of data 
they receive. 
 
3.1 Flow Adaptive Link Layer 
It is well known that wireless links can potentially 
introduce high loss rates on data traffic. To effectively 
carry IP traffic most modern wireless networks deploy 
retransmissions at the link layer. The link persistency 
is defined as how long in time the link protocol 
attempts to recover a corrupted packet before 
discarding it and proceeding with transmission of 
other packets. Previous work has shown that the link 
layer operating on smaller data blocks than IP MTU is 
more efficient than relying on purely end-to-end error 
recovery [23].  
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A natural problem for a link carrying a mixture of 
reliable and real-time traffic is how persistent it 
should be on a given packet. It was shown that high 
persistency is needed for reliable transport protocols 
such as TCP. In opposite, real-time flows favor timely 
delivery over reliability and require low persistency. 

Existing link layers do not discriminate among 
data packets and use the same persistency for reliable 
and real-time data thus giving a non-optimal tradeoff. 
A concept of a flow-adaptive link layer was proposed 
to tailor link behavior to demands of different 
application flows [22]. The proposed solution is a 
simple heuristic of being highly persistent on TCP 
packets and low persistent on UDP packets. It also 
recognized that this crude discrimination is not 
sufficient as there are UDP applications (e.g. NFS) 
that assume nearly reliable delivery from the network. 
Furthermore, the choice of persistency is arbitrary and 
may not correspond to actual requirements of 
applications. 

With our approach, each packet has the exact 
information about its maximum tolerable delay. This 
allows a flow-adaptive link to optimally control delay 
vs. loss probability due to wireless errors in the best 
suitable way to the application.  

 
3.2 Competing Error Recovery 
Another problem related with uncontrolled link layer 
retransmissions is the competition between link layer 
and end-to-end error recovery. Because link error 
recovery is seen as delay jitter by the end hosts, the 
retransmission timer of a transport protocol may 
expire prematurely triggering unnecessary 
retransmissions and congestion control.  

The Eifel algorithm [20] was proposed as an end-
to-end solution for detecting [25] and recovering of 
spurious TCP timeouts [26][13]. The Eifel algorithm 
uses the TCP timestamp option to determine if 
arriving ACKs after a timeout refer to original or to 
retransmitted segments. F-RTO is an alternative end-
to-end proposal for the problem of spurious timeouts 
in TCP [33]. 

There are several advantages of our approach vs. 
end-to-end solutions for real-time protocols: 

• End-to-end protocols rely on delivery of old 
packets in the network after a delay. We 
allow the end host to retransmit a fresh 
version of the data after a delay.  

• End-to-end solutions proposed so far are for 
TCP, which is a window-based protocol 

acknowledging every or at least every other 
packet. Our solution suits well for rate-based 
real-time protocols having infrequent ACKs. 
End-to-end proposals would be inefficient for 
such a protocol because their operation is 
affected by waiting for ACKs. 

• Ideally, our approach allows to entirely avoid 
delivery of duplicate packets. End-to-end 
solutions often require several unnecessary 
retransmissions to detect that a timeout was 
spurious. 

The strong side of end-to-end solutions is that 
false congestion control actions can be easily undone 
at the sender. However, our approach can be 
complemented by a mechanism to undo congestion 
control at the end hosts. 

 
3.3 Application Empowerment  
A popular paper on the next generation of protocols 
[4] argues that the application should be given control 
over recovery from lost and delayed packets.  Indeed, 
the application may not need recovery of that 
particular data object or can re-generate a fresh 
version of it for retransmission. Our approach 
supports this principle by empowering the application 
to control for how long the network should try to 
deliver the data. 

Another tradeoff that should be under control of 
the application is a maximum transmission burst size 
vs. a maximum queuing delay. The size of the link 
buffer sets this tradeoff in the network. Having a 
small buffer reduces the queuing delay and possibly 
the amount of stale data delivered to the receiver. 
However, a small link buffer can also cause 
undesirably high packet loss rates for a bursty real-
time application with a variable bit rate data encoding. 
With our approach, the network buffer can be 
sufficiently large to accommodate bursty sources 
because the application can explicitly limit the 
maximum queuing delay.  

 
4. Lifetime Packet Discard 
4.1 Preventing Stale Packet Delivery 
In this section, we show how LPD can improve 
performance of CBR flows. A delay spike has two 
negative effects on such flows: 

• Packets buffered in the network become stale 
and are unnecessarily transmitted after the 
delay spike ends. This wastes resources. 
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• Transmission of stale data delays delivery of 
fresh arriving data.  

Figure 4 (a) shows a receiver trace from ns2 of a 
CBR flow when a 10-second delay spike is 
introduced. In this example packet lifetime is set to 5 
s, which is the interval at which the application 
regenerates new data objects. The rcv_data shows 
packet sequence numbers at the receiver, and the 
rcv_ttl shows the remaining lifetime of arriving 
packets. Negative values mean that the packet is stale 
and should be discarded. When the delay starts at 16th 
sec, no messages are delivered until the delay ends, 
but newly arriving messages get queued in the access 
router. When the delay ends at 26th sec, for the next 
15 sec the link delivers only expired messages. The 
backlog of stale packets prevents fresh updates to be 
delivered to the receiver. 

 Figure 4 (b) shows a similar experiment when the 
router implements LPD. Immediately when the delay 
ends, fresh updates are delivered to the receiver. 
Furthermore, no stale packets are sent over the 
cellular link, which saves resources. 

 
4.2 Preventing Duplicate Packet Delivery 
Transports protocols such as TCP, SR-RTP [7], HPF 
[18] and PR-SCTP [35] provide some degree of 
reliability by retransmitting lost packets. A packet is 
considered lost when a retransmission timer expires at 
the sender. When the delay in the network varies, the 
timer can expire prematurely. As a result, two or more 
duplicate packets can be transmitted over the access 
link wasting resources. Below we describe this 
situation for TCP in detail. 

When a sudden delay occurs in the network that 
exceeds the current value of the TCP retransmission 
timer, the oldest outstanding segment is retransmitted. 
Since data segments are delayed but not lost, the 
retransmission is unnecessary and the timeout is 
spurious. A spurious TCP timeout is shown in Figure 
5 (a). Segment numbers in the receiver trace are offset 
to prevent an overlap with segment numbers of the 
sender. The delay in generated between 10th and 20th 
sec in this test. The first retransmission that happens 
at the 17th sec is also delayed. The sender interprets 
the ACK generated by the receiver in response to the 
delayed segment as related to the retransmission, not 
the original segment. Because of the retransmission 
ambiguity problem, an ACK bears no information on 
which segment, original or retransmitted, has 
generated it. Encouraged by arriving ACKs, TCP 
retransmits all outstanding segments using the slow 
start algorithm. Such a retransmission policy is 
refereed to as go-back-N since the sender forgets 
about all segments it has earlier transmitted. At 28th 
sec retransmitted segments arrive to the receiver and 
generate duplicate ACKs as the original segments 
have already been delivered.  

In summary, spurious timeouts in a semi-reliable 
transport protocol cause two problems: 

• Unnecessary end-to-end retransmissions 
result into duplicate packets delivery over a 
cellular link. 

• Congestion control is disturbed. In the short 
run, retransmissions can overload the network 
if transmitted using the slow start. In the 
longer run the network can be underutilized.  
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Figure 4. Disruption introduced to a CBR flow by a delay spike. 
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Figure 5 (b) shows the same TCP flow with LPD. 
Here, packet lifetime is set to the retransmission 
timeout value at the TCP sender. When the sender 
times out and retransmits the first segment at 17th sec, 
the access router has dropped all old outstanding 
segments. When the delay ends, the sender 
immediately gets an ACK for the fresh retransmitted 
segment and continues retransmitting segments using 
the go-back-N. Since all originally transmitted 
segments are dropped, no duplicate packets are 
delivered to the receiver.  

LPD alone does not solve the second problem 
presented by spurious timeouts. In this experiment the 
problem is not significant because the bandwidth-
delay product of the path is small. However, reduction 
of the slow start threshold after a spurious timeout can 
harm performance on paths with a larger bandwidth-
delay product. In Section 4.3 we discuss how this 
problem can be alleviated. 

Another possible complication is that setting 
packet lifetime correctly can be difficult for transport 
protocols for which the retransmit timer is updated 
after a segment had been sent. During bulk data 
transmission in TCP, the retransmit timer is offset by 
one RTT because the timer is restarted upon a new 
ACK [24][29]. Furthermore, the retransmit timeout 
value can be updated more frequently than once per 
RTT. For optimal performance (to avoid occasional 
dropping of valid packets and delivery of duplicates) 
the transport protocol should not collect new RTT 
samples nor restart the timer until the oldest 
outstanding segment is acknowledged. However, if 
RTT suddenly increases, the timer has to be updated 
to avoid plentiful spurious timeouts. 

 
4.3 Interactions with End-to-end Congestion 
Control 
End-to-end congestion control in the Internet is based 
on an assumption that almost all packet losses are due 
to congestion [15]. Hence, discarding expired packets 
in the network incorrectly triggers reduction of the 
transmission rate at the sender. In this section we 
examine how an end-to-end congestion control reacts 
to packets drops by LPD. 

Figure 6 (a) shows a sender trace of a TFRC flow 
when a 10-second delay spike is introduced. We 
assume application data lifetime of 5 s in this 
example. Thus, at the sender lifetime in packets is set 
to 5 s. The sender gets no feedback during the delay 
and gradually slows down to eventually transmit one 
packet per RTT. When the delay spike ends, a burst of 
ACKs that were delayed comes to the sender. It takes 
about 15 sec after the delay ends for the sender to get 
to the normal transmission rate. Because the receiving 
application discards stale data in this case, the 
transport protocol does not see any data loss in the 
network. Since the receiver reports no loss events, the 
sender does not further invoke congestion control.  

Figure 6 (b) shows the same flow when the router 
drops stale packets. Until the delay ends, the sender’s 
behavior is identical to Figure 6 (a), as expected. But 
later feedback packets report packet losses and the 
sender keeps the transmission rate reduced. Still, the 
sender is able to reach a higher sequence number than 
without LPD because unnecessary transmission of 
stale packets is eliminated. However, in tests with 
higher link bandwidth we observed that unnecessary 
triggering of congestion control harms performance. 
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Figure 5. Preventing duplicate packet delivery for a TCP flow after a delay spike. 
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Figure 7. Interference of LPD with end-to-end congestion 

control is resolved by transmitting headers of stale packets. 

Figure 7 shows how the undesired triggering of 
end-to-end congestion control can be avoided. We call 
our solution headercasting. The idea of headercasting 
is to transmit only IP and transport headers of 
‘discarded’ packets3. The receiver knows upon getting 
a header that there was no packet loss due to 
congestion and there is no reason to trigger 
congestion control at the sender. A flow uses a bit in 
the IP timestamp option to indicate if it is interested in 
headercasting or its packets may be simply dropped. 

 
5. Performance Evaluation 
We run an extensive set of ns2 simulations to explore 
effects of LPD on CBR, TCP and TFRC flows. Figure 
8 shows the topology we have used; it resembles the 
setup of a GPRS user. We used the state-of-the-art 
TCP with Sack, delayed acknowledgements, limited 
transmit, timestamps, MSS of 1000 bytes and 
unlimited receiver window. Delay jitter was 
introduced by inserting a 7 s delay spike every 30 s 
                                                                 
3 This may require re-computing the packet checksum and may 

not work in presence of IPsec. 

according to real-world traces in Figure 1. All queues 
are Drop-Tail; existing active queue management 
algorithms are not easily applicable when the level of 
statistical multiplexing is low [37]. LPD is executed in 
R1. Our simulation scripts are publicly available.  
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Figure 8. Simulation setup in ns2. 

5.1 CBR Flows 
In this section we evaluate performance of a CBR 
flow in presence of delay jitter in the network. We are 
interested in two main performance indicators. A 
fraction of valid packets (received within their 
lifetime) describes the playout quality of the 
application. A fraction of packets delivered stale 
describes how efficient is the use of the cellular link 
bandwidth and battery power of the mobile terminal. 

Figure 9 shows performance of a 27 kbps CBR 
flow with different values of data lifetime. In this test, 
packet lifetime is determined by the application 
according to the playback buffer available. With a 
Drop-Tail buffer fewer packets are delivered valid 
when data lifetime becomes tighter. Furthermore, the 
number of valid packets quickly decreases with 
increasing of the buffer size in the bottleneck buffer. 
The number of stale packets increases with a smaller 
data lifetime or a larger buffer size. Eventually, 
almost all packets are delivered stale. 

When LPD is enabled, performance for different 
data lifetimes and buffer sizes is stable and nearly 
optimal. About 90% of packets are delivered valid. At 

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50
Time of Day (s)

Se
qu

en
ce

 N
um

be
r

Snd_Data
Snd_Ackdelay

 
(a) Without LPD 

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50
Time of Day (s)

Se
qu

en
ce

 N
um

be
r

Snd_Data
Snd_Ackdelay
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Figure 6. Undesired interactions with end-to-end congestion control in a TFRC flow after a delay spike. 
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the same time, no stale packets are sent over the 
cellular link.   

 
5.2 TCP Flows 
In this section we examine how LPD can prevent 
delivery of duplicate segments in presence of spurious 
TCP timeouts. We compare performance of TCP over 
LPD with the standard TCP and TCP with the Eifel 
algorithm. The download time reflects perceived user 
performance of the application. The number of 
duplicate segments received shows how resource-
efficient a solution is. The lifetime in packets is set to 
the retransmission timeout value of the TCP sender. 

In Figure 10 the download time of TCP over 
Drop-Tail is 10-30% higher than over LPD. TCP with 
the Eifel algorithm has only slightly higher download 
time than TCP over LPD. However, when the 
congestion control is not undone after a spurious 
timeout for the Eifel algorithm (“Eifel-CC”), then the 
download time is variable and up to 100% higher than 

of TCP over LPD.  
The number of duplicate segments for standard 

TCP grows quickly with a larger buffer size. Up to 
15% of all delivered segments are duplicates. Both the 
Eifel algorithm and TCP over LPD perform equally 
well in reducing the number of duplicate segments 
delivered. 

We want to note that our goal was not to 
significantly beat end-to-end solutions such as Eifel 
for TCP.  We believe that Eifel works fine for fully 
reliable protocols. Instead, the main benefits of LPD 
are for real-time flows as described in Section 3.1. 
The reason why we used TCP is because semi-reliable 
protocols are not yet well supported in ns2. 

 
5.3 TFRC and TCP Flows 
In this section we compare concurrent TCP and TFRC 
flows with and without LPD. For TCP flows, we use 
the download time and the number of duplicate 
segments received as performance metrics. The packet 

  
Figure 9. Effect of LPD on performance of a single CBR flow with different packet lifetimes. 

  
Figure 10. Comparison of TCP with LPD, TCP with the Eifel algorithm and standard TCP.  Packet lifetime equals TCP RTO. 
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lifetime of TCP segments is set to the TCP 
retransmission timeout value. For TFRC flows, we 
look at the total size of stale packets received to 
reflect the behavior of headercasting. Packet lifetime 
of TFRC packets is set to 3, 5, 8, or 10 s to 
correspond to different application data lifetime. 

In Figure 11 two top graphs show TFRC 
performance and two bottom graphs show TCP 
performance. TFRC flows over Drop-Tail have less 
valid packets than over LPD for a given data lifetime. 
The difference is growing with an increase in the 
router buffer size. Similarly, the number of bytes 
delivered stale is high for Drop-Tail. This number is 
small for LPD indicating that headercasting is a 
feasible way to avoid unnecessary triggering of end-
to-end congestion control. 

For TCP, the download time over LPD is similar 
to Drop-Tail, but decreases when the lifetime of the 
TFRC flow is lower. The number of unnecessary 
retransmissions is low and stable for all TCP flows 
over LPD, but grows quickly over Drop-Tail. 

Figure 12 shows in detail why performance with 
LPD is better. Unnecessary go-back-N 
retransmissions are prevented for TCP flows when 
LPD is enabled. Stale packets of the TFRC flow are 
transmitted only as headers when LPD is enabled, 
which saves bandwidth and prevents problems with 
end-to-end congestion control. Finally, throughputs of 
TCP and TFRC flows are closer to each other, which 
is a crude indicator that LPD improves fairness 
between flows. 

 
6. Considerations for Future Work 
6.1 Deployment Concerns 
As for many new proposals, LPD raises some 
deployment concerns. The sender end host has to be 
modified to set the packet lifetime. The last-hop 
router needs a modification to check for expired 
packets. However, real-time transport protocols 
supporting TCP-friendly congestion control and 
selective reliably are still in the development stage. 
Therefore, it is not a significant burden to 
complement them now with packet lifetime 

  

  
Figure 11. Effect of LPD on performance on concurrent TCP and TFRC flows with different packet lifetimes. 



 10

functionality. Furthermore, in our experience software 
in infrastructure nodes in cellular networks is updated 
frequently which facilitates deploying LPD. 

We recognize that it is not feasible to require that 
all nodes and routers be upgraded in order to deploy a 
new solution. Fortunately, LPD can be incrementally 
deployed starting from a limited number of real-time 
servers.  

The sending end host can discover if routers in the 
path to destination support, or at least tolerate, 
carrying packet lifetime as an IP option. The IP 
timestamp option is a part of the standard [30] and 
should be supported by all Internet routers. However, 
some broken routers or firewalls may discard IP 
datagrams with IP options. To avoid unnecessary 
overhead if LPD is not supported and prevent 
dropping of packets if routers do not tolerate an IP 
option, the sender host should first probe the 
destination by sending a train of knowingly stale and 
valid packets. Based on the transport layer 
acknowledgements or ICMP ‘packet discarded’ 
notifications the sender host can decide whether to 
send the IP timestamp option with packet lifetime for 
a given destination. 

 
6.2 Congestion Control with Packet Lifetime 
Capability of fine-grain control of packet lifetime in 
the network brings exciting opportunities for new 
developments in end-to-end congestion control. 
Actually, ideas for using packet lifetime for 
congestion control appeared in the early days of the 
Internet [28]. They were seemingly forgotten after a 
widespread deployment of loss-based congestion 
control [15]. 

A possible approach is to set the packet lifetime 
close to the minimum observed RTT of the path. If 
queuing delay increases in routers due to congestion 
then low-priority traffic gets expired and dropped 
preserving the capacity for best effort traffic. Such 
low-priority traffic is useful for ‘scavenger’ 
applications that utilize leftover bandwidth without 
slowing down other traffic.  

Another possible application of packet lifetime is 
congestion control for ACK packets of a transport 
protocol. Currently, TCP suffers on asymmetric paths 
due to fixed rate of ACKs to the data segments [2]. 
Including packet lifetime in ACKs can prevent heavy 
congestion on the thin backward link. 

 
6.3 Discard of Application Data Units 
The concept of application-level framing argues that 
data objects should be delivered for an application 
over the network as application data units (ADU) [4]. 
One ADU corresponds to the data entity convenient 
for the application, such as a video frame. The ADU 
size can exceed the IP MTU of the network. Large 
ADU are transmitted as several IP datagrams, or as 
fragments of a single datagram. 

A congested router in today’s Internet drops IP 
datagrams arbitrary between ADUs. When the 
application has tight real-time constrains, there is no 
possibility to recover lost ADU fragments. Therefore, 
the receiver host might drop many large ADUs with 
only a few missing fragments. Consequently, the 
playout quality of the application can detiorate to an 
unacceptable level. A similar problem appeared 
previously in the context of dropping ATM cells from 
TCP segments [32]. 
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Figure 12. LPD improves goodput, throughput and fairness of TCP and TFRC flows when delay spikes occur in the network. 

Packet lifetime of the TFRC flow is 5 s. Packet lifetime of the TCP flow is set to the RTO value. 
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To prevent this problem, the router could drop 
entire ADUs while possibly taking their priority and 
lifetime in consideration. However, if ADU framing is 
done at the transport layer, the router cannot sort 
packets into ADUs without snooping into transport 
headers. Such ‘layering violation’ is undesirable form 
a point of view of the Internet architecture [5]. 

A possible solution is to rely on IP fragmentation 
for delivery of large ADUs. In this case the router can 
identify and discard an entire ADU based on the 
datagram id without snooping into upper level 
headers. We are investigating possible performance 
gains of this approach for real-time data transport. 

 
7. Conclusions  
Emerging real-time transport protocols combine 
selective retransmissions with TCP-friendly 
congestion control. In our architecture for efficient 
real-time transport over cellular links, new transport 
protocols are reinforced with Lifetime Packet Discard 
at the wireless link layer. In this paper we evaluated 
effects of LPD on bulk CBR, TCP and TFRC flows.  

The lifetime of a packet is set to the minimum of 
the data lifetime determined by the application and the 
retransmission timeout value determined by the 
transport protocol. The packet lifetime coordinates 
operation of the link and transport-layers. A flow 
adaptive link can use packet lifetime for deciding on 
the number of retransmission attempts, data encoding 
and scheduling of transmissions. The transport 
protocol can recover lost packets quicker by 
deploying a more aggressive retransmission timer [24] 
because the cost of spurious timeouts is minimal with 
LPD. 

End-to-end congestion control in the Internet is 
based on the assumption that most packet losses are 
due to congestion. Therefore, discarding stale data in 
the network can incorrectly trigger end-to-end 
congestion control causing a reduction of the 
transmission rate at the sender. We show that 
transmitting only headers of packets with expired 
lifetime prevents interactions with congestion control 
and still provides remarkable efficiency gains.  

The benefit of LPD is most significant for larger 
sizes of the bottleneck buffer. Here we provide some 
arguments on why using a very small buffer is not a 
desirable solution.  

• A small buffer causes a short congestion 
avoidance cycle that generates frequent 
packet drops.  

• A small buffers is inadequate for smoothing 
bursty traffic generated by variable bit rate 
codecs. 

• A larger buffer can accommodate bandwidth 
variation occurring during vertical handovers 
[14].  

• The current practice is to use very large 
buffers in cellular links [21]. A per-user 
buffer of 50-200 KB in live GPRS networks 
was measured [11]. 

Using an active queue management algorithm such as 
RED [10] may seem an attractive alternative to LPD. 
However, RED does not work well in an environment 
with a low level of statistical multiplexing [11][37]. 
Drop From Head (DFH) could be used together with 
LPD to increase performance. 

In future work, we will consider use of explicit 
loss notification [1] as an alternative to headercasting 
for avoiding unnecessary triggering of congestion 
control by expiration losses. The cumulative explicit 
transport error notification [6] takes a different 
approach from providing fine-grain feedback per each 
discarded packet. The idea is that routers tell to the 
sender the average fraction of lost packets due to 
transmission errors. The sender makes a smaller 
decrease in the congestion window on individual loss 
events. Preliminary evaluation of this approach 
suggests that it is effective in improving TCP 
throughput over links with error losses while 
remaining congestion-friendly to other TCPs. We 
expect these results to be directly applicable to our 
work.  
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