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Abstract— An important intrinsic property of any struc-
tured Peer-to-Peer (P2P) overlay is multi-hop paths. Un-
derstanding their structure helps to solve challenging
problems related to routing performance, security, and
scalability. In this paper, we introduce a mathematical
Diophantine model of P2P routes. Such a route aggregates
several P2P paths that messages follow. A commutative
context-free grammar describes forwarding behavior of
P2P nodes. Derivations in the grammar correspond to
P2P routes. Initial and final strings of a derivation define
message sources and destinations, respectively. Based on
that we construct a linear Diophantine equation system,
where any solution counts forwarding actions in a route
representing certain integral properties. Therefore, P2P
paths and their composition into routes are described by
a linear Diophantine system; its solutions (basis) define a
structure of P2P paths.

I. INTRODUCTION

In computer networks, a classical problem is routing
a packet from the source to the destination host. Among
multiple available routes, the routing algorithm selects an
optimal route according to some metric such as a hop
count, the delay or bandwidth. The algorithm is executed
independently by network nodes based on a limited
view of the network, often only based on neighbor
links. Such algorithms require moderate memory and
computational resources but produce suboptimal routes.
Traditional algorithms do not support routing among
multiple parallel paths for reliability and load balancing.

Recently, overlay networks became popular in the
Internet. Overlays are constructed on top of the existing
Internet Protocol (IP) routing infrastructure, where or-
dinary user hosts can exchange packets with peer hosts
(Peer-to-Peer, P2P) using their own routing algorithm.
One example of an overlay network implementing a
Distributed Hash Table (DHT) is Chord [22]. In Chord,

nodes are connected in a ring structure supplemented by
fingers pointing to distant nodes.

In this paper, we contribute a mathematical Diophan-
tine model of P2P routes, where a route aggregates
several P2P paths that packets follow. The model is based
on abstract parallel process algebra [8], and we use a
commutative context-free grammar to describe forward-
ing behavior of P2P nodes. Derivations in the grammar
correspond to P2P routes. Initial and final strings of
a derivation define packet sources and destinations, re-
spectively. In contrast to abstract parallel processes, our
method allows sequential behavior essential in routing.

Given a grammar, we construct a linear Diophantine
equation system [12], [14]. Any of its solutions defines
forwarding actions in a route. The basis of a linear
Diophantine system describes all solutions in a finite
way [5]; we use this fact to define a routing structure.
Manipulation with parameters of packet sources and
destinations defines which routes the model describes.

The model extends well-known models based on net-
work topology graphs and discrete network flows [4],
[20]. Since the latter are very popular in routing models,
we believe that our model has potential for various
applications. We also hope that the complexity problem,
typical for large-scale discrete models, can be overcome
in our approach. There are efficient algorithms for solv-
ing such linear Diophantine systems as appear in our
model [13], [14].

The rest of the paper is organized as follows. Section II
presents the problem domain of structured peer-to-peer
overlay networks in the Internet. Section III formulates
the mathematical background for commutative context-
free grammars and nonnegative linear Diophantine equa-
tions. In Section IV, we show how a grammar de-
scribes a route in P2P overlay networks. A routing
model combining a grammar and a Diophantine equation
system is developed in Section V. Section VI presents a
discussion of possible model applications to optimize the
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reliability and performance of routing. It also compares
our approach to previous work. Section VII concludes
the paper.

II. STRUCTURED PEER-TO-PEER OVERLAYS

Structured P2P overlays is a common approach for
building distributed Internet applications [1], [2], [10],
[21]. This section describes routing behavior in several
popular overlays.

A. The P2P concept

Consider N nodes Υ = {u1, u2, . . . , uN} in an IP
network. Let u ∈ Υ , and IPu be u’s IP address. The
nodes form an overlay network (overlay for short) over
the underlying IP network. Assume that the overlay has
its own identifier space such that every node is assigned
a unique node ID. We will use the same notation u both
for the node itself and its ID. All basic IP communication
primitives are available to the overlay, i.e., u can send a
message directly to v when u knows IPv.

An overlay is called peer-to-peer (P2P) if it provides
communication between its arbitrary two nodes. A basic
routing mechanism in a P2P overlay proceeds as follows.
Every node u keeps a local routing table Tu, a collection
of entries (v, IPv) for some selected nodes v ∈ Υ . Such
a node v is called a neighbor of u since the latter can
directly communicate with v via IP (one-hop distance in
the overlay). When a node needs to communicate with
a non-neighbor node, the former forwards the request
to one or more of its neighbors (a lookup request with
the given node ID). They, in turn, repeat the same
procedure. Consequently, the request has to follow multi-
hop paths, and eventually at least one of them ends at
the destination.

Fig. 1 shows an example of a multi-hop path in a P2P
overlay. Note that P2P routing results in two-level multi-
hop paths. First, P2P communication takes several hops
in the overlay. Second, every hop in the overlay leads to
one or more hops in the underlying IP network.

Entries in routing tables form outgoing links and
hence they represent the P2P overlay topology. Careful
construction and maintenance of routing tables allow
providing two key properties of a P2P overlay. The
first one is eventual reachability, when a message must
eventually reach the destination. The second property
concerns reducing the number of hops, so that a message
reaches the destination through a short path.

The first property can be achieved by structuring
the overlay topology. A P2P overlay is structured if
its nodes construct and maintain local routing tables
based on rules uniform among all nodes. The rules

Fig. 1. An example routing from the node src to the node dst.
Overlay nodes are depicted in circles filled; IP routers do not belong
to the overlay. There are 4 hops in the overlay (numbered) and 15
hops in the underlying IP network.

must provide tight control over the overlay topology
preserving its structure. Typical examples of structured
P2P overlays include Chord [22] (ring-based topology),
CAN [19] (hypercube), PRR’s algorithm [18] (tree), and
Viceroy [17] (butterfly).

The second (multi-hop) property can also be achieved
with structured topology; the solution, however, is par-
tial. Even the estimate O(log N) that many structured
P2P overlays currently provide, can be too slow for some
applications (see, e.g., [7], [10]).

The multi-hop property of P2P overlays decreases the
routing performance, makes the scalability an issue when
N grows, and introduces security vulnerabilities. The
number of hops depends on forwarding decisions at each
node; understanding of this forwarding process is crucial
for constructing optimal paths.

B. Forwarding process at a node

Consider behavior of a basic P2P routing protocol at a
node. Let a message targeted to a node d be received at
a node u. If u 6= d then u selects one or more next-hop
nodes among all nodes in its routing table Tu. Several
options are available for u.

Base forwarding: Exactly one node v in Tu is selected
for the next hop.

Retransmissions: The node u having sent the message
to v waits for an acknowledgment. If it has not been
received in a predefined time, then u retransmits the
message. A positive integer parameter av defines the
number of attempts.

Sequential forwarding: Multiple alternate directions
are used in retransmissions. There are several candidates
v1, v2, . . . , vk in Tu for the next hop. Initially, u forwards
the message to v1. If no success is achieved in the
predefined time, then u tries sequentially through v2, v3,



3

and so on up to vk. For each next hop vi, the number of
attempts is ai = a(vi), i = 1, 2, . . . , k.

Parallel forwarding: Similar to the previous case, but
u forwards the message simultaneously to v1, v2, . . . ,
and vk as in multicast communication.

Path completion: A message has reached a node u
and is not forwarded further. In particular, this happens
when i) u is a destination node (u = d), ii) u discards
the message, e.g., because of overload, or iii) some
alternative directions are not used.

We assume that these options form an essential part of
the overall routing process in a structured P2P overlay.
The next section introduces mathematical background
for modeling this process.

III. MATHEMATICAL BACKGROUND

In this section we summarize the basic mathematical
background developed in [5], [12], [14]. We contribute
a model of routes in terms of string transformations
(Section III-A). String transformations use a commu-
tative context-free grammar and grammar derivations
(Section III-B). A grammar assigns a linear Diophantine
equation system, where nonnegative integer solutions
correspond to grammar derivations (Section III-C).

A. Overlay topology, message paths, and routes

Consider a structured P2P overlay of N nodes Υ . Its
topology can be represented with a digraph T = (Υ,A),
where the arc set A consists of all outgoing links for
all nodes; any entry (v, IPv) ∈ Tu corresponds to the
arc (u, v) ∈ A. Such a graph model is well-known, see,
e.g., [4]; its application to P2P overlays can be found,
for instance, in [9], [11], [16].

Let a node s (source) send a message to a node d
(destination). The message follows in T either1 a path
s ⇒∗ d (the destination is reached by the only path), or
a path s ⇒∗ v (the destination is not reached since the
message completed the path at v 6= d), or a collection of
paths as above (the message is duplicated, and its copies
follow by their own paths).

We call an atomic route the collection of all paths that
a message and its copies have followed starting from a
given source node s. Such a route is denoted

s ⇒∗ d
b+
1

1 · · · db+
k

k ,

where di are all nodes at which the messages completed
paths, and nonnegative integer b+

i shows2 how many
messages completed their paths at di.

1The sign ’∗’ in ⇒∗ means that the path is multi-hop. A more
formal reason will be introduced in Section III-B.

2The sign ’+’ in b+
i means that messages arrive to di.

Let source nodes s1, . . . , sl send b−1 , . . . , b−l mes-
sages3, respectively. Combining their atomic routes we
yield the aggregated route:

s
b−1
1 · · · sb−l

l ⇒∗ d
b+
1

1 · · · db+
k

k . (1)

The left- and right-hand sides in (1) can be interpreted
as commutative strings {ub−u }u∈Υ and {ub+

u }u∈Υ over Υ ,
when the order of symbols is ignored. The mathematical
background to such strings is given in Section III-B.

B. Context-free grammars ignoring the order of symbols

Let Z+ be the set of nonnegative integers. Given
a finite alphabet Π , a commutative string over Π is
{πaπ}π∈Π , where aπ ∈ Z+ is the number of occurrences
of π. In other words, the order of symbols is ignored and
a string is a multiset of symbols of Π . Given a string
α, #π[α] = aπ ∈ Z+ and #[α] = a ∈ Z|Π|

+ denote the
exponents. The reversion is ?[a] = {πaπ}π∈Π .

All strings over Π (including the empty string ε) form
the free commutative monoid Π∗ in respect to concate-
nation. Given α′, α′′ ∈ Π∗, both α′α′′ and α′+α′′ denote
the concatenation of α′ and α′′, which corresponds to
the sum of exponents. The reverse operation α′ − α′′ is
defined if the exponents remain nonnegative. If so we
write α′′ ∈ α′.

A commutative context-free grammar (CCF-grammar)
without a start symbol is a 3-tuple G = (Υ, Σ,R), where
Υ and Σ are finite disjoint sets, called the nonterminal
and terminal alphabets, respectively, R is a finite subset
of Υ × Σ∗Υ ∗, called the set of rules. A rule is written
u → τρ, where u ∈ Υ , τ ∈ Σ∗, ρ ∈ Υ ∗.

A CCF-grammar provides a mechanism to transform
strings κα ∈ Σ∗Υ ∗. Let κ′, κ′′ ∈ Σ, α = ?[(b−v )v∈Υ ],
and β = ?[(b+

v )v∈Υ ]. We say that κ′α directly derives
κ′′β, written κ′α ⇒ κ′′β, if, for some (u → τρ) ∈ R,
b−u > 0, κ′′ = κ′τ , and β = α− u + ρ. In other words,
one u in α is substituted with τrρr.

A finite sequence of direct derivations κ′α ⇒ · · · ⇒
κ′′β is called a derivation κ′α ⇒∗ κ′′β. The derivation
length k is the number of direct derivations; k may be
written in the exponent, κ′α ⇒k κ′′β. By definition,
κ′α ⇒0 κ′′β iff κ′α = κ′′β. If k > 0 we use the
notation κ′α ⇒+ κ′′β.

Let #r[κ′α⇒∗ κ′′β] denote the number of applica-
tions of the rule r in the derivation. Then #[κ′α⇒∗κ′′β]
is a nonnegative integer vector of rule applications.

Let κ′, κ′′ ∈ Σ∗ and α, β ∈ Υ ∗. A derivation κ′α ⇒+

κ′′β is 1) cyclic if α ∈ β, 2) a cycle if α = β and
κ′ = κ′′, 3) simple if it does not contain proper cycles.

3The sign ’−’ in b−i means that messages leave si.
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Clearly, κ′ ∈ κ′′ holds always since terminals do not
disappear in a derivation.

C. Nonnegative linear Diophantine equations

Let Z be the set of integers. A nonnegative linear
Diophantine equation (NLDE) system consists of n
equations in m unknowns,

Ax = b, where A ∈ Zn×m, b ∈ Zn, x ∈ Zm
+ . (2)

A is called the coefficient matrix, b is called the constant
term, and x is the column of unknowns. An NLDE
system is homogeneous (homNLDE) when b = O.

A solution to (2) is irreducible if it is not a sum of two
non-zero solutions to the same system. For a homNLDE
system, the set H of all its irreducible solutions is called
the Hilbert basis. For (2), the pair (N ,H) is a basis if
N is the set of all irreducible solutions to (2) and H is
the Hilbert basis of the homNLDE system. Such a basis
is unique and finite. Given the basis (N ,H) of (2), the
general solution is

x = x′ +
∑
h∈H

chh for some x′ ∈ N , ch ∈ Z+.

Moving terms with negative coefficients in each equa-
tion to another side, we rewrite (2) as

A′x + b− = A′′x + b+.

Associated with CCF-grammars NLDE systems
(ANLDE systems) represent a subclass with a special
form for A′′ [5], [12].

A homANLDE system associates with a CCF-
grammar G = (Υ, Σ,R). Non-terminals (N = |Υ |) and
terminals (t = |Σ|) correspond to equations, grammar
rules (m= |R|) correspond to unknowns. Let

Ru =
{
r ∈ R | r = (u → τrρr),
τr = ?[(aσr)σ∈Σ ], ρr = ?[(avr)v∈Υ ]

}
.

A homANLDE system consists of n = N + t equations,
∑
r∈R

aurxr =
∑
r∈Ru

xr, u ∈ Υ,∑
r∈R

aσrxr = 0, σ ∈ Σ.
(3)

Unknowns are interpreted as the number of grammar rule
applications in derivation cycles, i.e., x = #[α ⇒+ α].
Note that only the first N equations in (3) are essential;
the last t equations can be eliminated with setting xr = 0
for all r such that aσr > 0 for some σ ∈ Σ.

Let b−, b+ ∈ ZN
+ and b ∈ Zt

+. In addition to G,
consider strings α = ?[b−], β = ?[b+] (α, β ∈ Υ ∗),

and κ = ?[b] (κ ∈ Σ∗). An ANLDE system associates
with (G;α, κβ):

∑
r∈R

aurxr + b−u =
∑
r∈Ru

xr + b+
u , u ∈ Υ,∑

r∈R

aσrxr = bσ, σ ∈ Σ,
(4)

Unknowns are interpreted similarly to the homANLDE
case, x = #[α ⇒∗ κβ].

Assume min(b+
u , b−u ) = 0 ∀u ∈ Υ ; otherwise take

du = min(b+
u , b−u ) and reassign b+

u := b+
u − du,

b−u := b−u − du. The following theorem relates grammar
derivations and ANLDE system solutions.

Theorem 1 (Solution to an ANLDE system [14]):
Let (H,N ) be the basis of (4).

1) (ANLDE system): x is a solution to (4) iff

x = xα,κ′β′ + xκ′′β′′ + xε, where (5)

• κ′κ′′ = κ and β′β′′ = β;
• xα,κ′β′ = #[α⇒∗κ′β′] (a simple non-cyclic

derivation);
• xκ′′β′′ = #[α′⇒∗κ′′α′β′′], α′ ∈ Υ ∗ (a simple

cyclic derivation but not a cycle);
• xε = #[α′′⇒+ α′′], α′′ ∈ Υ ∗ (a cycle).

2) (Basis): x ∈ N iff xε = O in (5).
3) (homANLDE system): x is a solution to (3) iff

x = xε.
4) (Hilbert basis): x ∈ H iff x = xε, where xε is

defined by a simple cycle.
The idea behind Theorem 1 is that any derivation

α ⇒∗ κβ corresponds to a solution to (4), namely, taking
κβ = κ′β′, α′ = κ′′ = β′′ = ε, xκ′′β′′ = xε = O
we satisfy (5)4. However, there can be solutions that
correspond to a collection of derivations: α⇒∗κ′β′,
α′⇒∗κ′′α′β′′, and α′′ ⇒+ α′′. They can be combined
into the derivation

αα′α′′ ⇒∗ κα′α′′β.

This derivation is the same as the initial derivation α ⇒∗

κβ except that a cyclic part α′α′′ appears in both sides.
Note that (4) also associates with (G;αα′α′′, κα′α′′β).

This relation between solutions and derivations leads
to efficient (polynomial and pseudo-polynomial) algo-
rithms for solving homANLDE systems and for solving
some classes of inhomogeneous ANLDE systems [13].

4When α ⇒∗ κβ is not simple, we extract all simple cycles and
move them to xε.
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IV. ROUTING GRAMMAR

In Section II, we defined forwarding options that a
node implements in basic P2P routing. At each step
the current node selects candidates for the next hop.
In this section, having observed that candidates can be
represented as a string over Υ , we construct a CCF-
grammar, where any rule models a forwarding option.

Taking an arbitrary node u, consider the following
representation of a forwarding option:

u → va1
1 va2

2 · · · vak

k (6)

Let us call it a forwarding rule at the node u.
When k = 1 in (6), the rule is reduced to

u → va

modeling the base forwarding option. That is, u selects
only one next-hop v and forwards to it up to a = av

times.
When k = 0 in (6), the rule is reduced to

u → ε

modeling a path completion at u.
When k > 1, rule (6) can be interpreted as sequen-

tial or parallel forwarding. Nodes v1, v2, . . . , vk are
candidates for the next hop, and there are ai = avi

transmission attempts for each.
To distinguish between sequential and parallel for-

warding, we introduce terminals σ in (6):

u → σva1
1 va2

2 · · · vak

k (7)

Let us take the alphabet Σ = {σpar, σseq}, where σpar

is designated for parallel forwarding and σseq is for
sequential forwarding. Depending on σ ∈ Σ, rule (7)
models either parallel or sequential forwarding. When
no preceding σ, then the difference between the options
is ignored.

In general, terminals are used to classify rules accord-
ing to a given finite set of behavioral forwarding types.
The same idea is applicable for the path completion.

Another role of terminals is for modeling communi-
cation cost c between u and its next-hop nodes. Let the
cost be measured in discrete units of {0, 1, . . . , c}, where
c = 0 and c = c are the cheapest and most expensive
cases, respectively. For instance, c reflects the latency in
the ternary scale: “small”, “medium”, and “big”.

The following extensions of (7) include the cost into
the grammar. One way is to introduce a terminal σcst,
designated for cost counting on the right-hand side:

u → σc
cstv

a1
1 va2

2 · · · vak

k (8)

for an appropriate c ∈ {0, 1, . . . , c}.

An alternate way uses a separate terminal σc for each
value of the discrete cost c:

u → σcv
a1
1 va2

2 · · · vak

k . (9)

Generalizing (6)–(9), routing at a node u to a destina-
tion d is modeled with the forwarding rule r = ru(d):

u → τrv
a1r

1r va2r

2r · · · vakr

kr , (10)

where v1r, v2r, . . . , vkr are candidates for the next-hop
node, k = k(r), positive integers a1r, a2r, . . . , akr define
the number of transmission attempts, string τr ∈ Σ∗

represents behavioral and cost attributes.
Let Ru be the set of all forwarding rules at u. Note that

for the same destination, there may be several different
forwarding rules. If the difference is essential, one can
use extra terminals to classify the rules in Ru.

On the other hand, many different destinations are
often produce on the same right-hand side because of
the P2P locality property (the same neighbor is used for
many destinations). Hence the size of Ru is typically
less than the overlay size N = |Υ |.

Consider the right-hand side of (10). Extend its ex-
ponents (air)k

i=1 to a vector ar ∈ ZN
+ by adding zero

entries. Using a string τr ? [ar] = τrρr ∈ Σ∗Υ ∗

rewrite (10)
u → τr ?[ar]. (11)

Ignoring the order of symbols needs a discussion on
appropriateness of (11) to model sequential forwarding.
Obviously, the order of next hops that u advances in for-
warding is ignored. Instead, the model reflects only that u
implements sequential forwarding. Section V will show
that this simplification leads to analysis of all possible
paths a route consists of, regardless of whether a parallel
or sequential forwarding option is used. However, the
difference is still preserved in integral metrics, such as
how many times each option was used in a route.

Summarizing what was stated above, we assign with
a P2P overlay the CCF-grammar G = (Υ, Σ,R), called
the routing grammar. It models how nodes forward
messages to the next hop.

Example 1: Consider the network in Fig. 2. It is an
instance of a basic Chord ring (successors only) with
an addition of parallel forwarding at s1 and sequential
forwarding at s4. The routing grammar is defined with
Υ = {s1, . . . , s5}, Σ = {σpar, σseq}, and R:

r1, r2 : s1 → s2 | σpars3s5 r3 : s2 → s3

r5, r6 : s4 → s5 | σseqs2s5 r4 : s3 → s4

r7 : s5 → s1
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V. A DIOPHANTINE MODEL OF ROUTES

A route in a P2P overlay can be treated as a trans-
formation of a source string into a destination string,
see Eq. (1). In this section, the transformation is im-
plemented as a derivation in the routing grammar (Sec-
tion V-A). We propose a model of a given set of routes
in terms of an ANLDE system; its solutions map to
routes and vice versa (Section V-B). Routes can be
finitely generated by basic ones, which correspond to
basis solutions to the ANLDE system, introducing a
structure of routes (Section V-C).

A. Routes and derivations

Let each node u ∈ Υ initiate b−u ∈ Z+ messages,
α = ?[b−]. They are routed through the overlay. The
forwarding process at nodes is modeled with a routing
grammar G = (Υ, Σ,R) as described in Section IV.
Finally, each node v ∈ Υ receives b+

v ∈ Z+ messages,
β = ?[b+]. A routing attribute marked with σ ∈ Σ has
been applied bσ ∈ Z+ times5, κ = ?[b].

Such a route corresponds directly to a derivation
α ⇒∗ κβ in G. The terms cyclic, cycle, and simple
for derivations are directly applied for routes.

To include b−, b+, b explicitly to the notation, we will
denote a route as

b−
b−→ b+ (12)

Therefore, derivations in a routing grammar describe
all routes (12) in a P2P overlay for various b−, b, b+.

5For instance, bσpar is the total number of parallel forwarding
applications, see Eq. (7); bσcost is the integral cost of a route, see
Eq. (8).

Fig. 2. An example network of five nodes. Clockwise links r1, r3,
r4, r5, r7 form a ring; r2 represents parallel forwarding (dashed arcs),
when s1 sends a message simultaneously to s3 and s5; r6 represents
sequential forwarding (dotted arcs), when s4 first tries to forward to
s2, then to s5. Parameters of transmission attempts are equal to one.

Example 2: Consider the network in Example 1. Let6

b− = (1, 0, 0, 0, 0). Starting from s1, a message can run
clockwise through every node and finally returns back.
The derivation is a simple cycle:

s1 ⇒ s2 ⇒ s3 ⇒ s4 ⇒ s5 ⇒ s1.

The route is

(1, 0, 0, 0, 0)
(0,0)−−−→ (1, 0, 0, 0, 0).

For the same source, another route is possible:

(1, 0, 0, 0, 0)
(1,0)−−−→ (2, 0, 0, 0, 0).

It consists of two simple cyclic paths and corresponds
to the derivation

s1 ⇒ σpars3s5 =

(
σpar

s3 ⇒ s4 ⇒ s5 ⇒ s1

s5 ⇒ s1

)
= σpars

2
1,

where the message is duplicated at s1 because of parallel
forwarding.

B. Routes and ANLDE system solutions

Considering routes as derivations we fix the order of
grammar rule applications. However, integral properties
of routing do not depend on this order. Treating routes
with the same number of grammar rule applications as
equivalent, we formulate the model of routes in terms of
an ANLDE system and its solutions.

Below we introduce several instances of our model;
each defines certain restrictions to the route parameters
b−, b+, and b in (12). We omit proofs from the scenarios;
they can all be easily derived from Theorem 1.

1. The model is ANLDE system (4) and describes all
routes b−

b−→ b+ for b−, b+, and b fixed.
Theorem 2: Any solution of (4) maps to a route

b−+ d
b−→ b++ d for some d∈ZN : b−+ d, b++ d∈ZN

+

and vice versa. A solution is in the basis iff the route is
simple.

Each u-equation in (4) states the balance between
message arrivals and departures but taking into account
that u initiates b−u and finally receives b+

u messages. Each
σ-equation in (4) states the exact equality for routing
attribute σ.

Any route b−
b−→ b+ corresponds to a solution of (4)

taking d = O. Since the difference b− − b+ does not

6For simplicity, when the context eliminates the confusion, we
omit using transpose notation and treat row and column vectors
interchangeably.
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affect (4), there can be solutions that do not correspond
to b−

b−→ b+ but to b−+ d
b−→ b++ d.

Theorem 2 together with Theorem 1 bring an inter-
esting interpretation of a route b−+ d

b−→ b++ d. Such
a route can be transformed7 into a composition of tree
derivations: α ⇒∗ κ′β′, α′ ⇒∗ α′κ′′β′′, and α′′ ⇒+ α′′,
where #[αα′α′′] = b−+ d, #[α′α′′β′β′′] = b++ d,
#[κ′κ′′] = b, and ∀u ∈ Υ min(#u[α],#u[β′]) = 0. The
first part of sources α does not consist of destinations;
it initiates messages and feeds the destinations in β′,
α ⇒∗ κ′β′. The second part α′ receives messages that
it initiated as well as feeds destinations in β′′, α′ ⇒∗

α′κ′′β′′. The last part, α′′, receives all messages that it
initiated, α′′ ⇒+ α′′.

Example 3: In Example 1, let s1 send one and then
receive two messages applying parallel forwarding once,
i.e., s1 ⇒∗ σpars

2
1. All such routes are described by the

ANLDE system

x7 + 1 = x1 + x2 + 2, x1 + x6 = x3,

x2 + x3 = x4, x4 = x5 + x6,

x2 + x5 + x6 = x7, x2 = 1.

Here b− = (1, 0, 0, 0, 0), b+ = (2, 0, 0, 0, 0), and b =
(1, 0). The basis solution x = (0, 1, 0, 1, 1, 0, 2) defines
a simple route s1 ⇒ σpars3s5 ⇒ σpars4s5 ⇒ σpars

2
5 ⇒

σpars1s5 ⇒ σpars
2
1. It is in the form αα′α′′ ⇒∗

α′α′′κ′κ′′β′β′′, where α = α′′ = κ′ = β′ = ε,
α′ = β′′ = s1, κ′′ = σpar.

2. The model of cycles. Any node receives as many
messages as it has initiated (b− = b+ = d).

2A. The case when no routing attributes are applied
(b = O). The model is homANLDE system (3) and
describes all possible cycles d

O−→ d for arbitrary d ∈ ZN
+ .

Theorem 3: Any solution of (3) maps to a cycle and
vice versa. A solution is in the Hilbert basis iff the cycle
is simple.

2B. The case when routing attributes are ignored (no
restrictions to b). The model describes all routes d

b−→ d
for arbitrary b ∈ Zt

+ and d = b− = b+ ∈ ZN
+ .

This case is reduced to the previous. Eliminate all
terminals from the grammar (Σ = ∅). Then the
homANLDE system (3) contains only equations for non-
terminals, and Theorem 3 is still valid.

2C. The case when routing attributes b are fixed. The
model consists of all non-terminal equations of (3) and
all terminal equations of (4). The case is hence reduced
to Theorem 2. That is, any solution maps to a cyclic
route d

b−→ d for some d ∈ ZN
+ and vice versa.

7By changing the order of rule applications in the derivation.

Example 4: Consider the routing grammar of Exam-
ple 1 but ignore the terminals (in rules r2, r6). The
homANLDE system is

x7 = x1 + x2, x4 = x5 + x6,

x1 + x6 = x3, x2 + x5 + x6 = x7.

x2 + x3 = x4,

It has the only basis solution x = (1, 0, 1, 1, 1, 0, 1),
which maps to a cycle s1 ⇒ s2 ⇒ s3 ⇒ s4 ⇒ s5 ⇒ s1.

C. P2P path structure

Any solution of an ANLDE system can be represented
by the basis. Since in our model a route corresponds
to a solution, the basis defines basic routes; any route
is a combination of basic ones. On the other hand, a
route composes several paths. Therefore, the Diophantine
model provides a finite structure of P2P paths. The
following example explains the idea.

Example 5: Consider a network in Example 1. Let
all nodes except s1 use the path completion option. The
model reflects this by adding to the routing grammar
the rules si → ε for i = 2, . . . , 5, which correspond to
unknowns zi.

Any cyclic route α ⇒+ κα shows how messages
initiated at u ∈ α run through the network; some return
back, others complete their paths at v /∈ α. There
is no restriction to routing attributes κ. Fig. 3 shows
schematically the structure of a basic route when α = s1.

Fig. 3. The path structure of a basic route s1 ⇒+ κs1. There is a
cycle that contains s1. Cycle nodes can forward message copies out
of the cycle.

The following homANLDE system is a Diophantine
model of such routes.

x7 = x1 + x2, x4 = x5 + x6 + z4,

x1 + x6 = x3 + z2, x2 + x5 + x6 = x7 + z5.

x2 + x3 = x4 + z3,

Its Hilbert basis is shown in Table I; all basic routes are
listed in Table II.
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TABLE I

BASIS SOLUTIONS FOR ROUTES α⇒+ κα.
G

ra
m

m
ar

ru
le

s

s 1
→

s 2

s 1
→

σ
p
a
r
s 3

s 5

s 2
→

s 3

s 3
→

s 4

s 4
→

s 5

s 4
→

σ
se

q
s 2

s 5

s 5
→

s 1

s 2
→

ε

s 3
→

ε

s 4
→

ε

s 5
→

ε

x1 x2 x3 x4 x5 x6 x7 z2 z3 z4 z5

I. No duplication
1 1 0 1 1 1 0 1 0 0 0 0

II. Parallel forwarding option
2 1 1 0 1 1 0 2 1 0 0 0

3 0 1 0 0 0 0 1 0 1 0 0

4 0 1 0 1 0 0 1 0 0 1 0

5 0 1 0 1 1 0 1 0 0 0 1

III. Sequential forwarding option
6 1 0 1 1 0 1 1 1 0 0 0

7 1 0 2 1 0 1 1 0 1 0 0

8 1 0 2 2 0 1 1 0 0 1 0

9 0 0 1 1 0 1 0 0 0 0 1

IV. Parallel&Sequential forwarding options
10 1 1 0 1 0 1 2 2 0 0 0

11 0 1 0 1 0 1 1 1 0 0 1

TABLE II

BASIC ROUTES α⇒+ κα.

# Route (derivation)
I. No duplication

1 s1
x1⇒ s2

x3⇒ s3
x4⇒ s4

x5⇒ s5
x7⇒ s1

II. Parallel forwarding option
2 s1

x1⇒ s2
z2⇒ ε,

s1
x2⇒ σpars3s5

x4⇒ σpars4s5
x5⇒ σpars

2
5

2×x7=⇒ σpars
2
1

3 s1
x2⇒ σpars3s5

z3⇒ σpars5
x7⇒ σpars1

4 s1
x2⇒ σpars3s5

x4⇒ σpars4s5
z4⇒ σpars5

x7⇒ σpars1

5 s1
x2⇒ σpars3s5

x4⇒ σpars4s5
x5⇒ σpars

2
5

z5⇒ σpars5
x7⇒

σpars1

III. Sequential forwarding option
6 s1

x1⇒ s2
x3⇒ s3

x4⇒ s4
x6⇒ σseqs2s5

z2⇒ σseqs5
x7⇒ σseqs1

7 s1
x1⇒ s2

x3⇒ s3
x4⇒ s4

x6⇒ σseqs2s5
x3⇒ σseqs3s5

z3⇒
σseqs5

x7⇒ σseqs1

8 s1
x1⇒ s2

x3⇒ s3
x4⇒ s4

x6⇒ σseqs2s5
x3⇒ σseqs3s5

x4⇒
σseqs4s5

z4⇒ σseqs5
x7⇒ σseqs1

9 s2
x3⇒ s3

x4⇒ s4
x6⇒ σseqs2s5

z5⇒ σseqs2

IV. Parallel&Sequential forwarding options
10 s1

x1⇒ s2
z2⇒ ε,

s1
x2⇒ σpars3s5

x4⇒ σpars4s5
x6⇒ σparσseqs2s

2
5

z2⇒
σparσseqs

2
5

2×x7⇒ σparσseqs
2
1

11 s1
x2⇒ σpars3s5

x4⇒ σpars4s5
x6⇒ σparσseqs2s

2
5

z2⇒
σparσseqs

2
5

z5⇒ σparσseqs5
x7⇒ σparσseqs1

Routes are placed in groups I, . . . , IV depending on
parallel and sequential option usage. Group I consists
simply of one route that reflects clockwise traversing of
all nodes.

Each route in group II uses the parallel forwarding
option at s1 once. In route 2, s1 uses both rules it has
for forwarding. One message reaches s2 and completes
the path. Another message is duplicated at s4 and both
copies returns to s1. In routes 3, 4, and 5, s1 starts with
the parallel forwarding option. One copy returns back
to s1, another one completes the path at s3, s4, and s5,
respectively.

Similarly, each route in group III duplicates a message
using the sequential forwarding option at s4. One copy
runs a cycle, another one completes the path either at s2,
s3, s4, or s5.

Group IV shows paths when both forwarding options
are used. In route 10, two messages complete their paths
at s2, and the other two messages follow a cycle. In
route 11, two messages complete their paths at s2 and
s5, respectively; one message follows a cycle.

VI. APPLICATIONS AND DISCUSSION

Understanding the structure of P2P paths helps to
solve challenging problems of routing performance, se-
curity, and scalability. In this section, we briefly dis-
cuss how some problems in recent P2P research can
be approached with our Diophantine model. Thorough
analysis of these applications is a topic of our future
study.

A. Workload and utilization

According to Theorems 2 and 3, ANLDE systems (4)
and (3) are formal structural models [15]. They de-
fine dependence analytically between the initial work-
load (message sources), resources that the P2P overlay
consumes for routing (nodes and links), and the final
distribution (message destinations).

Xu et al. addressed the issue of the P2P routing work-
load and congestion [23]. They considered a uniform all-
to-all communication load, when for each pair of nodes
u, v, u 6= v, a unit of traffic is imposed.

In our model, a unit of traffic is a message. Let
b−u = b−u = N − 1 ∀u ∈ Υ , i.e., each node initiates
and then receives N − 1 messages. Clearly, if u sends
a message to v and v sends a message to u, then two
paths form a cycle u ⇒+ v ⇒+ u. Therefore, the case
is reduced to Theorem 3, and the Hilbert basis describes
the structure of possible P2P routes for a uniform all-to-
all communication load.

Given a basis solution x, its component xr counts how
many times the rule r = (u → τrρr) was applied in the
route. That is, Lu =

∑
r∈Ru

xr is the congestion at a
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node u; Luv =
∑

r∈Ru,v∈ρr
xr is the congestion of an

outgoing link (u, v). Routing attributes τr provide other
useful metrics for utilization.

Moreover, the model allows other workload scenarios.
For instance, given u ∈ Υ , b−u = 1, and b−v = 0 ∀v 6= u,
a scenario is how the unit activity of u loads the P2P
overlay. Taking b− = (1, 1, . . . , 1) gives a scenario when
all nodes start activity simultaneously.

B. Connectivity

Loguinov et al. [16] and Gummadi et al. [9] studied
the problem of P2P connectivity. It relates to resilience
against node failure, i.e., the number and location of
failures a P2P network can tolerate without becoming
disconnected.

Consider a pair of nodes, u 6= v. They are connected if
there are paths u ⇒+ v and v ⇒+ u. Again, Theorem 3
is applicable in this case, and the Hilbert basis defines
the connectivity structure.

Basically, the number of distinct cycles shows the
resilience. Two basis solutions x and x′ define distinct
cycles when either ∀u, v ∈ Υ, u 6= v and ∀r ∈ Ru, p ∈
Rv xrx

′
p = 0 (node distinct cycles), or ∀r ∈ R xrx

′
r = 0

(arc distinct cycles).
More sophisticated characterization can be obtained

based, for instance, on cyclic routes u ⇒+ κuk, when
several (up to k) alternate paths are used to provide the
connectivity of the route.

C. Performance

Loguinov et al. [16] and Xu et al. [23] considered the
problem of P2P routing performance. It relates to the
routing diameter (maximum distance between any two
nodes), which gives the worst-case routing performance.
Again, we can use cycles to identify the longest paths,
which characterize the worst-case performance.

For instance, consider one-to-all routes for a given u,
where b−u = N−1 and b+

u = 0 while b−v = 0 and b+
v = 1

∀v 6= u. The longest path u ⇒+ v over all basic cycles
u ⇒+ v ⇒ u defines the worst case.

Moreover, the Hilbert basis gives a distribution of
paths u ⇒+ v according to their length, hence allowing
the average case analysis.

Similarly, cycles u ⇒+ v ⇒+ u can be used to
analyze the request-response communications when u
sends a request message to v and then receives the
response.

D. Multipath routing

Gummadi et al. [9] and Artigas and Skarmeta [3]
showed the importance of alternative paths between

sources and destinations. It improves routing dependabil-
ity, performance, and security.

In the Diophantine model, a route u ⇒+ κvk consists
of alternate paths between u and v. Such a route models
a multipath routing structure between u and v.

E. Comparisons

Description of routes using a CF-grammar enhances
traditional network graph models. The latter use the
topology graph; its analysis can be targeted to path
availability (connectivity and network diameter [11],
[16]), to path overlap and convergence (congestion [23]
and fault resilience [16]), or to disjoint paths (dependable
and secure routing [3], [6]).

Such a graph model corresponds to a routing grammar
consisting of rules u → v (u, v ∈ Υ ) (only one path per
message is considered, no retransmissions and multicast
duplications). It results in a Diophantine system that
is based on the graph incidence matrix and describes
network flow circulation [4]:∑

v : r=(v→u)

xr + b−u =
∑

v : r=(u→v)

xr + b+
u , u ∈ Υ

Allowing a message to be duplicated because of
retransmission (rules u → vauv in a routing grammar)
results in a Diophantine system that describes general-
ized flows [4]:∑

v : r=(v→u)

auvxr + b−u =
∑

v : r=(u→v)

xr + b+
u , u ∈ Υ

At the same time, our model allows more general rules
that can aggregate several next-hop candidates as well
as take routing attributes into account, see rules (10). It
results in the enhanced class of Diophantine systems de-
fined by (4). Non-terminal equations is a generalization
of the network flow balance at nodes allowing hyper-
arcs, when a message is forwarded to several next-hop
nodes. Terminal equations constrain routing attributes.

Esparza [8] introduced a communication-free Petri
net, an abstract model in process algebras, which is
conceptually similar to our Diophantine model. However,
Esparza’s model is not related to concrete application.
Our model is for the case of P2P routing, and we
explicitly define how to use and interpret nonterminals,
terminals and grammar rules. For instance, terminals
in our model allows capturing sequential behavior, cost
attributes, and some other routing details, while Petri nets
can target only pure parallel processes.

In contrast to [8], we ground on the notion of NLDE
basis, the specific structure of ANLDE system, and the
relation between NLDE and CCF-grammars. It allows
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clear tracing from P2P routes to grammar derivations
and then to ANLDE system solutions. Esparza’s model
says a little about solutions and nothing about their form
and finite structure.

Another good property of our model is that some
classes of ANLDE systems, for instance homANLDE
systems, are efficiently solvable.

F. Computational complexity

Solving Diophantine equations is computationally de-
manding [20]. It also concerns ANLDE systems (4), a
subclass of NLDE systems, since the uniform word prob-
lem for CCF-grammars8 is NP-complete [8]. Finding the
NLDE basis is an overNP problem, since the number
of basis solutions can depend exponentially on NLDE
system dimensions and values of coefficients.

On the other hand, according to [13], some ANLDE
systems can be solved efficiently by polynomial algo-
rithms, when finding a nonzero solution, and by pseudo-
polynomial algorithms, when finding the basis. In the
latter case, the complexity is pseudo-polynomial because
of using the number of basis solutions as a parameter.

We saw the importance of cycles when discussing
possible applications of the Diophantine model. In this
case, the model requires solving a homANLDE system.
In [13], a polynomial algorithm is constructed for finding
a nonzero solution as well as a pseudo-polynomial
algorithm for finding the Hilbert basis9. These algorithms
also work well in practice10.

VII. CONCLUSION

We considered the problem of modeling P2P routes
and contributed a mathematical discrete model to de-
scribe them. The model allows restricting the analysis to
routes that have given properties. Particularly, it supports
various scenarios of message sending and receiving as
well as of forwarding behavior at nodes.

We defined a P2P route as all paths that given mes-
sages follow. The model is formulated as a linear Dio-
phantine equation system, solutions to which correspond
to routes. Since the basis of such a system is unique and
finite, the model defines a certain structure of P2P paths.

8This problem is of deciding, given a CCF-grammar and strings
α, β, if α⇒∗ β.

9Theory says that there is a polynomial algorithm for finding a
nonzero solution of an arbitrary homNLDE system, not necessarily
a homANLDE system. But we know no implementation appropriate
for practical large-scale applications.

10A reader can experiment with these algorithm using the Web-
SynDic system, http://websyndic.cs.karelia.ru.

To construct the model we used a relation between
NLDE systems and formal grammars. A forwarding
process at nodes can be described by a CCF-grammar, a
routing grammar for a P2P overlay, where any derivation
simulates a P2P route. Then an ANLDE system asso-
ciates with the routing grammar forming the Diophantine
model of routes.

We discussed several possible applications of the
model. Having a finite path structure, one can compute
metrics related for instance to utilization (load to nodes
and links), connectivity (availability of alternate paths),
and performance (number of hops). Detailed analysis of
model applications is a subject of our current research.
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