
TCP Performance in the Presence of Congestion and
Corruption Losses

Andrei Gurtov

Master’s Thesis

Department of Computer Science

UNIVERSITY OF HELSINKI

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Science Dept. of Computer Science

Andrei Gurtov

TCP Performance in the Presence of Congestion and Corruption Losses

Computer Science

M.Sc. Thesis December 2000 76 p.

Wireless networks, mobile computing, performance, TCP, error losses

Library of the Dept. of Computer Science, Report C–2000–

The wireless environment of slow and lossy links presents a challenge for efficient data

transport. We have performed an experimental evaluation of TCP in an emulated wireless

environment. We consider a network model including a lossy wireless link and a last-

hop router with a limited-size buffer. We have explored how well the state-of-art TCP

perform, identified key reasons behind the behavior, and measured the effect of different

optimizations. We experimented with TCP connections with different values of the initial

window, receiver window, with or without SACK and New Reno over the emulated net-

work with different error rates and buffer sizes. The experimental data is obtained with a

state-of-art TCP implementation of the Linux operating system and a real-time network

emulator Seawind. Our main result is a comparative study and analysis of different TCP

optimizations.

Computing Reviews Classification:

C.2.1 (Network Architecture and Design): Wireless Communication,

C.4 (Performance of Systems)

Contents

1 Introduction 1

2 Background and Related Work 3

2.1 Transmission Control Protocol 3

2.1.1 Overview . .. 3

2.1.2 Detection and Recovery of Corruption Losses 6

2.1.3 Selecting the TCP Implementation. 7

2.2 Network Environment. 8

2.2.1 Properties of Wireless Links 8

2.2.2 Network Architecture. 10

2.3 Related Work 11

3 Problem Description 17

3.1 Congestion Losses .. 17

3.2 Corruption Losses . .. 19

3.3 OS-Related Problems. 20

3.4 Summary 21

4 Optimizations 22

4.1 TCP Control Parameters . .. 22

4.1.1 Initial Window . 22

4.1.2 Receiver Window . .. 23

4.1.3 Maximum Segment Size 24

4.1.4 Disabling Delayed Acknowledgments 24

4.2 TCP Optimizations .. 26

4.2.1 Selective Acknowledgments 26

4.2.2 Control Block Interdependence 27

4.3 Active Queue Management .. 28

4.4 Other Modifications .. 29

4.4.1 Timestamps .. 29

4.4.2 Header Compression. 30

4.4.3 Explicit Congestion Notification 31

5 Performance Model 32

5.1 Network Model 32

5.2 Workload Models . .. 34

5.3 Baseline TCP 36

6 Experimental Design 37

6.1 Test Environment . .. 37

6.2 Test Network 38

6.3 Measurement Data .. 40

6.4 Test Cases 41

7 Measurement Results and Analysis 45

7.1 Unlimited Router Buffer . .. 45

7.2 Optimal Router Buffer Size .. 46

7.3 Single-Packet Error Losses .. 47

7.4 Random Error Losses. 51

7.4.1 Throughput at the end of connections 51

7.4.2 Throughput at the beginning of connections 58

7.5 Burst Error Losses .. 61

7.6 Random Early Detection . .. 63

7.7 Avoiding Multiple Fast Retransmits 66

8 Conclusion 68

A Baseline TCP 77

A.1 TCP parameters, options and settings 77

A.1.1 NewReno TCP modification 77

A.1.2 Recovery from RTO . 78

A.1.3 RTO calculation . .. 79

A.1.4 Delayed acknowledgments 79

A.1.5 Receiver’s advertised window 79

A.1.6 Disabling control block interdependence 80

A.2 Implementation issues 80

A.2.1 New TCP options . .. 81

A.2.2 Bug fixes . .. 83

B Measurement Data 85

B.1 Optimal Router Buffer Size .. 85

B.2 Baseline TCP 86

B.3 Initial Window of Three Segments 86

B.4 Initial Window of Four Segments 87

B.5 Receiver Window of 2048 bytes 87

B.6 Receiver Window of 3840 bytes 88

B.7 SACK Enabled 88

B.8 New Reno Disabled .. 89

B.9 Burst Error Losses .. 89

B.10 One Connection Over the RED Buffer 90

B.11 Two Connections Over the Drop-Tail Buffer 90

B.12 Two Connections Over the RED Buffer 91

Introduction 1

1 Introduction

The number of nomadic users that access the Internet using wireless technology

grows rapidly. Soon, in the upcoming era of mobile computing, every portable

device will have a wireless interface and an IP address. With all advantages, mo-

bile computing introduces an environment quite different from the one found in

fixed networks, with limitations that come from physical properties of the wireless

medium. The scarce radio bandwidth allows for a rather low link speed; miscella-

neous external factors like fading of the radio signal may cause loss of data on the

radio path. In a cellular radio network the mobility is accomplished by changing

a cell that serves the user, according to the user’s current location. The handover

process may cause data losses and a drastic change in the available service, when

the user moves from a less busy to a more occupied cell. Improving the service

of wireless networks is a complex task bound by the amount of available radio

resources. We believe that in the future, wireless connections will be widely used,

but they will remain a different environment from wireline networks.

Many popular Internet applications including World-Wide Web (WWW),

File Transfer Protocol (FTP) and email require reliable data delivery over the net-

work. The Transmission Control Protocol (TCP) is the most widely used transport

protocol for this purpose; traffic studies in the Internet report that the dominant

fraction of the traffic belongs to TCP [TMW97]. TCP was designed and tuned to

perform well in fixed networks, where the key functionality is to utilize the avail-

able bandwidth and avoid overloading the network. However, nomadic users want

to run their favorite applications that are built on TCP over a wireless connection,

as well. Packet losses due to transmission errors, a long latency and sudden delays

occurring on the wireless link may confuse TCP and yield a throughput far from

the available line rate. Optimizing TCP for a wireless environment has been an

active research area for the last few years.

This thesis presents an experimental evaluation of TCP in an emulated wire-

less environment. We consider a network model including a lossy wireless link

and a last-hop router with a limited-size buffer. Our goal is to explore how well

the state-of-art TCP performs in this environment, what are the key reasons be-

hind the behavior, and what is the effect of different TCP optimizations. We

Introduction 2

experiment with multiple error rates and router buffer sizes over TCP connections

with different optimizations. In the experiments the network is represented with a

real-time network emulator Seawind [AGKM98] and the real data communication

using TCP. We have used the state-of-art TCP implementation of the Linux OS.

Our main result is a comparative study of performance of different TCP optimiza-

tions. We also present a list of detected implementation faults, discuss anomalies

in performance and give a detailed analysis of interesting cases.

The rest of the thesis is organized as follows: in Section 2 we describe

the Transmission Control Protocol, the assumed network architecture, the proper-

ties of wireless links and review the related work. In Section 3 we give specific

performance problems we focus on. Section 4 lists the relevant optimizations

documented by IETF. Section 5 specifies the network and workload model. In

Section 6 we present our measurement setup and in Section 7 we illustrate and

analyze the results of our experiments.

Background and Related Work 3

2 Background and Related Work

2.1 Transmission Control Protocol

2.1.1 Overview

The Transmission Control Protocol (TCP) [Pos81, Bra89, APS99] is the most

used transport protocol in the Internet. TCP provides applications with reliable

byte-oriented delivery of data on the top of the Internet Protocol (IP). TCP sends

user data insegments not exceeding the Maximum Segment Size (MSS) of the

connection. MSS is negotiated during the connection establishment procedure

known as the three-way handshake. To open a connection the client transmits a

SYN segment, the server replies with its SYN and the client replies with a SYN-

ACK segment. After that the connection is established and data can be transmitted

in both directions. When all data is sent, the client and the server exchange FIN

and FIN-ACK segments to terminate the connection.

Each byte of the data is assigned a unique sequence number. The receiver

sends an acknowledgment (ACK) upon reception of a segment. TCP acknowl-

edgments are cumulative; an ACK confirms all bytes up to the given sequence

number. The sender has no information whether some of the data beyond the

acknowledged byte has been received. TCP has an important property ofself-

clocking; in the equilibrium condition each arriving ACK triggers a transmission

of a new segment. Normally, TCP does not acknowledge a received segment im-

mediately, but waits for a certain time. If a data segment is sent during this time,

the acknowledgment is “piggy backed” into it. Alternatively, another data segment

can arrive, and the acknowledgment can confirm both received segments at once.

However, TCP must not delay acknowledgments for more than half a second and

should send an acknowledgment for every second received segment [APS99].

Data are not always delivered to TCP in a continuous way; the network can

lose, duplicate or re-order packets. Arrived bytes that do not begin at the num-

ber of the next unacknowledged byte are calledout-of-order data. As a response

to out-of-order segments, TCP sendsduplicate acknowledgments (DUPACK) that

Background and Related Work 4

Time

C
on

ge
st

io
n

w
in

do
w

Window = 1

Slow Start

Congestion Avoidance
(linear growth)

(exponential growth)

Window-halving
upon congestion
loss

upon timeout
Slow Start

Fast retransmission

Figure 1: Congestion control in TCP [Bal98].

curry the same acknowledgment number as the previous ACK. In combination

with a retransmission timeout (RTO) on the sender side, ACKs provide reliable

data delivery [Bra89]. The retransmission timer is set up based on the smoothed

round trip time (RTT) and its variation. RTO isbacked off exponentially at each

unsuccessful retransmit of the segment [PA00]. When RTO expires, data trans-

mission is controlled by the slow start algorithm described below.

To prevent a fast sender from overflowing a slow receiver, TCP implements

the flow control based on asliding window [Tan96]. In every acknowledgment, the

receiver advertises to the sender thereceiver window, the number of bytes allowed

for transmission. The receiver window is always relative to the acknowledgment

number. An arriving ACK allows more data to be sent by advancing the edge

of the sliding window to the right. When the total size of outstanding segments,

segments in flight (FlightSize), reaches the receiver window, the transmission of

data is blocked until the sliding window advances or a larger receiver window is

advertised. Advertising a window of zero bytes is legal and can be used to force

the sender into thepersist mode. In the persist mode the TCP connection is alive,

but no new data can be sent until a non-zero receiver window is advertised.

Early in its evolution, TCP was enhanced bycongestion control mecha-

nisms to protect the network against the incoming traffic that exceeds its capac-

ity [Jac88]. A TCP connection starts by sending out theinitial window number

of segments. The proposed congestion control standard allows the initial window

Background and Related Work 5

of one or two segments [APS99]. During theslow start phase, the transmission

rate is increased exponentially. The purpose of the slow start algorithm is to get

the “ACK clock” running and to determine the available capacity in the network.

A congestion window (cwnd) is a current estimation of the available capacity in

the network. At any point of time, the sender is allowed to have no more seg-

ments outstanding than the minimum of the advertised and congestion window.

Upon reception of an acknowledgment, the congestion window is increased by

one segment, thus the sender is allowed to transmit the number of acknowledged

segments plus one. This roughly doubles the congestion window per RTT (de-

pending on whether delayed acknowledgments are in use) . The slow start ends

when a segment loss is detected or when the congestion window reaches theslow-

start threshold (ssthresh). When the slow start threshold is exceeded, the sender is

in thecongestion avoidance phase and increases the congestion window roughly

by one segment per RTT. When a segment loss is detected, it is taken as a sign

of congestion and the load on the network is decreased. The slow start threshold

is set to the half of the current FlightSize. After a retransmission timeout, the

congestion window is set to one segment and the sender proceeds with the slow

start. Figure 1 shows a possible behavior of the congestion window for a TCP

connection.

TCP recovery was enhanced by thefast retransmit andfast recovery algo-

rithms to avoid waiting for a retransmit timeout every time a segment is lost [APS99].

Recall that DUPACKs are sent as a response to out-of-order segments. Because

the network may re-order or duplicate packets, reception of a single DUPACK is

not sufficient to conclude a segment loss. A threshold of three DUPACKs was

chosen as a compromise between the danger of a spurious loss detection and a

timely loss recovery. Upon the reception of three DUPACKs, the fast retransmit

algorithm is triggered. The DUPACKed segment is considered lost and is retrans-

mitted. At the same time congestion control measures are taken; the congestion

window is halved. The fast recovery algorithm controls the transmission of new

data until a non-duplicate ACK is received. The fast recovery algorithm treats

each additional arriving DUPACK as an indication that a segment has left the net-

work. This allows to inflate the congestion window temporarily by one MSS per

each DUPACK. When the congestion window is inflated enough, each arriving

Background and Related Work 6

DUPACK triggers a transmission of a new segment, thus the ACK clock is pre-

served. When a non-duplicate ACK arrives, the fast recovery is completed and the

congestion window is deflated.

New Reno [FH99] is a small but important modification to the TCP fast

recovery algorithm. “Normal” fast recovery suffers from timeouts when multiple

packets are lost from the same flight of segments [FF96]. New Reno can recover

from multiple losses at the rate of one packet per round trip time. If during the fast

recovery the first non-duplicate ACK does not acknowledge all outstanding data

prior to the fast retransmit, such an ACK is called apartial acknowledgment. The

New Reno algorithm is based on an observation that a partial acknowledgment is

a strong indication that another segment was also lost. During therecovery phase

New Reno retransmits the presumably missing segment and transmits new data if

the congestion window allows it (the exact rule is given in Appendix A.1.1). The

recovery phase ends when all segments outstanding before the fast retransmit are

acknowledged or the retransmission timer expires.

2.1.2 Detection and Recovery of Corruption Losses

Here we describe possible events following a packet corruption on a wireless link.

Normally, corrupted frames are detected and discarded by the link layer. However,

some corrupted packet may be left undetected and delivered to the serial protocol

running over the link. Two protocols are commonly used as a link-layer service

for IP, the Point-to-Point Protocol (PPP) [Sim93] and the Serial Line Interface

Protocol (SLIP) [Rom88]. PPP provides checksumming of the payload and is

able to detect most corrupted frames. The predecessor of PPP, the SLIP protocol

does not have error detection.

If a corrupted packet is delivered to the IP layer, the events following depend

on which part of the packet was corrupted. A checksum used by IP protects only

the header but not the payload of a datagram. Routers in the Internet are required

to check only IP checksum, but not a checksum of the payload of an IP datagram.

Hence, packets with corrupted IP headers are discarded at the first router.

If the TCP header or payload is corrupted, the packet is transmitted all the

Background and Related Work 7

way through the Internet to the destination. Apparently, the transmission of cor-

rupted packets through the Internet wastes resources. It is the task of the link

protocols to detect and discard corrupted packets. A checksum used by TCP cov-

ers the TCP header, the payload and the pseudo-header composed of IP source and

destination addresses and the length of TCP segment. The TCP checksum detects

most of the corrupted packets, but still there is some chance that corrupted data

can be delivered to applications [Pax97b]. TCP takes no actions upon a packet

with an invalid checksum. Such packets are silently discarded. An example of the

situation when a corrupted packet is undetected by PPP and is delivered to TCP

can be found e.g. in [Lud00, p. 54].

Some link protocols do at least a limited number of attempts to recover

a corrupted packet locally on the link. Neither PPP nor SLIP provide recovery

from frame losses. IP does not have error recovery. Since TCP silently discards

corrupted packets, the recovery procedure is the same whether a corrupted packet

is delivered to TCP or not. Three DUPACKs or a retransmission timeout is used to

detect a packet loss. Upon a detection, the packet is retransmitted and congestion

control measures are taken.

2.1.3 Selecting the TCP Implementation

The TCP behavior is standardized by IETF and is described in RFCs. How-

ever, the standards leave many issues unspecified and TCP implementations dif-

fer in how they behave under similar conditions. For a long time, the reference

implementation has been Reno TCP found in the Unix BSD4.3 operating sys-

tem [WS95]. Modern TCP implementations differ significantly from Reno. The

current family of BSD OSes is derived from Unix BSD4.4 with TCP-Lite imple-

mentation [Lud00].

For the baseline in our analysis we wanted to select a state-of-art TCP im-

plementation that is both widely used in the Internet and has the source code

available for analysis and modification. We chose Linux as a popular operating

system with the source code available. Due to a large amount of independent de-

velopers interested in Linux, implementations of new features are quick to appear

Background and Related Work 8

for Linux.

The TCP implementation in earlier versions of Linux had problems with

conforming to standards [Pax97a]. We have detected, evaluated and corrected a

number of misbehavior problems. We believe that after these fixes we obtained

a TCP that behaves reasonably with regard to standards. A recent work gives

the requirements for a TCP implementation to be used for TCP research [AF99].

Our baseline TCP (described in detail is Appendix A) satisfies these requirements.

One useful option would be to run a part of the tests also with a current version of

the BSD Unix and compare with results obtained with our TCP.

2.2 Network Environment

2.2.1 Properties of Wireless Links

A wide range of wireless technologies that exist today differ a great dial in their

properties. Wireless in its original meaning refers to communication without

wires, which could based on the radio medium, the infrared light or other means.

In this thesis, we would use wireless to refer to radio waves. Furthermore, wire-

less networks that exist today differ considerably in their transmission rate and de-

lay properties. Although Wireless LANs, satellite links and Wireless Wide Area

Networks (WWAN) certainly share some common characteristics, they also have

enough distinct properties to be taken as different environments for data commu-

nication. In this thesis we are focusing on WWAN, that is, cellular phone systems

also capable of data transmission. Hence we furthermore limit the wireless term

to refer to WWANs in our contents.

Many wireless links are slow, have high latency and may have high error

rates. These link characteristics adversely affect the TCP performance. The line

rate of a wireless link may not exceed some tens of kilobits per second. Such a

link speed is typical also for dial-up modem users. For some wireless links, the

line rate can vary over time, due to a change in the amount of radio resources

assigned to the user. We do not consider links with changing bandwidth in this

thesis, although such links may prove to be an interesting environment and worth

Background and Related Work 9

studying in the future.

The latency, the propagation delay, of wireless links is typically high. The

latency comes from the special transmission schemas and processing delays the

network equipment. For example, the Global System for Mobile Communications

(GSM) uses interleaving of data on the radio link to reduce the effect of error

bursts, and this introduces a latency of 90 ms independent of packet size [Lud00].

Additional latency in using a GSM data service is caused by the modem link to

the Internet Service Provider (ISP) and processing time within the GSM system.

The total one-way latency in GSM sums up to 200-300 ms. Note, that we do not

include the transmission delay into the link latency. Thus theround-trip time is

defined as the sum of transmission and propagation delays in both directions.

Some wireless links impose a significant amount of data corruption due to

transmission errors. The error rate depends on the current radio conditions and the

strength of the channel coding schema. For example, in the transparent GSM data

service the residual bit error rate (BER) of the link can be as high as���� after

the Forward Error Correction (FEC) [MP92]. Radio conditions can vary greatly.

In the ideal conditions all packets are delivered correctly, and in the worst case

nothing can be correctly sent over the link. Some links employ the Automatic

Link Adaptation (ALA) to change the channel encoding strength in response to

the change of the radio quality [MP92].

The delay-bandwidth product is an important characteristic of a network [Sta00].

It defines the minimum size of data in flight to utilize the available network band-

width, the pipe capacity. Networks with a large delay-bandwidth product, for

example including satellite links, demand special attention from the transport pro-

tocol. For example, the slow start phase of TCP can be time-consuming in such

networks [ADG�00]. In our environment, the delay-bandwidth product is small,

close to one kilobyte. In the slow start, the pipe capacity is filled already after

one-two RTTs .

Background and Related Work 10

2.2.2 Network Architecture

Rather than selecting one particular network architecture and developing a de-

tailed model that would reflect the behavior of this network we attempt to build a

generic model that would be suitable for all wireless networks with similar char-

acteristics. We are interested in the issue how a nomadic user can use Internet

services via a wireless network. In a scenario shown in Figure 2, the wireless net-

work plays the role of an access network from the Internet point of view. It is also

possible for a nomadic user to exchange data with another mobile user, so that two

wireless links are present on the data path. We do not consider such configuration

is this thesis, assuming that the access to a remote host in the Internet would be

the dominant case.

The wireless link is often the bottleneck in the path of a data flow, because

fixed networks are fast and reliable compared to the capabilities of the wireless

link. When data packets flow from the relatively fast Internet to the slow wireless

link they are buffered in the last-hop router which connects the wireless link to the

Internet. This router plays a significant role in the end-to-end TCP performance

because congestion data losses are most likely to happen at the bottleneck queue.

A limited number of buffers can be allocated in the last-hop router per user. This

buffer space is shared among connections of the same user, but there is no inter-

ference between the connections of different users. A similar network architecture

was considered, when three buffers are available per user [SP98].

The wireless link in our environment imposes corruption losses. We assume

that all data with transmission errors are detected and discarded at the wireless

link. We also assume no error recovery and no variable delays on the link. We

do not include the Internet into our environment in the rest of the thesis. Thus,

different patterns of link errors is the only non-deterministic element in our envi-

ronment.

We now discuss how existing wireless networks can be mapped to our generic

model. The Global System for Mobile Communications (GSM) is a widely suc-

cessful effort to build a WWAN system with millions of users in Europe and

worldwide [MP92, Rah93]. GSM data, High Speed Circuit Switch Data (HSCSD),

Background and Related Work 11

Mobile Last-hopWireless
Internet

Host Link Router
Fixed
Host

Figure 2: Network Architecture.

Internet

BTS

BSC
A

MS BTS

SGSN GGSN
HOST

Figure 3: GPRS Data Transmission Path.

and General Packet Radio Service (GPRS) [BW97] are data transmission services

offered by GSM. We believe they will be the dominant wireless data transmis-

sion services in the foreseeable future. GPRS is expected to provide a high speed

packet data access suitable for a wide range of Internet services. The GPRS net-

work is a complex system that consists of multiple nodes. However, for a fixed

user in the Internet it is visible on the IP layer as a usual Internet subnetwork.

The GPRS data transmission is depicted in Figure 3. It maps well to our

generic model shown in Figure 2. The Gateway GPRS Support Node (GGSN)

acts like a router connecting the Mobile Station (MS) user to the Internet. The bot-

tleneck queue is located in the Service GPRS Support Node (SGSN). Although,

the link layer in GPRS will normally be operating in the reliable mode with a very

low BER, an unreliable mode of operation is specified too. Transparent data de-

livery over a GPRS network with no link-level error correction might still be used

as an inexpensive option [GSM98].

2.3 Related Work

Improving TCP performance over connections including a wireless link has been

an active research area for a few years. An earlier attempt to classify existing

solutions outlines three different categories: end-to-end proposals, split TCP and

link-layer proposals [BSAK95].

Background and Related Work 12

IP
Host Internet

Pure End-to-End:

IP
Host

Hard-state Transport Layer Splitting:

IP
Host

PEP
IP

Host Internet

IP
HostPEP

IP
Host Internet

Soft-state Transport Layer Caching:

IP
Host

IP
Host Internet

Pure Link Layer:

Fixed
ARQ

Fixed
ARQ

IP
HostPEP

IP
Host Internet

Cross Layer Signalling:

Figure 4: Approaches to improve TCP over wireless [Lud99].

A more recent work gives an excellent classification of approaches to im-

prove the performance of TCP at a high level of corruption losses [Vai99]. In

the most general approach, all methods either attempt to hide error losses from

the sender or alternatively make the sender know the cause of a packet loss. The

first group corresponds to the ideal network behavior, where errors are recovered

transparently and without performance degradation visible for the user. The sec-

ond group corresponds to the ideal TCP behavior, where TCP simply retransmits

corrupted packets without taking any congestion avoidance measures. The ideal

network or TCP behavior cannot be achieved, but methods attempt to approximate

either of two. The next aspect is which part of the system needs to be modified

to achieve the performance improvement. Changes can be made to the sender, re-

ceiver or to an intermediate node. A common agreement is that the legacy servers

in the Internet cannot be modified, or it takes a long time until a change could

become widely employed. An intermediate node can in some cases be modified.

The implementation of the network stack in the mobile host can often be con-

trolled and we are able to apply any changes there. Such changes, however, must

be backward compatible not to harm interoperability. On the functional descrip-

tion level, methods are divided into the following groups: link-level mechanisms,

split connection approach, TCP-aware link layer, TCP-unaware approximation

of TCP-aware link layer, explicit notification, receiver-based discrimination, and

sender-based discrimination.

Another recent work gives an excellent state-of-art classification that we

Background and Related Work 13

would like to discuss here in detail [Lud99]. Five different categories of solution

are illustrated in Figure 4. The pure transport layer solutions are based on modi-

fications of TCP solely at the end points of a connection. This scheme retains the

end-to-end TCP connection semantics, but enhances the TCP protocol to make it

perform better in the wireless environment. We are working in this area. It is im-

portant, though, not to break the TCP standard mechanisms, such as the slow start

and congestion avoidance, and tolerance to re-ordered packets. These mechanism

are crucial to the stability of the Internet.

The “transport layer splitting” solutions argue that the properties of the

wired and wireless links are so different, that they are best handled separately.

The TCP connection from the fixed host is terminated at an intermediate node,

a Performance Enhancing Proxy (PEP), and a special protocol is used for data

delivery over the wireless link [BKG�00]. The major advantage of PEPs is that

areas of congestion and corruption losses are handled separately in an appropri-

ate way. However, PEP violates the end-to-end semantics of the TCP protocol,

because “faked” acknowledgments are sent to the fixed IP host before data are

actually delivered to the destination. The proxy is said to maintain a hard state,

since any data lost beyond it are not recovered by TCP.

The “transport layer caching” approach eliminates the problem of maintain-

ing the hard state in the proxy. The loss of the soft state on the proxy can affect

the performance, but does not prevent the end-to-end data delivery by TCP. The

best-known implementation of the soft-state proxy concept is the Snoop proto-

col [BSK95]. Snoop examines packets in PEP in a way that allows to detect TCP

segment losses and recover locally by retransmitting the cached segment. The

main shortcoming of Snoop is low performance in the presence of a high level of

congestion losses [Lud00].

Solutions based on soft-state cross-layer signalling inform the transport layer

of specific events on the link layer. This category of solutions includes, for exam-

ple, an explicit “bad-state” notification [BKPV96] , and an explicit loss notifi-

cation [BPSK96]. Such methods are often difficult to implement because they

require modifications both to PEP and to the TCP protocol. In addition, such

methods do not typically work in the presence of the encryption provided by

Background and Related Work 14

IPsec [KA98].

Pure link layer solutions struggle to isolate the local problems of the wireless

link from the higher layers. Many wireless links can recover from lost packets by

using link-level retransmissions using the Automatic Repeat Request (ARQ) [Sta00].

Link errors are not visible to the upper layers, at the expense of variable delays in

the data delivery. Some link-layer protocols providesemi-reliable data delivery,

by performing only a small number of local retransmissions before discarding a

packet. The current research favors highly persistent link-layer recovery [Lud00].

For certain types of traffic, for example real-time video, link layer recovery

may be harmful since data must be delivered timely or not at all. The work [Lud99]

introduces the concept of aflow-adaptive link which is capable to satisfy the Qual-

ity of Service (QoS) requirements of a data packet by changing, for example, the

link retransmission policy. The QoS requirements of a packet are given to the link

layer in the type-of-service octet in the IP header.

The standardization body for the Internet protocols, the Internet Engineering

Task Force (IETF), is specifying various performance enhancements to TCP and

is documenting the impact of problematic link-layer characteristics to the Internet

protocols. State-of-art understanding of the issue is found in the recent Long Thin

Networks (LTN) RFC [MDK�00], and two Internet Drafts, End-to-end Perfor-

mance Implications of Slow Links [DMKM00] and Links with Errors [DMK�00].

Our goal is to provide experimental data on how well these enhancements actually

perform in the presence of congestion and corruption losses.

In our environment, a natural issue is the achievable improvement when the

sender is able to distinguish between congestion and corruption losses. In other

words, for each packet loss, the TCP sender knows if the loss occurred due to con-

gestion or due to corruption loss over the wireless link. A study [BV97] shows

that the improvement depends on the ratio of congestion and corruption loss prob-

abilities. The result is obtained from experiments and theoretical approximations

as follows. A simple approximation for long range throughput� of TCP-Reno is

from [MSMO97]:

� �
���

���
� ��

�

Background and Related Work 15

where��� is the Maximum Segment Size,��� is the Round Trip Time,� is a

constant,� is the random loss rate.

The approximation omits other details of the recovery process, except the

fact that TCP halves the congestion window at every packet loss. The most impor-

tant omission is the effect of RTO on recovery. If a TCP connection experiences

congestion losses with a rate�� and corruption losses with a rate��, the approxi-

mation of its long range throughput is

� �
���

���
� ��

�� � ��
�

Next, imaginaryIdeal TCP-Reno is introduced that has perfect knowledge of the

reason for a packet loss, and thus halves its congestion window only for conges-

tion losses. The approximation of long range throughput for Ideal Reno is

� �
���

���
� ��

��
�

The authors do not give a valid range of parameters for the estimation [BV97].

We believe that the approximation is only valid when�� and�� are of a few per

cent.

The improvement ofIdeal TCP-Reno over TCP is approximated as���������	
 ��
� � �����. We see that����� is the main factor of how much betterIdeal TCP-

Reno can perform. The secondary factor affecting theIdeal TCP-Reno perfor-

mance advantage is the bandwidth-delay product. When it is small, the congestion

window stays small at the presence of error losses. In this case recovery using a

retransmission timeout rather than using a fast retransmit is more likely when an

error loss occurs. In such conditions, the performance improvement achievable by

Ideal TCP-Reno is low.

A TCP implementation that achieves to some extent the performance of

Ideal TCP-Reno can be based either on discrimination heuristics or explicit loss

notifications. Attempts to use simple statistics on the round-trip time and through-

put were not successful [BV97]. Proposals based on explicit loss notification are

more promising and include Explicit Loss Notification to the Receiver (ELNR) [MV97],

Explicit Loss Notification (ELN) and Explicit Bad State Notification (EBSN).

However, all these proposals fall into the cross-layer signalling category and are

Background and Related Work 16

difficult to deploy. In our work we do not consider TCP optimizations based on

distinguishing between congestion and corruption losses.

Problem Description 17

3 Problem Description

In this section we outline the specific problems of TCP over wireless links we

focus on in the rest of the thesis.

3.1 Congestion Losses

In this section we discuss the occurrence of congestion losses and their effect on

TCP. We use the termcongestion for the time period when many packet losses

occur due to a buffer overflow, even in the case of a single connection. We first

look at a typical TCP connection over a limited-size buffer, but in an error-free

environment. Figure 5 shows a baseline TCP connection when the buffer space

is limited to seven packets. Two phases of the connection are clearly visible. In

the first phase, which lasts approximately 20 s, the connection starts up aggres-

sively, creates congestion, loses a large number of packets and recovers them. We

call this phasethe start-up buffer overflow hereinafter. In the second phase, the

connection proceeds smoothly with the periodic loss of a packet. This is referred

to as thesteady state of the connection. During this phase the connection goes

through periodiccongestion avoidance cycles following the linear increase – mul-

tiplicative decrease policy [Ste97]. In the beginning of the cycle, the FlightSize is

increased by one MSS per RTT until the FlightSize reaches the size of the router

buffer. When a single packet is lost due to the router buffer overflow and the loss

is detected by the TCP sender, the FlightSize is halved and the cycle starts over.

Start-up buffer overflow. Let us look at the start-up buffer overflow which is

also known as the slow-start overshoot [MM96]. Figure 5(b) zooms on the start-

up buffer overflow. Ten segments are lost and retransmitted. The important points

to notice on the figure are: when congestion occurs, when the first packet loss

is detected, and how segment losses are recovered. Questions about the start-up

buffer overflow are “why does it happen”, “what is the negative effect”, and “how

can it be prevented”. We provide the detailed analysis in Section 7.6

Problem Description 18

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(a) Complete connection

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(b) Start-up zoom

40 45 50 55 60 65 70
4

4.5

5

5.5

6

6.5

7
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(c) Steady-state zoom

Figure 5: An error-free TCP connection over the router buffer of seven packets.

Problem Description 19

The optimal router buffer size. The maximum size of the queue in the router

has a significant effect on the connection. A router buffer, which is too small, can

result in a smaller FlightSize than needed by TCP to recover well from packet

losses. The size, which is too large, leads to the heavy start-up buffer overflow

and overbuffering. One paper has estimated 1.5*RTT*bandwidth as the optimal

value for the buffer size [Lud00].

Overbuffering. The situation when significantly more packets are in flight than

is required to fill the available network capacity is calledoverbuffering. Over-

buffering does not necessarily cause congestion. If the number of packets injected

into the network equals the number of packets leaving the network, no congestion

take place. However, having a large number of packets buffered in the network has

several drawbacks [Lud00]. If buffers in the network are full, there is no capacity

left to accommodate traffic bursts. Some applications using TCP generate bursty

traffic. In addition, the TCP protocol itself can inject packets in bursts. Another

drawback is a poor service for interactive applications, because the end-to-end

delay on the overbuffered path can be huge. Finally, the data in the network can

become stale, when a user aborts the data transfer, for example using a stop button

in a web browser. Due to these reasons overbuffering should be avoided.

Fair sharing of resources. Tail-drop routers are known to have problems with

sharing the bandwidth between connections in a fair way [BCC�98]. When two

or more TCP connections share the same router buffer, one connection can starve

while other connections monopolize the resources. This situation is referred to as

lock-out and occurs due to timing effects. We would like to avoid this problem in

our environment.

3.2 Corruption Losses

Performance problems of TCP at the presence of error losses are well

known [BSAK95]. Upon a loss detection, TCP always reduces the transmission

rate, as the reason of the packet loss, congestion or corruption, is not known.

Problem Description 20

When the level of error losses is low, they do not have a notable effect on the

performance. At the moderate level of error losses, TCP underestimated the avail-

able network bandwidth. When the level of error losses is high, most of time the

connection is idle waiting for a retransmission timeout to expire. In the worst

case, the connection is terminated, when the maximum number of retransmission

is exceeded. Not only the rate of the error losses is important, but also the bursti-

ness [Lud00]. In general, TCP suffers more when errors are bursty rather when

they are uniformly distributed. Recommendations for using the TCP algorithms

and control parameters at the presence of error losses is given in [DMK�00]. We

have identified three patterns of error losses to be studied.

Single Errors. Normally, single-packet error drops do not have a significant

effect on the TCP behavior, except for a few special cases. We will try to locate

such interesting cases and analyze them.

Random errors. We will try to identify levels of the uniformly-distributed packet

error rate when error losses have no effect on performance, when the link band-

width is underestimated, when most time is spent in RTOs and when the con-

nection is terminated. We will study how different TCP optimizations affect the

performance for varying size of the router buffer and the error loss rate.

Burst errors. It is interesting to study the effect of burst errors on TCP. An error

loss rate of one percent does not normally affect TCP performance, if uniformly

distributed. However, the same error rate when errors occur in clusters can ad-

versely impact performance. We expect TCP to perform badly during an error

burst; also performance after the burst ends can be hampered.

3.3 OS-Related Problems

State-of-art TCP performance. Most of the related TCP research concentrated

on evaluation of TCP performance of the Reno TCP implementation or an abstract

TCP model in thens simulator [PN98]. However, from the point of view of an

Problem Description 21

end user, it is much more important how their currently installed operating system

performs under the given conditions. The upcoming Linux version 2.4 differs

from Reno in many ways. Thus, it is actual to evaluate how a state-of-art TCP

implementation (our baseline TCP is defined in Appendix A) performs on wireless

links.

Conformance of Linux. There is a stereotype among researchers about the TCP

implementation in Linux, that it does not conform to standards. Indeed, earlier re-

leases of the Linux kernel showed malicious behavior and were even named as

an incoming danger to the Internet [Pax97a]. The Linux networking code has un-

dergone significant changes since version 1.0, and a large number of independent

developers have verified and improved Linux. Today, when Linux is widely used

on Internet servers, it is actual to locate and fix the remaining inconsistencies with

TCP standards produced by IETF.

3.4 Summary

We consider a network model including a lossy wireless link and a last-hop router

with a fixed-size buffer. The Internet is not included in the study. We assume no

variable delays on the link. We examine the end-to-end TCP performance using

the state-of-art TCP implementation in Linux. The main problems we address

are the start-up buffer overflow, overbuffering, optimal buffer size, fair sharing of

resources, the effect of single, random and burst errors. A number of optimizations

will be tested to study the effect on TCP performance in our environment.

Optimizations 22

4 Optimizations

In this section we discuss optimizations that possibly improve the TCP perfor-

mance in our environment. First, appropriate values of the standard TCP control

parameters are considered. Second, we describe two TCP extensions that opti-

mize the protocol operation. Third, the active queue management in the router

buffer is described. Finally, we list the factors that are relevant for our work, but

are left for the future study.

4.1 TCP Control Parameters

4.1.1 Initial Window

The TCP protocol starts transmitting data in the connection by injecting the ini-

tial window number of segments into the network. The initial window of one or

two segments is allowed by the current congestion control standard [APS99]. An

experimental extension allows an increase of the initial window to three or four

segments [AFP98]. However, the number of segments sent after RTO, the loss

window, is fixed at one segment and remains unchanged.

The increased initial window size has the advantage of saving up to three

RTTs from the connection time. It also decreases the time when the FlightSize of

the connection is smaller than necessary to trigger the fast retransmit if a packet

loss occurs. This decreases the probability of the connection experiencing RTOs.

The increased initial window may have a possible disadvantage for an individual

connection in an increased probability of a congestion loss in the connection start-

up when the router buffer size is small. A study has been made to evaluate a

connection with the initial window of four segments when the router buffer size is

three packets [SP98]. The study shows that the four-packet start is no worse than

what happens after two RTTs in the normal slow start with the initial window of

two segments. Another simulation study has evaluated the effect of the increased

initial window on the network [PN98]. The study concludes that the increased

initial window size does not significantly increase congestion losses but improves

the response time for short-living connections.

Optimizations 23

Using an increased initial window can be beneficial in our environment be-

cause of the high RTT of the wireless link and presence of error losses. We ex-

pect that the performance increases with increasing the initial window, but the

improvement only affects the beginning of connections. In addition, interesting

questions are, whether the number of RTOs is reduced and whether the start-up

buffer overflow is worsened by the increased initial window.

4.1.2 Receiver Window

The amount of outstanding data, the FlightSize, is limited at any time of a con-

nection by the minimum of the congestion window and the receiver’s advertised

window. The size of the receiver window is a standard control parameter of

TCP [Pos81]. By advertising a smaller window the receiver can control the num-

ber of segments that the sender is allowed to transmit. The basic analysis of

the effect of the receiver window on a protocol performance can be found e.g.

in [Sta00].

If the receiver window is limited to an appropriate value that reflects the

available network capacity, then congestion losses are prevented. The receiver

rarely has any knowledge of the underlying network properties and current state.

However, when a host knows that it is connected to a last-hop wireless link, it

could limit the advertised window [DMKM00]. Limiting the receiver window

also prevents excessive queueing in the network (overbuffering). Overbuffering

occurs when the size of the router buffer is much larger than required to utilize the

link.

It is interesting to examine whenever the limited receiver window prevents

the start-up buffer overflow, whether error recovery is disturbed and what the ap-

propriate size of the receiver window is for a given size of the router buffer. We

expect that when the receiver window is limited to an appropriate value, TCP

performance is improved, but the improvement only affects the beginning of con-

nections and is more visible for a larger router buffer. When the receiver window

is larger than appropriate, we expect TCP to perform similar to the baseline. The

receiver window which is too small can adversely affect TCP performance.

Optimizations 24

4.1.3 Maximum Segment Size

The Maximum Segment Size affects TCP performance [Ste95, MDK�00]. The

Maximum Transfer Unit (MTU) of the network path imposes an upper limit for

MSS; in certain cases using a smaller MSS is desirable. For example, with an MSS

of 1024 bytes, each segment will occupy a 9600-bps link for almost a second. This

is unacceptable for an interactive application, because a large file transfer packet

can delay a small telnet packet for a time much longer than the human-perceptible

delay. Links that rely on the end-to-end TCP error recovery also demand a small

MSS. For a fixed BER, the probability of segment corruption increases with its

size. On the other hand, the header overhead grows with a smaller MSS, especially

in the absence of the TCP/IP header compression. A MSS value of 256 bytes for

a 9600-bps link is often used as a compromise.

It is interesting to examine the effect of a larger MSS on the TCP conges-

tion and error control. TCP grows the congestion window in units of segments,

independently of the number of bytes acknowledged. Using a larger MSS allows a

connection to complete the slow start phase faster. On the other hand, connections

with a larger MSS may suffer more from RTOs. A larger segment size causes a

larger RTT and thus a number of packets in flight grows slower than for a smaller

MSS. There is smaller probability to have enough DUPACKs to trigger a fast re-

transmit. Furthermore, a larger RTO, especially after a back off, increases the

recovery time.

4.1.4 Disabling Delayed Acknowledgments

Delayed acknowledgments is an important feature of TCP that can affect the per-

formance of a connection. The basic information about delayed acknowledg-

ments was given on page 3, a more detailed description can be found for example

in [Ste95]. A common value for the delay of 200 ms is used by Linux. Further-

more, Linux TCP detects the situation when packets arrive less frequently than the

delayed acknowledgment timeout and sends acknowledgments immediately upon

reception of a segment, i.e. without waiting for 200 ms. When acknowledgments

are delayed on a bulk data transfer, every second segment is normally ACKed. An

Optimizations 25

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Line rate (kbps)

T
ra

ns
m

is
si

on
 d

el
ay

 p
er

 p
ac

ke
t (

m
s)

256−byte packets
384−byte packets
512−byte packets
768−byte packets
1024−byte packet

Figure 6: Length of the transmission delay for different packet sizes and line rates.

arriving ACK advances the sliding window and increases the congestion window;

thus, a connection with delayed ACKs is less aggressive. This is especially visible

in the slow start phase, because in the slow start each arriving ACK increases the

congestion window by one segment.

We need to consider the implication of delayed acknowledgments on our

tests. The transmission delay of the link corresponds to the interval at which

packets arrive to the receiver. If the transmission delay is larger than the timeout

for delaying acknowledgments, every packet is acknowledged. The value of the

transmission delay depends on the line rate and MSS used on the connection. Fig-

ure 6 shows the transmission delay for packet sizes and line rates of interest to us.

In our environment (MSS of 256 bytes and the line rate of 9600 bps) the trans-

mission delay is longer than the timeout for delayed ACKs. Thus, each segment

is acknowledged.

Linux introduces a new feature called “quick ACKs”. The idea is to disable

delayed ACKs for the first	 packets of the connection, where	 is a configurable

parameter. Acknowledging every packet at the beginning of the connection allows

achieving the equilibrium state (congestion avoidance) in shorter time. On the

Optimizations 26

other hand, such a policy could increase the probability of network congestion, as

the sender transmits data more aggressively. Quick ACKs do not affect our tests,

because at the 9600 bps bandwidth, every segment is ACKed anyway as explained

above.

4.2 TCP Optimizations

4.2.1 Selective Acknowledgments

TCP acknowledgments are cumulative; an ACK confirms reception of all data up

to a given byte, but provides no information whether any bytes beyond this number

were received. The Selective Acknowledgment (SACK) option [MMFR96] in

TCP is a way to inform the sender which bytes have been received correctly and

which bytes are missing and thus need a retransmission. How the sender uses

the information provided by SACK is implementation-dependent. For example,

Linux uses a Forward Acknowledgment (FACK) algorithm [MM96]. Another

implementation is sometimes referred to as “Reno+SACK” [MMFR96, MM96].

SACK does not change the semantics of the cumulative acknowledgment. Only

after a cumulative ACK, data are “really” confirmed and can be discarded from

the send buffer. The receiver is allowed to discard SACKed, but not ACKed, data

at any time.

The FACK algorithm uses the additional information provided by the SACK

option to keep an explicit measure of the total number of bytes of data outstand-

ing in the network [MM96]. In contrast, Reno and Reno+SACK both attempt to

estimate the number of segments in the network by assuming that each duplicate

ACK received represents one segment which has left the network. In other words,

FACK assumes that segments in the “holes” of the SACK list, are lost and thus

left the network. This allows FACK to be more aggressive than Reno+SACK in

recovery of data losses. In particular, the fast retransmit can be triggered already

after a single DUPACK in FACK implementation if the SACK information in the

DUPACK indicated that several segments were lost. In contrast, Reno+SACK

will wait for three DUPACKs to trigger the fast retransmit.

Optimizations 27

A loss of multiple segments from a FlightSize of data often presents a prob-

lem for TCP [FH99]. As one option, the sender either have to retransmit out-

standing segments using the slow start; most of the segments could be received

correctly already and thus are unnecessarily retransmitted. As another option, the

sender can recover by one segment per RTT as the cumulative acknowledgment

number advances. In the presence of SACK, the sender knows exactly which

segments were lost and thus can recover multiple segments per RTT without un-

necessary retransmits. SACK TCP has been shown to perform well even at a high

level of packet losses in the network [MM96].

We expect SACK TCP to perform better than the baseline and other opti-

mizations under all conditions. The difference will be most significant at a high

level of error losses. It is interesting to examine whether SACK recovers well

from the start-up buffer overflow.

4.2.2 Control Block Interdependence

A control block of a TCP connection maintains the connection state, round-trip

time estimation, slow start threshold, maximum segment size, and other similar

parameters. When a new connection is created, it has no idea what the properties

of the underlying network path are, and it has to determine values of these pa-

rameters empirically. The performance of this new connection could be improved

if it takes advantage of parameters obtained by earlier connections. TCP Control

Block Interdependence (CBI) [Tou97] is the way to share the information between

connections.

Figure 7 shows two subsequent connections to the same host in the pres-

ence of CBI. The second connection avoids the start-up buffer overflow, because

the congestion control variables were initialized with values obtained by the first

connection. To be exact, the slow start threshold (ssthresh) is set to an appropriate

value so that TCP switches from the slow start to the congestion avoidance before

the router buffer overflows.

To collect reasonable statistics we need to rerun the same test multiple times.

Enabling CBI would make connections dependent on each other and disturb the

Optimizations 28

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(a) The first connection

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s
S

eq
ue

nc
e

nu
m

be
r,

 b
yt

es

data sent
ack rcvd
win

(b) The second connection

Figure 7: Effect of CBI on TCP connections. Both connections are to the same

host. The second is started after the first has been completed.

results. Also the effect of other optimizations cannot be easily observed in the

presence of CBI. For these reasons, we had to disable CBI for our tests. However,

we believe that CBI is a useful feature that improves TCP performance and should

be widely used.

4.3 Active Queue Management

A method that allows routers to decide when and how many packets to drop is

called theactive queue management. The Random Early Detection (RED) algo-

rithm is the most popular active queue management algorithm nowadays [FJ93].

A RED router detects incipient congestion by observing the moving average of the

queue size. To notify connections about upcoming congestion, the router selec-

tively drops packets. TCP connections reduce their transmission rate when they

detect lost packets and congestion is prevented.

The RED algorithm solves two problems related to congestion losses: over-

buffering and fair sharing of resources. RED is recommended as a default queue

management algorithm in the Internet routers [BCC�98]. This is motivated by the

Optimizations 29

statement that all available empirical evidence shows that the deployment of RED

in the Internet would have substantial performance benefits. There are seemingly

no disadvantages to using the RED algorithm, and numerous advantages [FJ93].

RED may not be useful in our environment. The major advantages of RED

in providing fair sharing of resources and the low-delay service for interactive

applications simply are not needed in the case of a single bulk data transfer. It

is probable that RED does not prevent the start-up buffer overflows. Still, we

would like to evaluate the effect of RED on TCP performance in our environment,

because RED can improve the performance of two concurrent bulk connections

and the algorithm is expected to be widely deployed in the Internet.

Here we provide some details about the RED algorithm for an interested

reader. The algorithm contains two parts. The first part is to compute the moving

average of queue size
�� that determines the degree of burstiness allowed in the

router queue. The second part is to determine the packet-dropping probability,

given the moving average of the queue size. The general RED algorithm is shown

in Figure 4.3. The moving average of the queue size is computed by a low-pass

filter giving the current queue size a certain weight in the result. When the mov-

ing average is below the minimum threshold
�	�� no packets are dropped, and

when it is above the maximum threshold

���, every arriving packet is dropped.

Between these boundary conditions, each packet is marked with a probability��

that depends on the moving average. During congestion the probability that the

router drops a packet from a connection is roughly proportional to the bandwidth

share of that connection. By default the RED algorithm measures the queue size

in packets, not in bytes.

4.4 Other Modifications

4.4.1 Timestamps

The TCP timestamp option [BBJ92] requires the sender to place a current times-

tamp and echo the most recent received timestamp into each transmitted segment.

The timestamp option was introduced for protection against wrapped sequence

Optimizations 30

for each packet arrival

calculate the moving average of the queue size
��

if
�	�� �
�� �

���

calculate probability ��

with probability ��:

drop the arriving packet

else if

��� �
��

drop the arriving packet

Figure 8: The general algorithm of the Random Early Detection (RED).

numbers. It can also be used to improve the RTT estimate collection. With times-

tamps, every received segment, also retransmitted, can be used as an RTT sample.

The timestamp option occupies 12 bytes in each segment.

Several algorithms for improving TCP over wireless links are dependent on

the timestamps. One example is the Eifel algorithm for the prevention of spurious

retransmits [LK00]. Thus, it is actual to evaluate the effect of using timestamps in

our environment. A better RTT estimate may be helpful to reduce the number of

RTOs. However, due to time limits, we left TCP with timestamps for the future

work.

We do not expect that timestamps would improve TCP performance. The

overhead caused by a timestamp in every segment is too high for a small MSS.

When timestamps are used the number of segments is larger than for the baseline.

4.4.2 Header Compression

Compressing TCP and IP headers can decrease the header overhead significantly.

A widely used Van Jacobson (VJ) header compression [Jac90] is a proposed stan-

dard. The VJ compression is sensible to packet losses; a single-packet loss causes

the full FlightSize to be dropped that forces TCP into RTO. A more recent header

compression proposal [DNP99] supports an explicit request for a retransmission

of an uncompressed packet, and thus does not have this drawback. In addition,

Optimizations 31

the PPP protocol defines its own type of the header compression [ECB99]. Some

TCP options, for example timestamps, prevent the header compression.

For a typical packet of 296 bytes, the overhead from TCP/IP headers is

reduced from 40 to 3-5 bytes, or in other words from 13 % to 1 - 1.5 %. Reducing

the overhead is especially important for connections with a small MSS.

We do not use any compression method in our tests. Using the header com-

pression is problematic on links with errors [DMK�00]. Also it would make the

comparison of optimizations difficult, because the header compression cannot be

applied to segments with a timestamp or SACK TCP option.

4.4.3 Explicit Congestion Notification

A packet loss serves TCP as an implicit notification of congestion. The Ex-

plicit Congestion Notification (ECN) is a complementary mechanism to the active

queue management [FR99, RF99]. ECN provides means to notify a TCP connec-

tion of incipient congestion as an alternative to dropping packets. ECN uses bits

in the packet header to indicate that this packet has passed through a congested

router. The receiver echos the congestion indicator in ACKs. Upon reception of

a congestion notification the sender must react in the same way as for a single

dropped packet, that is reducing the transmission rate.

ECN has obvious advantages in avoiding unnecessary dropped packets (since

there is actually free queue space to store them), avoiding excessive delays due to

retransmissions and wasted bandwidth on the path from the sender to the router.

We have not used ECN in our tests. In future, it will be interesting to eval-

uate performance benefits of ECN. It is important not to treat a lack of ECN noti-

fication for a lost packet as a signal of a corruption loss. An ECN-capable packet

can well be dropped by a non-ECN aware router or even by an ECN router un-

der heavy congestion. Performing aggressive retransmissions in such a case is a

network equivalent of “pouring gasoline on a fire” [Jac88].

Performance Model 32

5 Performance Model

5.1 Network Model

In this section we describe the network model for the network architecture de-

picted in Figure 2 on page 11. The network model is implemented in a real-time

emulator. The model of downlink and uplink channels is shown in Figure 9. The

last-hop router is modeled as a queue. The wireless link is modeled as a com-

bination of the transmission and propagation delays; error losses are modeled as

packet drops. The uplink and downlink directions in our model are independent.

In the downlink direction, packets arriving to the emulator are placed in the

queue. The maximum queue length can be limited; when an overflow happens,

packets are tail-dropped. The RED algorithm can be used to actively control the

queue length. Packets are taken from the head of the queue one-by-one for “trans-

mission” over the link. The length of the transmission delay is computed accord-

ing to the line rate and the packet size. When the transmission delay for a packet

is completed, the packet is moved to the propagation delay node. The length of

the propagation delay is the same for all packets independently of packet size.

Several packets can be in the propagation delay node simultaneously. Error losses

are modeled by dropping packets after the propagation delay. If a packet was not

dropped, it is sent out from the emulator.

On the uplink direction, the transmission and propagation delay nodes are

used in the same way as for downlink. We assume no queueing in the uplink

direction. With our workload model described in Section 5.2 the chance of two

or more packets (i.e. acknowledgments) to be queued in the uplink direction is

negligible. Error losses are modeled in the same way as for downlink.

We assume the link rate of 9600 bps and the propagation delay of 200 ms

hereinafter. Our error model assumes that all corrupted packets are detected and

discarded on the wireless link, that is, no corrupted packets are delivered to the

IP layer. The packet drop probability is independent of the packet size. This

may be considered inaccurate because, for example, the loss rate of small ACKs

is the same as of large packets. However, this is the case, for example, when

Performance Model 33

Drops

Drops

Delay
Propagation

Delay
Transmission Queue

Propagation
Delay

Transmission
Delay

downlink

uplink

Figure 9: The model of downlink and uplink data channels.

acknowledgments are piggybacked to large data packets.

We do not attempt to include the Internet in the model, although the Internet

is a part of our environment (Figure 2). Modeling of the Internet is hard because

of its great heterogeneity and the rate at which its properties change [Pax97a].

Indeed, there is a tremendous number of different routes in the Internet, each one

with its own characteristics that differ sometimes by several orders of magnitude.

More importantly, no single route remains in a constant state. In our case the

situation is more tractable than in general, because the wireless link is in most

cases the bottleneck in the route between the mobile host and the fixed host in

the Internet. Data packets traveling through the Internet experience a varying

propagation delay and have a certain loss probability to congestion on the route.

Thus for our purposes a very simple model that would take these factors into

account would suffice. An alternative approach would be to perform tests when a

fixed host is really located somewhere in the Internet. Our emulator tool allows

for such kind of a setup.

Another different need for simulating the Internet comes from the obligation

to prove that modifications to TCP improving its performance on wireless links

do not have a negative impact on the performance in other environments and do

not introduce a congestion danger on the network. This is much harder than build-

Performance Model 34

ing a simple model to reflect the effect of the Internet on a data packet traveling

toward the mobile host. Since it is almost an intractable task to evaluate how a

modified TCP would perform in all scenarios possible in the Internet, we should

be conservative in what changes we can implement, and prefer improvements that

have been already widely evaluated by the research community.

5.2 Workload Models

The type of workload used for evaluation of different solutions has a significant

effect on the results. Important factors characterizing the workload are the behav-

ior of individual connections, the number of simultaneous connections and their

relative position in time. By the relative position in time we mean whether the

connections are started at once, or a at a certain time interval. Below we briefly

discuss existing types of workload, and outline the workload we have used. Work-

load parameters are given in detail later in Section 6.2.

Two major classes of connections are recognized: the bulk data traffic and

the interactive traffic. Bulk data connections consist of a continuous flow of data

packets of the maximum size allowed by the network. The interactive data traffic

is of sporadic nature, small varying size packets are sent at irregular intervals. A

typical example of a bulk connection is a file transfer using FTP, while a telnet

application is an example of an interactive connection. These two traffic classes

require different service from the network. For bulk data connections the latency

and its variance are not very important, but the total throughput is. For interactive

connections, extensive delays irritate the user.

A relatively recent addition to these two traditional traffic classes is the Hy-

pertext Transfer Protocol (HTTP) protocol [BLFF96], which is both of the in-

teractive nature, since the user is waiting for a web page to be displayed, and

can transfer a considerable amount of data, for example, in images. This third

class representstransactional traffic and in addition to HTTP also includes larger

database queries. On the average, a duration of a single HTTP/TCP connection is

short, often too short to get a valid picture of the network condition. Modern web

browsers tend to generate a large amount of simultaneous connections. Such an

Performance Model 35

approach can congest the network, because short connections tend to overestimate

the available network capacity. Modeling HTTP requires constructing a complex

model of request-reply interaction, which defines the number and size of retrieved

objects.

A TCP connection between hosts A and B is a combination of two indepen-

dent data flows, from A to B, and from B to A. In theory, A can transfer data to B

in a bulk data transfer, while B to A as an interactive traffic. However, in practice

most bulk data connections are unidirectional, that is, application data is only sent

in one direction, and only the acknowledgments are sent in the other direction.

The next question is how many simultaneous TCP connections are present

on the radio link. It is quite common for several connections to share the link

simultaneously. For example a file transfer is proceeding in the background while

the user is browsing the web. The last question is whether the concurrent connec-

tions are started at once, or in some time interval, for example 10 seconds.

In most of our tests we use a single unidirectional bulk data transfer as the

workload. In the limited set of tests we use two such transfers. We chose such

a workload type because it is commonly used, and it is simple to implement and

analyze. We do not consider any “background” traffic that would compete with

the workload under study. We believe that in mobile computing most data is

transferred from the fixed host to the mobile. Indeed, a typical nomadic user is in

most cases concerned with obtaining information rather than sending it. Examples

of downlink-intensive applications are web browsing, a file transfer and email.

The downlink direction is also more interesting from the modeling point of view,

because the downlink is more problematic than the uplink. Thus we use downlink

transfers in our tests.

In general, a sound TCP study should include a consideration of competing

traffic [AF99]. Furthermore, both congestion sensitive flows (e.g. TCP) and con-

gestion insensitive flows (e.g. a UDP video stream) should be studied. We draw

most of our observations from experiments without competing traffic, that may

seem somewhat limited. However, we aim our study at the specific environment

and do not claim that the conclusions hold in general. Indeed, a typical mobile

user would mostly have a single or a few TCP transfers concurrently. Resource

demanding real-time traffic seems hardly reasonable on a slow wireless link.

Performance Model 36

5.3 Baseline TCP

In Section 2.1.3 we outline the requirements for a TCP implementation and stated

our selection of the Linux OS. Appendix A lists fixes and improvements we have

made to the Linux implementation. We refer hereinafter tobaseline TCP as our

TCP implementation with a fixed set of control parameters and algorithms.

Table 1: Features in the baseline TCP.

Feature Availability

Fast Retransmit, Fast Recovery ON

New Reno ON

Initial Window Size, segments 2

SACK OFF

MSS, bytes 256

Timestamps OFF

Delayed Acks ON

Advertised Window, kilobytes 32

PPP Compression OFF

Control Block Interdependence OFF

Recent studies of the Internet traffic indicate that both the New Reno algo-

rithm and the Selective Acknowledgment (SACK) option are widely used nowa-

days [All00]. We have decided to include the New Reno algorithm into the base-

line, but leave SACK as one of optimizations. This corresponds to the current

practise and makes easier comparisons with the related work. Table 1 presents a

list of relevant parameters that we assume in the baseline TCP if not mentioned

otherwise. Appendix A gives more details and justification behind such a choice.

Experimental Design 37

6 Experimental Design

6.1 Test Environment

In this section we describe our test environment: how the network model shown in

Figure 9 on page 33 is realized in our emulator, and how the workload generator

(TTCP, see the next section) is positioned. Figure 10 shows the protocol layering

in our setup. The workload source, the Seawind emulator [AGKM98] and the

workload sink are each located on a separate computer in Ethernet LAN (802.3).

The test TCP traffic is encapsulated into a regular TCP/IP connection. Seawind

runs on a normal Linux workstation, as it gets the test TCP traffic from a standard

socket interface.

IP

socket socket

��������
��������
��������

��������
��������
��������

PPP

NPA

802.3

pty

tty

workload source

TCP

TTCP

TCP

IP

socket socket

802.3

Seawind emulator

SW

��������
��������
��������

��������
��������
��������

tty

pty

IP

TCP

socket socket

workload sink

PPP802.3

NPA TTCP

IP | TCP | PPP | IP | TCP IP | TCP | PPP | IP | TCP

Figure 10: Seawind protocol stack. The modified TCP code is dashed.

The Seawind emulator implements the network model shown in Figure 9

by delaying and dropping TCP segments in real time. The downlink and uplink

channels are parameterized independently. The maximum length of the queue in

packets is controlled by a parameter; in the “unlimited” mode the length is only

bound by the available memory. For the purpose of our experiments, it can be

considered infinite. One packet is considered currently “in transmission” and is

not counted into the queue limit. Through the rest of the thesis we assume that the

“router buffer size” does not include this packet. Link errors can be emulated as a

fixed pattern (e.g. 5th and 12th packets are dropped) or with a specified dropping

probability per each packet.

The workload source and sink computers use the TCP implementation un-

Experimental Design 38

der study. The Point-to-Point (PPP) protocol is used as a link service for a TCP

connection under study. This corresponds to a real-world situation, as most dial-

up users employ PPP. We have disabled all kinds of header and data compression,

as well as escaping of control characters in PPP (except the flag byte and the es-

cape byte). The PPP/IP/TCP traffic is forwarded by the Network Protocol Adapter

(NPA) via a TCP/IP connection to the Seawind emulator.

6.2 Test Network

We use a modifiedTTCP tool for generating traffic for TCP connections. TTCP

is a popular public domain tool for testing the end-to-end throughput by sending

a high volume of data over the network [Sti90]. TTCP is commonly used as a

workload generator for bulk data transfers. We have made several extensions to

TTCP to make it more suitable to our needs. In our tests we used 400 writes of

256-byte data blocks, which results in a 100-kilobyte transfer.

kaide pihlaisto tainio

fs
cfg,logs

saviletto
GUI

Internet

Private LAN (10 Mpbs Ethernet)

Department LAN (100 Mpbs Ethernet)

TTCP TTCPSeawind

Figure 11: Test Network.

The Nagle algorithm in TCP does not allow transmission of segments smaller

than MSS if such a segment is currently in flight [Nag84]. The Nagle algorithm

Experimental Design 39

could disturb our results. To prevent this, the size of data passed by TTCP for

transmission with a single write is set to the MSS of the connection. We have also

afterwards checked the minimum segment size in a connection trace. We could

also have used a socket optionTCP_NODELAY to disable Nagle altogether.

For our tests we have used a specially set up network, as shown in Figure 11.

Test TCP connections are performed inside a private LAN, so that interference

with other traffic is avoided. From computers in the test network, onlykaide is

connected to the department network. Other computers cannot directly communi-

cate with other hosts but those located in the private LAN. Computers connected

to the department LAN can use a file serverfs. All machines in the test network

are 400-MHz Celerons, running RedHat Linux 6.1.

TTCP runs onpihlaisto and tainio that are used as a traffic source or sink

interchangeably. The Seawind emulator runs onkaide. The configuration and

control of all tests can be done remotely from a computer in the department LAN

that runs the user interface. We store configuration and log files in thefs server,

so that they are accessible fromkaide and any other computer in the department

LAN.

We have used the Linux kernel version 2.2.14 onkaide that runs the em-

ulator. In principle, any stable kernel version could be used, since we are not

concerned with the details of kernel behavior here. The only requirement is the

correct and timely execution of the emulator code. In contrast,pihlaisto andtainio

are running the kernel with the modified TCP implementation as they are used for

workload generation.

As all tests are done in a private LAN, the overhead of transmitting workload

data from source to emulator to sink is minimal and predictable. In our tests we

have ignored this overhead. In the future, it can be measured and substracted

from a delay calculations in the emulator. We also have not run any tests where a

workload generator is located in the Internet. It can be done in future, by making

kaide forward packets between the private LAN and the Internet.

Experimental Design 40

6.3 Measurement Data

The experimental data is collected from three sources: the tcpdump, the seawind

log and the kernel log. Tcpdump captures a binary dump of the packets at the

TCP sender and receiver. Seawind logs down the amount of delay imposed on

each packet, the current queue size when a packet is enqueued, and events such as

a packet drop due to exceeding a queue limit or as a result of a random error. The

kernel log provides values of TCP internal variables, e.g. the congestion window

(cwnd), the slow start threshold (ssthresh), the retransmission timeout (rto). We

believe that the overhead caused by collecting the logs is negligible and does not

affect our results.

For TCP bulk data connections the most important performance metric is the

throughput. It is defined as the ratio of the amount of user data transfered during

the connection over the connection elapsed time (taken at the sender from the first

SYN until the last FIN-ACK). We compare the effect of different optimizations

based on achieved throughput. In addition we summarize the following metrics for

each test: the elapsed time (quartiles and median), throughput (median), number

of TCP retransmission (median), number of packets dropped in Seawind (median).

For the detailed analysis of some cases we can also produce the trace of the queue

size in Seawind. Because of the large number of tests, it is important to use

automated tools for the basic analysis. We have developed a set of scripts to

produce the statistics and graphs of TCP connections.

The number of replications of a test that we could perform has been lim-

ited by time considerations. A typical test connection takes approximately two

minutes to complete. Taking into account the broad parameter space, we could

make 15 replications per each test. We have used common random numbers as a

standard variance-reduction technique, see e.g. [LK91]. All comparison tests of

different TCP optimizations at the presence of random error losses were run with

the same sequence of packet drops. This allows obtaining statistically sound data

with the limited number of replications.

We have extended the Linux kernel to print the values of internal TCP vari-

ables into the kernel log. In general,tcpstats is used for this purpose [Pad98]; it is

Experimental Design 41

the de-facto complement for tcpdump in the TCP analysis. Unfortunately, tcpstats

is available only for BSD Unix OS. In the future, we plan porting tcpstats to Linux

and developing an analysis tool similar to MultiTracer [LRK�99]. The new tool

will allow automatically combining and analyzing data from tcpdump, tcptrace

and the Seawind emulator.

6.4 Test Cases

Here we define a scope and parameters of our test sets. To select interesting cases

that are worth a detailed study, a large number of different optimizations with a

smaller number of repetitions was run in preliminary tests.

Unlimited router buffer. In the first set of tests we examine the behavior of TCP

in the environment with the unlimited router buffer. We assume the presence of

constant bandwidth and propagation delay, but lack of any other adverse factors,

such as variable delays, error or congestion losses. We will use the baseline TCP

in this set of tests.

Optimal router buffer size. The purpose of this set of tests is to determine a

range of router buffer sizes where TCP performs well on an error-free link. We

will use the baseline TCP and the router buffer size of 3, 4, ..., 12, 15, 20, 40

packets.

Single-packet error losses. We will try to locate and analyze the cases when an

error loss of a single segment has a significant effect on performance. We drop a

segment at different places in a connection. In general, we expect single-segment

errors to be recovered well by the fast retransmit algorithm without noticeable

performance degradation. An interesting effect can be expected when error losses

happen at the point of time when the router buffer overflows. Also errors at the

beginning of a connection would interrupt the slow start and force the conges-

tion avoidance. It will be interesting to find out whether this would reduce the

Experimental Design 42

throughput of the connection. We expect bad effects to be caused by retransmis-

sion timeouts. We will use the baseline TCP in this set of tests and a varying size

of the router buffer.

Random errors losses. In our largest set of tests we study the effect of random

error losses on the TCP performance. To determine the packet loss rates to exper-

iment with, we took 1 % as the lowerbound of interest. The non-congestion loss

rate of less than 1 % is given as acondition for “normal” operation of the TCP

protocol [Ste97]. Some of the related work has experimented with a broad range

of loss probabilities (from 0.001 to 1) [MSMO97]. We selected the uniformly

distributed loss rates of 2 %, 5 % and 10 %. An alternative and possibly better

option would be to fix the Bit Error Rate (BER) and compute the loss probabil-

ity separately per each packet based on its size. Unfortunately, our emulator tool

does not yet allow this. Following a practice commonly used in the related work,

the error rates are assigned to good, mediocre and poor radio link conditions. We

have selected the router buffer sizes of 3, 5, 7, 10 and 20 packets.

Table 2 lists the optimizations we have experimented with. There is a large

number of possible interesting combinations, for example the limited receiver

window and the increased initial window. However, due to the time limits we

did not tests the combinations. The receiver’s advertised window size was limited

by setting the receiver buffer with a socket option. Although we have used two

and four kilobytes for the size of the receive buffer, the actual advertised window

was slightly less in TCP traces. This is the reason for the values given in Table 2.

Not only the total throughput at the end of the connection is interesting,

but also the throughput taken at different stages of a connection, e.g. when 15

kilobytes of data was sent. In this way we can estimate the behavior of shorter

transaction-type connections. Due to concerns about the validity of such ap-

proach, no detailed conclusions on the transactional workload can be made. We

could not run tests with the transactional workload because of time limits.

Burst error losses. We will perform a limited number of tests with the baseline

TCP to study the effect of error bursts on TCP performance. We will experiment

Experimental Design 43

with three-packet and ten-packet router buffers. The length of the burst period is

set to ten and twenty seconds and the loss rate during the burst to 20% and 40%.

We will trigger an error burst in the middle (after 60 seconds) of an otherwise

error-free connection.

RED. It is interesting to experiment with RED parameters to determine a set

of values appropriate for our environment. The goal for a single connection is

to prevent the start-up buffer overflow. For the case of two parallel connections,

we also evaluate how fair the bandwidth is shared. We have selected three router

buffer sizes of 10, 20, and 40 packets. We have omitted smaller sizes from our ex-

periments, because the start-up buffer overflow problem is not severe for a small

buffer. In addition, we do not expect RED to perform well for a small buffer

size. The weight of the current queue size in calculating the moving average of

the queue size should be rather high to detect the start-up buffer overflow. The

maximum drop probability should not be high to prevent retransmission timeouts.

During preliminary tests we have identified the following parameters to be in-

teresting for the detailed experimentation: the queue weight of 0.2 and 0.4, the

maximum drop probability of 0.05 and 0.1. The minimum and maximum thresh-

olds are fixed at 25 % and 75 % correspondingly. We will use the baseline TCP

Table 2: TCP optimizations tested with random errors.

Label iw win sack newreno mss

segm. bytes on/off on/off bytes

baseline 2 32696 off on 256

iw3 3

iw4 4

win2K 2048

win4K 3840

sack_on on

newreno_off off

mss536 536

Experimental Design 44

over an error-free link in this set of tests.

Measurement Results and Analysis 45

7 Measurement Results and Analysis

In this section we provide and analyze the most interesting cases found in the tests.

The complete results of tests are given in Appendix B.

7.1 Unlimited Router Buffer

First, we examine the behavior of TCP over a router buffer of unlimited size. We

assume the presence of constant bandwidth and the propagation delay, but no vari-

able delays, error or congestion losses. Detailed results are given in Appendix B.1.

Figure 12(a) shows the behavior of the baseline TCP under such conditions. The

achieved throughput of 1002 bytes per second (Bps) is close to the maximum in

this environment. Taking into account 20 bytes of TCP header, 20 bytes of IP

header, 5 bytes of PPP header and 3 bytes of PPP trailer, a SYN segment of 56

bytes and SYN-ACK of 57 bytes, and the elapsed time of 102.15 seconds we get

the raw throughput of 1192 Bps. This is very close to the line rate of 1200 Bps.

TCP behaves as expected; the FlightSize increases until the size of the re-

ceiver window is reached. When it happens, the FlightSize stays constant at the

size of the receiver window; the congestion window does not affect the connec-

tion. When the FlightSize equals the receiver window (32 kilobytes), 127 seg-

ments are queued in the network. In our environment, where the FlightSize of a

few segments is sufficient for utilizing the pipe capacity, this is undesirable for

reasons discussed in Section 3.1 on page 19. We will add here that the measured

RTT also includes the queuing time and thus is highly inflated with regard to the

actual RTT of the link. It can be seen from Figure 12(a) that RTT reaches 30 sec-

onds compared to less than a second in the beginning of the connection. A second

connection started over the same link will experience a timeout because the time

required to get an acknowledgment for the first packet would be greater than the

initial RTO value (3 seconds). The second connection will have difficulties in ob-

taining a fair share of the link bandwidth, when the first connection has effectively

blocked the link.

An adaptive link layer can change the strength of the radio channel coding

Measurement Results and Analysis 46

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(a) No segment losses.

0 50 100 150 200
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(b) Three last segments and the first retransmis-

sion are lost.

Figure 12: TCP behavior with the unlimited router buffer size.

when the number of transmission errors on the link changes [Lud00]. A stronger

coding schema allows to reduce the packet loss rate over the link at the expense of

the reduced line rate. A complete lack of segment losses creates the overbuffering

problem and is not desirable in our environment. In order to keep the FlightSize

at the optimal level, TCP needs a low rate of segment losses. Losses due to con-

gestion at the router buffer and losses due to link errors are treated in the same

way by TCP. Thus a link can provide a low level of error losses with a beneficial

effect on TCP. For an adaptive link it means that the channel coding can be kept

as weak as possible to maximize the line rate, leaving a low level of packet losses

to be noticed and corrected by TCP.

7.2 Optimal Router Buffer Size

The purpose of this set of tests is to determine a range of router buffer sizes ap-

propriate for TCP in our environment. We have used the baseline TCP and an

error-free link and set the router buffer size to 3, 4, ..., 12, 15, 20, 40 packets.

Detailed results are given in Appendix B.1. The achieved throughput is shown

Measurement Results and Analysis 47

in Figure 13. We observe that throughput is good for buffer sizes in the range

of 3 to 12 packets. A buffer size as small as three packets already allows filling

the pipe capacity. Figure 14 shows the receiver-side trace of a TCP connection

over the router buffer size of three packets. Segments are arriving with an interval

equal to the transmission delay of the link. Periodic packet losses at the end of

each congestion avoidance cycle do not affect the performance. This is because a

packet loss occurs “before” the wireless link and no data is actually retransmitted

over the wireless link. These losses are recovered well by the fast retransmit, and

although the lost segment is delivered behind five other segments, a bulk transfer

application does not notice the delay.

Variations in throughput for the buffer size of 3-12 packets have a simple

explanation. If a congestion control cycle happens to occur at the end of a con-

nection, it causes a retransmission timeout. Figure 15 shows that the connection

suffers from the RTO for the six-packet router buffer, but does not for the five-

packet buffer. The connection in Figure 15(b) simply does not have any more

data to send when the periodic packet loss due to a router buffer overflow occurs.

Three DUPACKs cannot arrive making the fast retransmit impossible. Whether

RTO occurs or not for the given router buffer size depends on the amount of data

sent over the connection.

Starting with the buffer size of 15 packets, performance decreases. The

severity of the start-up buffer overflow increases with the buffer size. Some ex-

amples are given later in Section 7.4.2 on page 58. The start-up buffer overflow

for a 15-packet buffer already lasts for 40 seconds. Thus, we can conclude that

any buffer size in the range of 3-12 packets offers the adequate performance for a

TCP connection in our environment.

7.3 Single-Packet Error Losses

Normally, single-packet error losses do not have a significant impact on TCP per-

formance. We have identified the following special cases when a single-packet

loss has a notable effect. We have not run a systematic set of tests for this section,

but searched for interesting events in all test sets and experimented with dropping

Measurement Results and Analysis 48

0 5 10 15 20 25 30 35 40
945

950

955

960

965

970

975

980

985

990

995

Buffer size in router, packets

T
C

P
 th

ro
ug

hp
ut

, B
ps

Figure 13: Throughput vs. buffer size

for the baseline TCP over an error-free

link.

0 2 4 6 8 10 12
4.2

4.4

4.6

4.8

5

5.2

5.4
x 10

4

Time, s
S

eq
ue

nc
e

nu
m

be
r,

 b
yt

es

data rcvd
ack sent

Figure 14: Even a buffer size of three

packets allows filling the pipe capacity.

The receiver-side trace.

0 1 2 3 4 5 6 7 8
9.6

9.7

9.8

9.9

10

10.1

10.2

10.3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) Buffer of 5 packets, the fast retransmit.

0 1 2 3 4 5 6 7 8
9.6

9.7

9.8

9.9

10

10.1

10.2

10.3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b) Buffer of 6 packets, the RTO.

Figure 15: The congestion avoidance cycle causes periodic packet losses. If a loss

is at the end of the connection, RTO occurs.

Measurement Results and Analysis 49

segments at the different phases of TCP connections. The cases concern a loss of:

a) the SYN, SYN-ACK, the first segment from the initial window,

b) a data segment when the number of packets in flight is less than four,

c) a retransmitted segment.

In all cases, the adverse effect is related to the retransmission timeout, be-

cause the fast retransmit is impossible in these situations.

In case a) a valid RTT sample has not yet been collected; the default value of

three seconds is used for RTO. A usual timeout value without a back off based on

RTT measurement is three to five seconds for our connections. Thus, the initial

timeout value of three seconds is appropriate for our environment. Figure 16

shows an example where the first segment in the initial window of two segments

is lost. The sender has to recover by a timeout to retransmit the lost segment.

Furthermore, the retransmission is lost, and the second recovery attempt is made

after back off of RTO as discussed in case c).

In case b) there are not enough packets in flight to reach the threshold of

three DUPACKs to trigger the fast retransmit. The FlightSize of less than four

segments occurs when a connection is limited by the congestion or receiver win-

dow, or does not have enough data to send. For a bulk data connection, the latter is

only possible at the end of the transfer. Figure 15 shows an example of a timeout

at the end of the connection. In case segment lossesdo suddenly happen on an

overbuffered link (with a large router buffer), the recovery time is long, as shown

in Figure 12(b) on page 46. Four last segments in a connection are lost (three orig-

inal and the first retransmission). The retransmission of a lost segment happens

only after 40 seconds after its loss.

The receiver window can be set smaller than four MSSs only in pathological

cases. On the other hand, a small congestion window preventing the fast retrans-

mit is a common case. In the beginning of a connection the congestion window

is not yet large enough to allow fast retransmit. In another part of a connection,

the congestion window may be small as a result of packet losses. Figure 25 on

page 57 shows RTOs when the congestion window is too small to allow fast re-

transmits. However, the penalty of RTO recovery compared to the fast retransmit

Measurement Results and Analysis 50

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

Figure 16: Loss of a packet in the ini-

tial window causes a timeout.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 17: Repeated buffer overflows

when the slow start threshold is set too

high after RTO.

is not large in such a case.

In case c) a segment retransmitted by the slow start or by the fast retransmit

is lost. Note that fast retransmits are not allowed for segments retransmitted by

the slow start after RTO [APS99]. A loss of a segment retransmitted due to a time-

out causes an RTO back off; the timeout value is doubled on each unsuccessful

retransmission attempt. Figure 16 shows the back off of RTO from three seconds

to six seconds at the second retransmission. The backed off RTO value can be as

large as two minutes. The back off has a particularly bad effect if the original RTO

value was inflated. In this case the backed off RTO can be a minute already at the

second retransmission, as shown in Figure 12(b) on page 46. The connection time

is doubled.

A loss of a fast-retransmitted segment or a segment retransmitted during the

fast recovery phase by New Reno always leads to a timeout. This introduces a

notable delay, as can be seen in Figure 24 on page 57. Another potential problem

is shown in Figure 17. The loss of a retransmitted segment during the fast recov-

ery phase causes a timeout. At this time, the FlightSize is huge. The slow start

threshold is set to a half of the FlightSize, which is more than the FlightSize at the

time when the first packet loss is detected. The slow start threshold, which is too

high, overestimates the available network capacity and the second buffer overflow

Measurement Results and Analysis 51

happens similar to the start-up buffer overflow. Such a bad behavior can continue

through the connection lifetime. A correct interpretation of the congestion control

standard [APS99] requires to halve the slow start threshold twice if a loss of a

retransmitted packet is detected.

A positive effect of an error loss can be in the prevention of the start-up

buffer overflows. Figure 18 shows two graphs, one without error losses and an-

other when the eighth segment is lost due to an error. An error loss triggers a

fast retransmit that decreases the transmission rate and limits the value of the slow

start threshold early. The start-up buffer overflow is avoided, and the connection

proceeds smoothly for its lifetime.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) No error losses

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b) The 8th packet is lost

Figure 18: A single-packet error prevents the buffer overflow. Baseline TCP over

the seven-packet router buffer.

7.4 Random Error Losses

7.4.1 Throughput at the end of connections

In this section we compare the performance of TCP optimizations based on the

achieved throughput at the end of a connection. Detailed results are given in

Appendix B.2–B.8.

Measurement Results and Analysis 52

Good radio conditions. In this set of tests the error loss rate is relatively low,

an average eight packets and eight acknowledgments are dropped in a connection.

The performance picture we observed with different TCP optimizations is shown

in Figure 19(a). The general trend is an increase of throughput from the buffer

size of three packets up to ten packets for about 6 %. For the 20-packet buffer the

throughput increases for a limited receiver window, decreases for a larger initial

window, and stays the same for other optimizations. We explain it as follows.

For smaller router buffer sizes, there is a higher probability of RTOs due to a

short congestion avoidance cycle and due to a small FlightSize at the presence of

error losses. For larger buffer sizes, the severity of the start-up buffer overflow in-

creases. In general, all modifications and the baseline perform well; the achieved

throughput is less than the maximum by only 3-15 %. Multiple error losses rarely

occur in a single FlightSize of data; most losses are recovered well by a fast re-

transmit. Errors do have some effect: the throughput is less than in an error-free

link as was shown in Figure 13 on page 48. The key performance problem is the

start-up buffer overflows.

TCP with SACK provides better throughput than other modifications for

all buffer sizes and about 7 % better than the baseline. The performance gain is

achieved mostly by more efficient recovery from the start-up buffer overflow, as

shown in Figure 20(a). Other modifications, in general, perform slightly better

than the baseline. TCP with the increased initial window achieves 1-2 % better

throughput than the baseline. The reason for the improvement is the prevention

of RTOs when segments are lost in the very beginning of a connection, when the

FlightSize may not yet be enough to trigger a fast retransmit. Figure 21 illustrates

the idea. The initial window of four segments is better than of three segments for

all buffer sizes but for a ten-packet buffer. There are two scenarios which explain

this. In the first scenario, a larger FlightSize caused by the initial window of four

segments triggers one additional DUPACK that resets the retransmission timer.

A few more seconds are required before the RTO timer expires, Figure 22. In

another scenario, the larger FlightSize causes another buffer overflow due to the

slow start threshold, which is too high, as was shown in Figure 17 on page 50.

The second buffer overflow increases the connection time by about ten seconds.

A limited receiver window yields worse throughput than the baseline for a

Measurement Results and Analysis 53

2 4 6 8 10 12 14 16 18 20
840

860

880

900

920

940

960

980

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(a
)

G
oo

d
ra

di
o

co
nd

iti
on

s
(2

%
er

ro
r

ra
te

)

2 4 6 8 10 12 14 16 18 20
600

650

700

750

800

850

900

950

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(b
)

M
ed

io
cr

e
ra

di
o

co
nd

iti
on

s
(5

%
er

-

ro
r

ra
te

)

2 4 6 8 10 12 14 16 18 20
400

450

500

550

600

650

700

750

800

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(c
)

P
oo

r
ra

di
o

co
nd

iti
on

s
(1

0
%

er
ro

r

ra
te

)

F
ig

ur
e

19
:

T
hr

ou
gh

pu
to

fT
C

P
at

th
e

en
d

of
co

nn
ec

tio
ns

.
T

he
av

er
ag

e
ov

er
15

re
pl

ic
at

io
ns

.
N

ot
e

th
e

di
ffe

re
nt

sc
al

e.

Measurement Results and Analysis 54

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) Efficient recovery by SACK. The router

buffer is seven packets.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time, s
S

eq
ue

nc
e

nu
m

be
r,

 b
yt

es

data sent
ack rcvd
win

(b) Efficient prevention by a limited receiver

window of four kilobytes. The router buffer is

twenty packets.

Figure 20: Possible solutions to the start-up overflow of the router buffer.

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) The baseline TCP (initial window of two

segments).

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b) Initial window of four segments.

Figure 21: The RTO in the connection start due to an error loss is present for the

baseline, but is prevented by the increased initial window.

Measurement Results and Analysis 55

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) Initial window of three segments.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b) Initial window of four segments.

Figure 22: The larger initial window triggers a partial ACK that resets RTO and

delays the recovery of other segments.

buffer size of up to ten packets. A smaller window size limits the FlightSize and

decreases the buffer overflow in the connection startup. However, this advantage

is overruled by disturbing the fast recovery procedure. This happens as follows.

After a fast retransmit the baseline TCP transmits a new segment per each addi-

tional DUPACK during the fast recovery. A small receiver window prevents the

transmission of new segments during the fast recovery as shown in Figure 23. For

a larger buffer size, limiting the receiver window improves the throughput. With

a larger buffer size, fast retransmits at the end of congestion avoidance cycles are

less frequent and thus limiting the fast recovery at each fast retransmit has less

effect. In contrast, the prevention of the start-up buffer overflow becomes increas-

ingly important. Figure 20(b) on page 54 shows that the start-up buffer overflow

is reduced to the minimum, and the fast recovery is not disturbed afterwards.

TCP without New Reno (and SACK) normally recovers by RTO when two

or more segments are lost from the same flight. We noticed that it can have either

a bad or a good effect on performance. When a few segments are lost, New Reno

recovers faster than Reno. However, when a large number of segments are lost,

the slow start recovers much faster than New Reno which is retransmitting only

one segment per RTT. For a buffer size of ten and twenty packets Reno performs

Measurement Results and Analysis 56

0 1 2 3 4 5
3.8

3.9

4

4.1

4.2

4.3

4.4
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a) Receiver window of 32 kilobytes.

0 1 2 3 4 5
3.8

3.9

4

4.1

4.2

4.3

4.4
x 10

4

Time, s
S

eq
ue

nc
e

nu
m

be
r,

 b
yt

es

data sent
ack rcvd
win

(b) Receiver window of 2 kilobytes.

Figure 23: The limited receiver window prevents sending new data after the fast

retransmit.

better than New Reno, because a large number of segments lost in the start-up

buffer overflow is recovered faster.

Mediocre radio conditions. In this set of tests the error loss rate is moderate,

an average 20 packets and 20 acknowledgments are dropped in a connection. The

performance picture we observed is shown in Figure 19(b). As a general trend,

the throughput increases from the buffer size of three packets to the buffer size

of seven packets. This is because for smaller router buffer sizes, there is a higher

probability of RTOs due to a short congestion avoidance cycle and due to a small

FlightSize at the presence of error losses. For a part of TCP optimizations the

throughput drops slightly for a buffer size of ten packets, and increases again for

the buffer size of 20 packets. We found that connections over the buffer size of

ten packets are prone to timeouts after the fast retransmit, as shown in Figure 24.

The buffer size of 20 packets may actually have less frequent start-up buffer

overflows than a smaller buffer size. This is because it takes a longer time to

increase the FlightSize to a large enough value to cause the overflow. There is

a higher probability of an error loss during this time. If an error loss occurs,

Measurement Results and Analysis 57

the buffer overflow is reduced or prevented. SACK TCP achieves about 10 %

less than the maximum throughput, other optimizations about 30 % less. Start-up

buffer overflows are not frequent and less severe than in “good radio” tests. The

frequency of TCP timeouts is moderate, one-two per connection. The back off of

RTO has an especially bad effect on performance.

The effect of modifications is generally the same as in “good radio” tests. A

small receiver window of two kilobytes performs worse than the baseline for all

buffer sizes because it disturbs the fast recovery after the fast retransmit. As the

amount of error losses is greater than in “good radio” tests, fast retransmits are

more frequent. The distortion of fast recovery overrules the prevention of buffer

overflows. A similar reasoning holds for Reno TCP, the more efficient recovery

from buffer overflows is less important here than the recovery of multiple error

losses. We observe that Reno performs worse than the baseline for all buffer

sizes.

0 10 20 30 40 50
4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

Figure 24: RTO occurs if the fast re-

transmitted packet is lost.

0 5 10 15
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

Figure 25: RTOs are not much worse

than the fast retransmit when the

FlightSize is small.

Poor radio conditions. In this set of tests there are 40 segments and 40 ac-

knowledgments lost on the average in a connection. The performance picture

we observed is shown in Figure 19(c). The throughput increases from the router

buffer size of three packets up to seven packets. This is because for smaller router

Measurement Results and Analysis 58

buffer sizes, there is a higher probability of RTOs due to a short congestion avoid-

ance cycle and due to a small FlightSize at the presence of error losses. For buffer

sizes above seven packets, the throughput stays nearly the same. This is because

at the high level of error losses the FlightSize is small and thus start-up buffer

overflows are not present for a larger buffer size. SACK throughput is about 25

% less than the maximum, other modifications achieve only about 50 % of the

maximum. The main reason of the performance problem is the back off of RTO.

SACK TCP proceeds smoothly with a FlightSize of a few packets, timeouts

are rare. The difference in performance among other TCP optimizations is not

significant. Due to the small FlightSize the RTT on the link is close to the mini-

mum and RTO is not inflated. This makes timeouts less severe than in a case of

overbuffering. Figure 25 shows that the RTO recovery is not much worse than

with a fast retransmit.

At a high level of error losses TCP tends to underestimate the available

network capacity and to spend time in waiting for the RTO to expire. As all

TCP optimizations but SACK utilize only half of the line rate, using two or more

parallel connections could yield better total throughput (we have not yet run tests

that can confirm or disprove this). Although each individual connection proceeds

slowly, the total throughput for an application is improved. Such an approach can

improve the performance of applications without any modifications to the baseline

TCP. For example, many web browsers open several concurrent TCP connections

which is beneficial at the presence of error losses.

Before we have modified Linux TCP to use all valid samples for resetting the

backed off RTO and the counter of retransmissions as described in Appendix A.2,

some of connections terminated before all data has been sent. We find it useful to

increase the maximum number of retransmission attempts when operating over a

lossy link.

7.4.2 Throughput at the beginning of connections

In this section we evaluate the performance of TCP optimizations at the beginning

of a connection. In such a way we can estimate the performance for a transaction-

Measurement Results and Analysis 59

like traffic composed of shorter connections. We calculate throughput for	 bytes

based on the elapsed time until the	th byte is acknowledged. Our estimation is

not fully accurate, because the segments just before	 are affected by segments

that carry data beyond	 that are not present in a connection sending only	 bytes.

For example, Figure 15(b) on page 48 shows a timeout at the end of the connec-

tion. If some more data would be send over the connection, the timeout could be

avoided.

We would like to select	 in a way that would capture the effect of the start-

up buffer overflow. This is not straightforward, as the number of bytes transmitted

before the overflow and the length of the recovery from the overflow depends on

the buffer size. Figure 26 shows the overflow and the recovery for the router buffer

of three, seven, and twenty packets. The value of	 of 15 kilobytes is appropriate,

because it captures the overflow and a part of the recovery for a buffer size of

twenty packets. Also it is not very distant from the end of the recovery for a

three-packet buffer.

Figure 27(a) shows the throughput of a connection in “good radio” condi-

tions with a 2 % packet loss rate after 15 kilobytes have been transfered. SACK

performs well for all buffer sizes, about 15 % less than the maximum. The base-

line TCP and the increased initial window TCP suffer from a long recovery and

do not perform well for larger buffer sizes. In opposite, a limited receiver window

prevents buffer overflows and performs increasingly well for larger buffers. TCP

with disabled New Reno recovers faster than the baseline TCP for larger buffers.

Figure 27(b) shows throughput of a connection in “mediocre radio” condi-

tions with a 5 % packet loss rate after 15 kilobytes have been transfered. At this

error rate the prevention and recovery of buffer overflows becomes less important.

We observe that the limited receiver window and Reno do not perform as well

as in “good radio”. SACK performance is not worse than in “good radio” condi-

tions. This is because SACK is able to avoid practically all RTOs in the beginning

of connections. Using SACK in combination with the FACK algorithm allows

to trigger the fast retransmit even when the FlightSize is less than four segments.

TCP with the increased initial window performs slightly better than the baseline

TCP because some timeouts due to error losses are avoided.

Measurement Results and Analysis 60

0 2 4 6 8 10 12 14
0

2000

4000

6000

8000

10000

12000

14000

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(a
)

3-
pa

ck
et

ro
ut

er
bu

ffe
r.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(b
)

7-
pa

ck
et

ro
ut

er
bu

ffe
r.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd

(c
)

20
-p

ac
ke

tr
ou

te
r

bu
ffe

r.

F
ig

ur
e

26
:

B
uf

fe
r

ov
er

flo
w

at
th

e
be

gi
nn

in
g

of
co

nn
ec

tio
ns

.
N

ot
e

th
e

di
ffe

re
nt

sc
al

e.

Measurement Results and Analysis 61

Figure 27(c) shows throughput of a connection in “poor radio” conditions

with a 10 % packet loss rate after 15 kilobytes have been transfered. In this envi-

ronment start-up buffer overflows are rare and the key problem is retransmission

timeouts. SACK performance is good, about 25 % less than the maximum. Other

modifications achieve only half of the possible throughput.

7.5 Burst Error Losses

We have performed a limited number of tests with the baseline TCP to study the

effect of an error burst on TCP performance. Tests were run with a three-packet

and ten-packet buffers, burst length of ten or twenty seconds and a packet error

loss rate of 20% and 40%. We triggered an error burst after 60 seconds from

the connection start. There were no error losses other than during the error burst.

Detailed results are given in Appendix B.9. In general, we found that TCP is prone

to RTOs already at a 10-second burst with a loss rate of 20 %. This occurs because

in the beginning of the burst the FlightSize is halved several times down to the

threshold value of four packets; after that already a single-packet loss causes an

RTO. We noticed that normally little or no data is transferred during an error burst.

A back off of RTO to a value larger than the burst length causes the connection to

be idle even after the error burst, when the link quality is perfect. We also noticed

that New Reno is not very useful for recovery during an error burst, because of

the high probability of a retransmission loss. The loss of a segment retransmitted

by the New Reno algorithm anyway leads to a timeout.

For a three-packet buffer we have mostly observed several timeouts during

a burst; the small FlightSize does not generate enough DUPACKs to trigger a fast

retransmit. However, RTO is not inflated and even in the case of backed off RTOs

transmission resumes shortly after the error burst ends. Because the FlightSize is

small, some new segments that are not retransmissions can often be sent during

the burst. Getting some new segments through is important, because an ACK

for non-retransmitted data can be used to reset the backed off RTO to the normal

estimate of RTT.

For a ten-packet buffer we have observed a number of varying combinations

Measurement Results and Analysis 62

2 4 6 8 10 12 14 16 18 20
550

600

650

700

750

800

850

900

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(a
)

G
oo

d
ra

di
o

co
nd

iti
on

s
(2

%
er

ro
r

ra
te

)

2 4 6 8 10 12 14 16 18 20
500

550

600

650

700

750

800

850

900

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(b
)

M
ed

io
cr

e
ra

di
o

co
nd

iti
on

s
(5

%
er

-

ro
r

ra
te

)

2 4 6 8 10 12 14 16 18 20
350

400

450

500

550

600

650

700

750

800

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(c
)

P
oo

r
ra

di
o

co
nd

iti
on

s
(1

0
%

er
ro

r

ra
te

)

F
ig

ur
e

27
:

T
hr

ou
gh

pu
t

of
T

C
P

at
th

e
be

gi
nn

in
g

of
co

nn
ec

tio
ns

af
te

r
15

ki
lo

by
te

s
w

as
tr

an
sf

er
ed

.
T

he
av

er
ag

e
ov

er
15

re
pl

ic
at

io
ns

.
N

ot
e

th
e

di
ffe

re
nt

sc
al

e.

Measurement Results and Analysis 63

of fast retransmits and RTOs. A connection often stays idle after the burst ends

for a time of approximately half of the burst length. A large FlightSize at the time

of the burst occurrence prevents sending new data during the burst. Thus, no valid

RTT sample can be collected and a backed off RTO cannot be reset. In addition,

RTO at the time of the burst is already inflated because of the queueing time.

Using a smaller buffer size is beneficial in the environment where error bursts are

present.

7.6 Random Early Detection

We have experimented with a broad range of parameters of the RED algorithm to

determine a set of values appropriate for our environment. Using values of param-

eters recommended for “normal” routers [FJ93] is definitely inappropriate. This

is because a “normal” router typically has a large number of simultaneous flows

and connects high bandwidth links, while in our case only one or few connections

exist and the link is slow.

We did not find parameter values that would give a performance improve-

ment for a single connection. Detailed results are given in Appendix B.10. RED

is not able to prevent the start-up buffer overflow, which is the main performance

problem for a single connection. Calculating a packet marking probability based

on a moving average of the queue size is not efficient for this purpose. TCP

increases the transmission rate very rapidly during the slow start, but the moving

average increases slower (Figure 28). A drop decision based on the increase of the

moving average comes too late, because the queue overflow has already occurred.

Furthermore, additional dropped packets would only harm the performance be-

cause the connection would not reduce its transmission rate anyway until the first

packet loss due to the buffer overflow is detected.

For two simultaneous connections started at the interval of ten seconds using

RED gives an improvement in throughput and fairness for larger buffer sizes. We

use the fairness index as defined in [Jai91]. The performance of two baseline TCP

connections over a drop-tail router is shown in Table 3. The explanation of the

table format is given in Appendix B on page 85. Using RED with appropriate

Measurement Results and Analysis 64

parameters gives an improvement of 10 % in throughput compared to the baseline

for a twenty-packet and forty-packet buffer, as shown in Table 4. The fairness

among the connections is slightly improved as well. Detailed results are given in

Appendix B.12 and Appendix B.11.

Here we present the detailed analysis of the start-up buffer overflow shown

in Figure 29. The segment marked1, is the last segment transmitted before the

overflow is detected after the third DUPACK (2) for the lost segment (3). The

number of segments between1 and2 is the FlightSize when a packet loss is de-

tected, it is about twice as large as the router buffer. Approximately, every second

segment from this flight is lost due to the buffer overflow. The time between points

2 and3 shows the current RTT of the link, it is about six seconds. The number

of segments between3 and5 is the FlightSize at the moment when the first loss

occurs. Thus, the segment marked5 is the latest segment to be dropped by an

active queue management algorithm, so that a packet loss is detected before point

3. When a loss of5 would be detected, the FlightSize is not grown anymore and

additional losses are prevented. The number of segments between points6 and

7 is the minimum FlightSize to trigger the fast retransmit, four segments. Thus,

segment8 is the earliest segment of the connection, which loss would be recov-

ered by the fast retransmit. The segments before that can be recovered only by the

retransmission timeout.

Thus, if we drop a segment between points5 and 6 we avoid the buffer

overflow at the cost of a single packet drop. It is better to select a packet closer to

point 5 to avoid underutilization of the link. A practical implementation of such

a policy could define a soft queue limit in the router, for example ten packets.

The hard limit can be two-three times larger than the soft limit. When the current

queue size reaches the soft limit, a single packet is dropped. When the TCP sender

detects a packet loss, it decreases the transmission rate and the buffer overflow is

prevented. If the hard queue limit is reached, the router drops all arriving packets.

Extending this algorithm to work well for a few concurrent connections requires a

counter or a timer-based mechanism to determine when to drop another packet in

case the load is not decreased, i.e. a previously dropped packet was not from the

most aggressive connection. Some heuristics that favors connections with small

packets can be implemented to protect interactive flows. The suggested algorithm

Measurement Results and Analysis 65

Table 3: Two baseline TCP connections over the drop-tail buffer.

Name throughput
(min)

throughput
(max)

throughput
(avg)

throughput
(fairness)

buf_10 549.00 654.00 601.50 99.24

buf_20 428.00 600.00 514.00 97.28

buf_40 456.00 589.00 522.50 98.41

Table 4: Two baseline TCP connections over the RED buffer.

Name throughput
(min)

throughput
(max)

throughput
(avg)

throughput
(fairness)

buf_10_maxp0.05_w0.2 448.00 662.00 560.00 96.72

buf_10_maxp0.05_w0.4 465.00 549.00 505.00 99.41

buf_10_maxp0.1_w0.2 453.00 548.00 517.50 99.00

buf_10_maxp0.1_w0.4 467.00 519.00 489.00 99.37

buf_20_maxp0.05_w0.2 492.00 577.00 531.00 99.46

buf_20_maxp0.05_w0.4 507.00 554.00 529.50 99.72

buf_20_maxp0.1_w0.2 485.00 579.00 527.00 99.60

buf_20_maxp0.1_w0.4 504.00 584.00 543.50 99.77

buf_40_maxp0.05_w0.2 503.00 609.00 564.00 99.20

buf_40_maxp0.05_w0.4 496.00 577.00 535.00 99.22

buf_40_maxp0.1_w0.2 491.00 569.00 532.00 99.20

buf_40_maxp0.1_w0.4 524.00 607.00 574.50 99.62

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

Time (s)

S
iz

e
of

 th
e

ro
ut

er
 q

ue
ue

 (
pk

ts
)

queue trace
0.05 weight
0.2 weight
0.4 weight

Figure 28: Trace of the router queue

and its smoothed average. The base-

line TCP over a 7-packet buffer.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

1

2

3

45

8

7

6 data sent
ack rcvd

Figure 29: Analysis of the start-up

buffer overflow. The baseline TCP

over a 20-packet buffer.

Measurement Results and Analysis 66

is similar to the Dual Threshold Early Packet Discard [CH00].

7.7 Avoiding Multiple Fast Retransmits

In this section we discuss the issue of avoiding multiple fast retransmits in a more

general environment than was assumed in the thesis. We have not run a system-

atic set of tests for this section, but a few specific tests. Fast retransmits are not

allowed after a retransmission timeout until all retransmitted data are acknowl-

edged [FH99]. A more careful version of this rule requires that at least one non-

retransmitted segment is acknowledged. Most TCP implementations, including

Linux and FreeBSD, use the less careful version of the rule, which only requires

that all retransmitted segments are acknowledged. We have collected some em-

pirical evidence suggesting that the more careful version should be implemented

in all TCPs. The less careful version interprets DUPACKs for the last retransmit-

ted segment as an indication of its loss and triggers the fast retransmit. Thus, the

advantage of the less careful version is a quick recovery in case the last retrans-

mitted segment was really lost. The more careful version, on the contrary, argues

that in many cases DUPACKs for the last retransmitted are due to the out-of-order

delivery of segments before the last retransmitted segment. Assuming the loss of

the last retransmitted segment in such a case is a dangerous choice as it can lead

to a spurious retransmission of many segments. The more careful version simply

ignores DUPACKs for the last retransmitted segment.

We found two scenarios that show the necessity of the more careful ver-

sion. In the first scenario, the retransmission timeout is caused by a long delay

on the link [LRK�99]. The timeout is spurious, since no data was actually lost.

Unnecessary retransmitted segments generate a number of DUPACKs for the last

received segments and trigger a false retransmit. For example Figure 30 shows

a TCP connection in Unix FreeBSD 4.1 after a delay. The connection collapses

after a spurious timeout, because of the several spurious retransmissions triggered

by DUPACKs and an impatient retransmission timer. The Eifel algorithm is aimed

to prevent unnecessary retransmissions after a spurious timeout [LK00].

In the second scenario, several adjacent segments are lost in the middle of

Measurement Results and Analysis 67

0 50 100 150 200 250
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 30: Spurious retransmissions

after a delay in FreeBSD Unix.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

Figure 31: Spurious retransmissions

after an error burst in Linux.

the flight. After a retransmission timeout, part of the segments are unnecessarily

retransmitted. Figure 31 shows a Linux TCP connection in this situation. DU-

PACKs trigger a false fast retransmit twice. New Reno makes the situation worse

by making more unnecessary retransmissions. Implementing the more careful

version of the “bug fix” would prevent the invalid behavior in both scenarios.

Conclusion 68

8 Conclusion

The wireless environment presents a challenge for an efficient data transport over

slow and lossy links. We have performed an experimental evaluation of TCP in

an emulated wireless environment. We consider a network model including a

lossy wireless link and a last-hop router with a limited-size buffer. We have ex-

plored how well the state-of-art TCP perform, identified the key reasons behind

the behavior, and determined the effect of different TCP optimizations. We ex-

perimented with multiple error rates and buffer sizes over TCP connections with

different values of the initial window, the receiver window, with or without SACK

and New Reno. The experimental data is obtained with a state-of-art TCP im-

plementation of the Linux operating system and a real-time network emulator

Seawind. Our main result is a comparative study and analysis of different TCP

optimizations.

Before we obtained what we call a “baseline TCP”, several bugs were fixed

in the Linux TCP implementation. We reported some of them and we intend to

make the patched kernel publicly available. We found our methodology partic-

ularly useful as it allows an easy comparison of different TCP implementations.

For example, we ran and compared the same set of tests with different versions of

Linux or BSD operating systems.

We use a simple model of a lossy wireless network connected to a fixed

host via a router. Packets are lost on the wireless link due to transmission errors

(corruption), and in the router due to a buffer overflow (congestion). Our work-

load model is a downlink unidirectional bulk data transfer of 100 kilobytes. The

main problems we address are the start-up buffer overflow, overbuffering, optimal

buffer size, fair sharing of resources, the effect of single, random and burst errors.

In the first set of tests we have shown that an unlimited buffer size in the

router is not desirable. It creates the overbuffering problem and worsens the re-

covery from sudden data losses. We have determined a range of the router buffer

sizes, of 3-12 packets, giving the optimal performance on an error-free link. We

have located and analyzed the cases where a loss of a single packet significantly

affects the performance of TCP. The bad effect appears when a packet loss leads

Conclusion 69

to RTO, while the good effect appears in the prevention of the start-up buffer

overflow.

Our largest group of tests is with random errors on the link. The error rate

was set to 2, 5, and 10 % with a queue limit of 3, 5, 7, 10, and 20 packets.

We studied how different TCP optimizations perform in such an environment.

We found that the optimal buffer size to be 7-10 packets. Throughput of the

baseline TCP is adequate at a 2 % error rate, but is only half of the line rate

for a 10 % loss rate. TCP with SACK performed significantly better than other

modifications under all conditions, especially at higher loss rates. The increased

initial window gives slightly better throughput than the baseline. A small receiver

window (2 kilobytes) decreases throughput, especially for smaller buffer sizes.

A moderate window (4 kilobytes) is beneficial for larger buffers. Disabling New

Reno is helpful at a low error rate and larger buffer sizes; in other cases it is worse.

In general, our results are coherent with a previous evaluation of Reno, New Reno,

and SACK TCP at the presence of error losses [FF96].

We have also studied what time it takes to transmit the first 15 kilobytes of

data in the bulk data connections. In this way we can estimate the performance

of a transaction-type traffic. The performance picture is different than for whole

connections. The optimal buffer size varies with error rates and TCP optimiza-

tions. A limited receiver window and disabled New Reno are quite helpful at the

low error loss rate. SACK performs better than other modifications in this case,

as well.

We have studied the effect of an error burst on the TCP connection. Typi-

cally, little or no data gets through during the burst already at a 20 % packet loss

rate. After the bursts ends, the transmission is resumed immediately, except when

RTO was backed off several times during the burst. In the later case the connec-

tion is idle approximately for half of the burst length after the link quality returns

to normal. The likelihood of the RTO back off is increased with the buffer size.

This is because most packets sent during the burst are retransmissions, but not the

new data. In such a case no valid RTT sample can be collected and RTO is more

likely backed off several times. Thus a smaller router buffer size is preferable for

a link where error bursts are possible.

Conclusion 70

We found that RED worsens the performance when only a single TCP con-

nection is present. This is because the moving average of the queue size does not

react timely to the start-up buffer overflow, and late packet drops only worsen the

recovery. For two concurrent TCP connections, RED improves the throughput

and the fairness among the connections, but only for large buffer sizes (20, 40

packets). We have provided the detailed analysis of the start-up buffer overflow

and have suggested using a dual threshold drop policy to prevent it. However,

its implementation and evaluation is left for future work. A deployment of the

Explicit Congestion Notification (ECN) could make RED more attractive in our

environment, because ECN avoids congestion-related losses. The implementation

of ECN in our emulator and a performance evaluation is left for future work.

We have collected some empirical evidence suggesting that the more careful

version of the “bug fix” for preventing multiple fast retransmits should be imple-

mented in all TCPs. In the first scenario, multiple fast retransmits are caused by a

long delay on the link and a spurious timeout and in the second scenario, by a loss

of a block of segments in the middle of the flight. New Reno adversely affects the

performance at the presence of multiple fast retransmits.

REFERENCES 71

References

[ADG�00] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Hender-

son, J. Heidemann, J. Touch, H. Kruse, S. Ostermann, K. Scott, and

J. Semke. Ongoing TCP research related to satellites. IETF RFC

2760, 2000.

[AF99] M. Allman and A. Falk. On the effective evaluation of TCP.ACM

Computer Communication Review, 5(29), October 1999.

[AFP98] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial

Window. IETF RFC 2414, September 1998.

[AGKM98] T. Alanko, A. Gurtov, M. Kojo, and J. Manner. Seawind: Soft-

ware requirements document. University of Helsinki, Department

of Computer Science, September 1998.

[All00] M. Allman. A web server’s view of the transport layer.ACM Com-

puter Communication Review, 30(5), October 2000.

[APS99] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.

IETF RFC 2581, April 1999.

[Bal98] H. Balakrishnan.Challenges to Reliable Data Transport over Het-

erogeneous Wireless Networks. PhD thesis, Computer Science Divi-

sion, Univ. of California at Berkeley, Berkeley, CA, August 1998.

[BBJ92] D. Borman, R. Braden, and V. Jacobson. TCP extensions for high

performance. IETF RFC 1323, May 1992.

[BCC�98] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Es-

trin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson,

K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Rec-

ommendations on queue management and congestion avoidance in

the Internet. IETF RFC 2309, April 1998.

[BKG�00] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Perfor-

mance Enhancing Proxies. IETF Internet draft “draft-ietf-pilc-pep-

05.txt”, November 2000. Work in progress.

REFERENCES 72

[BKPV96] B. Bakshi, N. Krishna, D.K. Padhan, and N. Vaidya. A compar-

ison of mechanism for improving performance of TCP over wire-

less links. InACM SIGCOMM, Stanford, California, August 1996.

ACM.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer pro-

tocol – HTTP/1.0. IETF RFC 1945, May 1996.

[BPSK96] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz.

A comparison of mechanisms for improving TCP performance over

wireless links. InProceedings of ACM SIGCOMM ’96, Stanford,

CA, August 1996.

[Bra89] R. Braden. Requirements for internet hosts – communication layers.

IETF RFC 1122, October 1989.

[BSAK95] H. Balakrishnan, S. Seshan, E. Amir, and Randy H. Katz. Improving

performance of TCP/IP over wireless networks. InProceedings of

the first annual international conference on Mobile computing and

networking (MOBICOM 95), pages 2–11. ACM, 1995.

[BSK95] H. Balakrishnan, S. Seshan, and R. H. Katz. Improving reliable

transport and handoff performance in cellular wireless networks.

ACM Wireless Networks, 1(4), December 1995.

[BV97] S. Biaz and N. Vaidya. Using end-to-end statistics to distinguish

congestion and corruption losses: A negative result. Technical Re-

port TR97-009, Texas A&M University, August 9, 1997.

[BW97] G. Brasche and B. Walke. Concepts, services and protocols of the

new GSM phase 2+ general packet radio service.IEEE Communi-

cations Magazine, pages 94–104, August 1997.

[CH00] R. Cohen and Y. Hamo. Balanced packet discard for improving TCP

performance in ATM networks. Tel Aviv, Israel, March 2000.

[DMK �00] S. Dawkins, G. Montenegro, M. Kojo, V. Magret, and N. Vaidya.

End-to-end performance implications of links with errors. Inter-

REFERENCES 73

net draft “draft-ietf-pilc-error-06.txt”, November 2000. Work in

progress.

[DMKM00] S. Dawkins, G. Montenegro, M. Kojo, and V. Magret. End-to-end

Performance Implications of Slow Links. IETF Internet draft “draft-

ietf-pilc-slow-05.txt”, November 2000. Work in progress.

[DNP99] M. Degermark, B. Nordgren, and S. Pink. IP header compression.

IETF RFC 2507, February 1999.

[ECB99] M. Engan, S. Casner, and C. Bormann. IP header compression over

PPP. IETF RFC 2509, February 1999.

[FF96] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno,

and SACK TCP. ACM Computer Communication Review, July

1996.

[FH99] S. Floyd and T. Henderson. The NewReno Modification to TCP’s

Fast Recovery Algorithm. IETF RFC 2582, April 1999.

[FJ93] S. Floyd and V. Jacobson. Random Early Detection Gateways for

Congestion Avoidance.IEEE/ACM Transactions on Networking,

1(4):397–413, August 1993.

[FR99] S. Floyd and K. K. Ramakrishnan. A proposal to add explicit con-

gestion notification (ECN) to IP. IETF RFC 2481, January 1999.

[GSM98] GPRS service description. ETSI GSM 03.60, August 1998.

[Jac88] V. Jacobson. Congestion avoidance and control. InProceedings of

ACM SIGCOMM ’88, pages 314–329, August 1988.

[Jac90] V. Jacobson. Compressing TCP/IP headers for low-speed serial

links. IETF RFC 1144, February 1990.

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation and

Modeling. John Wiley & Sons, 1991.

REFERENCES 74

[KA98] S. Kent and R. Atkinson. IP Encapsulating Security Payload (ESP).

IETF RFC 2406, November 1998.

[LK91] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis.

McGraw-Hill, second edition, 1991.

[LK00] R. Ludwig and R. H. Katz. The Eifel Algorithm: Making TCP Ro-

bust Against Spurious Retransmissions.ACM Computer Communi-

cation Review, 30(1), January 2000.

[LRK�99] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Joseph. Multi-

layer tracing of TCP over a reliable wireless link. InProceedings

of the ACM SIGMETRICS International Conference on Measure-

ment and Modeling of Computing Systems (SIGMETRICS-99), vol-

ume 27,1 ofSIGMETRICS Performance Evaluation Review, pages

144–154, New York, May 1–4 1999. ACM Press.

[Lud99] R. Ludwig. A case for flow-adaptive wireless links. Technical Re-

port CSD-99-1053, University of California, Berkeley, 1999.

[Lud00] R. Ludwig.Eliminating Inefficient Cross-Layer Interactions in Wire-

less Networking. PhD thesis, Aachen University of Technology,

April 2000.

[MDK �00] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya.

Long Thin Networks. IETF RFC 2757, January 2000.

[MM96] M. Mathis and J. Mahdavi. Forward acknowledgement: Refining

TCP Congestion Control. InProceedings of ACM SIGCOMM ’96,

October 1996.

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective

Acknowledgement Options. IETF RFC 2018, October 1996.

[MP92] M. Mouly and M. Pautet.The GSM System for Mobile Communica-

tions. Europe Media Duplication S.A., 1992.

REFERENCES 75

[MSMO97] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic be-

havior of the TCP congestion avoidance algorithm.ACM Computer

Communication Review, 27(3), July 1997.

[MV97] M. Mehta and N. Vaidya. Delayed duplicate-acknowledgments: A

proposal to improve performance of TCP on wireless links. Techni-

cal report, Texas A&M University, December 1997.

[Nag84] J. Nagle. Congestion control in IP/TCP internetworks. IETF RFC

896, January 1984.

[PA00] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer.

IETF RFC 2988, November 2000.

[Pad98] V. N. Padmanabhan.Addressing the Challenges of Web Data Trans-

port. PhD thesis, University of California at Berkeley, September

1998.

[Pax97a] V. Paxson. Automated packet trace analysis of TCP implementa-

tions. InProceedings of the ACM SIGCOMM Conference: Appli-

cations, Technologies, Architectures, and Protocols for Computer

Communication (SIGCOMM-97), volume 27 ofComputer Commu-

nication Review, pages 167–180, Cannes, France, September 14–18

1997. ACM Press.

[Pax97b] V. Paxson. End-to-end internet packet dynamics. InACM SIG-

COMM ’97, pages 139–152, September 1997. Cannes, France.

[PN98] K. Poduri and K. Nichols. Simulation studies of increased initial

TCP window size. IETF RFC 2415, September 1998.

[Pos81] J. Postel. Transmission Control Protocol. IETF RFC 793, September

1981.

[Rah93] M. Rahnema. Overview of the GSM system and protocol architec-

ture. IEEE Communications Magazine, 31(4):92–100, April 1993.

[RF99] K. Ramakrishnan and S. Floyd. A proposal to add Explicit Conges-

tion Notification (ECN) to IP. IETF RFC 2481, January 1999.

REFERENCES 76

[Rom88] J. L. Romkey. Nonstandard for transmission of IP datagrams over

serial lines: SLIP. IETF RFC 1055, June 1988.

[Sim93] W. Simpson. The point-to-point protocol (PPP). IETF RFC 1548,

December 1993.

[SP98] T. Shepard and C. Partridge. When TCP Starts Up With Four Packets

Into Only Three Buffers. IETF RFC 2416, September 1998.

[Sta00] W. Stallings.Data and Computer Communications. Prentice-Hall,

sixth edition, 2000.

[Ste95] W. Stevens.TCP/IP Illustrated, Volume 1; The Protocols. Addison

Wesley, 1995.

[Ste97] W. Stevens. TCP slow start, congestion avoidance, fast retransmit,

and fast recovery algorithms. IETF RFC 2001, January 1997.

[Sti90] R. H. Stine. FYI on a network management tool catalog: Tools

for monitoring and debugging TCP/IP internets and interconnected

devices. IETF RFC 1147, April 1990.

[Tan96] A. S. Tanenbaum.Computer Networks. Prentice-Hall International,

1996.

[TMW97] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic

patterns and characteristics.IEEE Network, 11(6):10–23, Novem-

ber/December 1997.

[Tou97] J. Touch. TCP control block interdependence. IETF RFC 2140,

April 1997.

[Vai99] N. Vaidya. Tutorial on TCP for wireless and mobile

hosts, 1999. Available at: http://cashew.cs.tamu.edu/fa-

culty/vaidya/seminars/tcp-tutorial-aug99.ppt.

[WS95] G. Wright and W. Stevens.TCP/IP Illustrated, Volume 2; The Im-

plementation. Addison Wesley, 1995.

Baseline TCP 77

A Baseline TCP

This appendix1 gives the detailed description of the baseline TCP. The TCP im-

plementation we use to execute the tests is based on Linux kernel2.3.99-pre9.

The situation with Linux kernel was quite inconsistent since the final stable re-

lease2.4 had not yet been published (and still has not). Many new patches came

every week. We decided to take thepre9 version and start working with it because

we did not have the time to wait for the final release that we still might have to

patch to achieve a TCP that works like we would wish. This section outlines the

modifications we have made to thepre9 kernel. We call this modified TCP ver-

sionBaseline TCP, as it represents the standard behaving TCP that is outlined in

[Pos81], [Bra89] and [APS99].

A.1 TCP parameters, options and settings

The TCP standards let the TCP implementations choose some of the parameters

and for their own convenience. This section outlines the behavior ofBaseline TCP

in more detail. Because NewReno TCP modification is accepted as a possible fast

recovery modification in [APS99], we have included it in the Baseline TCP as it

represents the "best current practice".

A.1.1 NewReno TCP modification

When receiving apartial ack the TCP sender retransmits the following segment

immediately. The question is, should the congestion window be suppressed. It is

not clearly stated in [FH99] if a retransmissions is counted as a new transmitted

segment which should be taken into account by lowering thecwnd by one SMSS.

The alternative interpretation is that retransmissions do not count when calculat-

ing the new value forcwnd. In this case, a new segment may be transmitted

in addition to the retransmitted one. We took the latter interpretation and so the

Baseline TCP sends a new data segment after receiving a partial acknowledgment.
1Written chiefly by Panu T. Kuhlberg

Baseline TCP 78

After the TCP sender has received theACK that acknowledges all segments

up to and including the variablerecover, the fast recovery period is ended. [FH99]

gives two possible values for the new value of thecwnd: it can be set tossthresh

or flightsize + SMSS. We chose the latter alternative as it reduces the possible burst

that may follow after the recovery period. After fast recovery is exited, thecwnd

is raised by one SMSS upon every incomingACK until ssthresh is reached, as

in regularslow start. However, if thecwnd is exactly four segments, while the

third duplicate acknowledgment arrives, thecwnd is not reduced after exiting the

algorithm upon the newACK that acknowledges all the four segments. Thus, after

the recovery, thecwnd is retained, and congestion avoidance is used to further in-

crease thecwnd. By doing this, thecwnd is not lowered beyond four segments,

and the possibility to use fast retransmits is maintained2.

The NewReno specification [FH99] describes a “bugfix”. The question is,

how to avoid multiple fast retransmits. Because the data sender remains in fast

recovery until all of the data outstanding when fast retransmit was entered has

been acknowledged, the problem of multiple fast retransmits can only occur after

a retransmission timeout. After RTO, the highest segment sent during the recovery

period is recorded to a new variablesend_high. If the data sender receives three

dupacks that do not coversend_high, fast retransmit is not triggered. Two dif-

ferent variants of exists for the “bugfix”, calledCareful andLess Careful [FH99].

The Less Careful variant triggers fast retransmit if theACKs covers the variable

send_high and theCareful variant enters fast retransmit only if theACK covers

more thansend_high. Baseline TCP implementsLess Careful variant of the

“bugfix”.

A.1.2 Recovery from RTO

Linux kernel was modified to implement “BSD style” RTO recovery3.
2If the cwnd is less than four segments, there are not enough segments in the network that

would produce three duplicate acks to trigger a fast retransmit.
3We call it BSD style, because Baseline TCP imitates the behavior that was used in the 4.4BSD-

Lite version.

Baseline TCP 79

A.1.3 RTO calculation

The RTO calculations were not changed from original Linux kernel2.3.99-pre9.

However, there are some occasions, where the RTO calculation is not accurate.

Linux uses thecwnd as a parameter, when setting the RTO. Due to Intel Celeron’s

processor achitecture and undefined functionality in C-programming language

conserning right shift operations, acwnd that is multiple of 32, creates very high

RTO values. When analyzing the tests, the effect of invalid RTOs were observed,

and excluded from the test results.

A.1.4 Delayed acknowledgments

Baseline TCP makes use ofdelayed acknowledgments. The threshold for delaying

anACK is 200ms. Using a bandwidth of 9600bits/second, the time between the

arrival of two consecutive data segments of size 296 bytes is more than 200ms.

Therefore, in most of our tests each data segment is acknowledged separately.

When using higher bandwidths, two segments are "quickacked"4 in the beginning

of the connection before thedelayed acknowledgments are taken into use.

A.1.5 Receiver’s advertised window

Due to implementation problems, Linux kernel 2.3.99-pre9 advertised a window

of 32Kbytes in maximum even if the socket buffer size was bigger. We have

not modified this in any way and therefore, Baseline TCP has a socket buffer

of 64Kbytes of which 32 Kbytes is advertised. This feature does not affect the

tests and the tests should be interpreted similarly as a "regular" TCP connection

with a socket buffer and advertised window of 32 Kbytes. When we run tests

with a reduced advertised window, the size announced is the size of the advertised

window, not the size of the socket buffer.
4A term used to describe that each data segment is acknowledged separately

Baseline TCP 80

A.1.6 Disabling control block interdependence

Linux kernel 2.3.99-pre9 used control block interdependence forssthresh,

RTT and RTT variance. We disabled this feature and made it a sysctl option.

Table 5 summarizes the algorithms, parameters and their values used in

Baseline TCP.

Table 5: Baseline TCP

Item Value and explanation

Slow start As defined in [APS99]

Congestion Avoidance As defined in [APS99]

Initial window (IW) Initial window of 2 segments

NewReno As defined in [FH99] and Appendix A.1.1

cwnd after exiting NewReno flightsize + SMSS (Appendix A.1.1)

NewReno “Bugfix” Less Careful variant (Appendix A.1.1)

DelayedACK threshold 200ms (Appendix A.1.4)

Quickacks Two segments in the beginning of the connection

Advertised window (rwnd) 32Kbytes (Appendix A.1.5)

Control Block InterdependenceDisabled by default (Appendix A.1.6)

SACK SACK option is disabled

Timestamps timestamps are disabled

A.2 Implementation issues

This section describes the modifications which were made to Linux kernel version

2.3.99-pre9. There are two types of modifications: bug fixes and new TCP options

added for the IWTCP project.

Baseline TCP 81

A.2.1 New TCP options

Linux provides a mechanism to set kernel-specific options at runtime. We added a

set of new TCP options for the purposes of IWTCP. These options can be accessed

in /proc/sys/net/ipv4 in the Linux filesystem.

� iwtcp_cbi. Control Block Interdependence for congestion control variables

was used in the unmodified Linux. We added this parameter to make Con-

trol Block Interdependence a user-selectable option.

� iwtcp_iw. This parameter can be used to set the initial congestion window

in the beginning of the connection.

� iwtcp_newreno. Unmodified Linux used NewReno unconditionally. How-

ever, we added this option to follow the regular Reno congestion control

policy instead of NewReno.

� iwtcp_quickacks. The parameter sets the number of quickacks used to

quickly exit the early slow start phase. If the value is set to 0, the regular

Linux-behavior is used. (i.e. number of quickacks is rwnd / (2 * MSS)).

� iwtcp_srwnd_addr. This parameter is used to activate the shared adver-

tised window for connections originating from specified IP address. The

user may specify the least meaningful octet of the peer IP address, for which

the connections use shared advertised window. Only the connections from

10.0.0.* address family may be shared. This might not be the correct func-

tionality for the real world (in which case the sharing should be done per

device interface), but for the IWTCP purposes we decided to follow the

above mentioned logic when deciding whether to share the advertised win-

dow or not.

The TCP receiver calculates the advertised window following the standard

procedures, but after the calculation it checks whether the sender’s IP ad-

dress was same than what specified with this parameter. In such case, the

receiver calculates the current amount of shared advertised window and sets

minimum of the original and shared window to the TCP window advertise-

ment field.

Baseline TCP 82

� iwtcp_srwnd_size. This parameter specifies the size of the advertised win-

dow in bytes to shared among the connections originating from the IP ad-

dress specified byiwtcp_srwnd_addr parameter. For the sharing purposes,

our modification keeps track of the number of connections open from the

specified source address. When a connection sharing the window receives

data, the available space in the window is decreased by the amount of data

received. When application reads data from a connection sharing the win-

dow, available space in the window is increased by the amount of data read

by the application. The size of the window advertisement for each acknowl-

edgement is
�	���
�_�	��
�
��_��
������		�����	_���	��, wherereal_wnd

is the calculated window which would normally be advertised, based on the

available buffer size for the socket,avail_shared is the amount of shared

window space currently available andconnection_count is number of con-

nections sharing the window.

If there are new connections opened to share the advertised window, the

available window for old connections would decrease, becauseconnec-

tion_count would increase. However, the advertised window will not be

shrinked in such a case, but if a connection was advertising more than its

share, no new window space will be advertised when new data arrives. This

way the connection’s advertised window will gradually decrease when new

data arrives.

� iwtcp_rto_behaviour. With this parameter the user may choose from three

policies of how to act when retransmission timeout occurs.LINUX (1) is

the unmodified Linux behavior, which allowed new data to be sent while

retransmitting the segments from retransmission queue. In particular, du-

plicate ACKs increasedcwnd, which made this possible.HOLDCWND

(2) holds thecwnd value as 1 during the transmission from post-RTO re-

transmission queue.BSD (3) is the default used in the IWTCP performance

tests, named after BSD because it mimics the BSD style go-back-N be-

havior when RTO expires. This is achieved by making to alternations to

the LINUX style: the duplicate ACKs do not increase thecwnd when re-

transmitting from post-RTO retransmission queue, and only the number of

originally sent packets is compared tocwnd when deciding on whether to

Baseline TCP 83

send new data. Original Linux compared the sum of original transmissions

and retransmissions to thecwnd.

A.2.2 Bug fixes

Following fixes were made to the Linux kernel version 2.3.99-pre9 before running

the IWTCP performance tests.

� Linux keeps the data received or to be transmitted in data blocks called

sk_buffs. Eachsk_buff has over 100 bytes of control data in addition to

the segment data. Additionally, Linux allocates a fixed size memory block

(usually 1536 bytes) for each IP packet it receives, instead of using the

actual MTU in allocation requests.

The user may limit the amount of memory allocated for each connection

by setting socket options for sending and receiving socket buffer size. If

the MTU is significantly smaller than the size of the fixed memory block

allocated, the socket buffer limits will be reached, even though the amount

of actual data received is significantly smaller. However, Linux uses the

amount of actual data received for the basis of receiving window advertise-

ments, which causes the receiver to advertise more it is allowed to receive

when the MTU size is small. As a result, if the Linux receiver gets more

segments than it has allocated space in its buffers, it discards all packets in

its current out-of-order queue.

As this behavior was not acceptable, we modified the TCP code to use actual

data size in sending and receiving buffer allocations instead of the fixed

predefined size.

� When exiting from fast recovery, unmodified Linux sender setcwnd to the

value ofssthresh. In many situations, this caused a burst ofssthresh

packets, harmful in environments with limited last-hop buffer space. We

fixed this to set

���
�����_�	_������� �� to cwnd when exiting fast re-

covery.packets_in_flight is the amount of unacknowledged packets in net-

work, including retransmissions.

Baseline TCP 84

� The unmodified Linux forced the minimum advertised segment size to be

536 bytes by default (unless changed by sysctlroute/min_adv_mss).

We changed this to be 256 bytes.

� When a burst of segments arrives, Linux does not acknowledge every sec-

ond segment violating SHOULD in RFC [FH99]. The reason for this may

be treating segments of the size less than 536 bytes as a not full sized seg-

ments independently on the MSS of the connection.

� The unmodified Linux did not reduce the congestion window when par-

tial ACKs were received during fast recovery, as required in [FH99]. We

fixed this to decrease the congestion window by the amount of new data

acknowledged with the partial ACK. After decreasingcwnd, it is increased

by one. As a result, one new segment is transmitted in addition to the first

unacknowledged segment next to the one acknowledged with partial ACK.

� Unmodified Linux did not parse TCP option field for incoming segments

unless it was about to send some options. This made, for example, SACK

unusable. We fixed it to parse option fields for all incoming segments.

� Linux grows the congestion window above the receiver window. This can

lead to bursts and should not be done.

� Unmodified Linux did not use an ACK that confirms both a retransmitted

and a new segment to collect an RTT sample. It is possible to collect a

valid RTT sample in this situation (i.e. there is no contradiction to Karn’s

algorithm) and it is quite helpful for reseting backed off RTO. We fixed it.

� Linux uses a single variableseq_high for two purposes instead of two rec-

ommended variables [FH99]. The the variablerecover should be used for

New Reno, while the variablesend_high should be used for preventing

Fast Retransmits after RTO. Mixing those two variables leads to a non-

conformant behavior for example when several packets are dropped in the

middle of the current FlightSize.

Measurement Data 85

B Measurement Data

Percent values refer to quantiles, for example 50 % is the median. In tests names,

buf� gives the limit on the router buffer length on downlink in packets; err��� gives

the error loss rate. The zero value means the unlimited buffer and no error losses

correspondingly. For error burst tests, len gives the length of the burst period in

seconds. For RED tests, max� gives the maximum drop probability and� gives

the weight of the current queue size in the moving average of the queue size. For

tests with two parallel connections, (min) and (max) in the column header refers

to the slower and faster connection.

B.1 Optimal Router Buffer Size

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf_3 104.61 104.64 104.65 979.00 23.00 23.00

buf_4 105.62 105.63 105.64 969.00 22.00 22.00

buf_5 103.18 103.20 103.21 992.00 19.00 19.00

buf_6 105.25 105.26 105.27 973.00 18.00 18.00

buf_7 105.24 105.26 105.26 973.00 18.00 18.00

buf_8 103.19 103.20 103.21 992.00 16.00 16.00

buf_9 104.99 105.01 105.33 975.00 18.00 18.00

buf_10 103.19 103.20 103.21 992.00 17.00 17.00

buf_11 103.20 103.21 103.21 992.00 17.00 17.00

buf_12 103.20 103.20 103.20 992.00 18.00 18.00

buf_15 104.33 104.35 104.36 981.00 20.00 20.00

buf_20 106.64 106.65 106.67 960.00 24.00 24.00

buf_40 108.08 108.10 108.11 947.00 44.00 44.00

buf_infinite 102.06 102.06 102.07 1003.00 0.00 0.00

Measurement Data 86

B.2 Baseline TCP

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf0_err0 102.06 102.07 102.08 1003.00 0.00 0.00

buf3_err0.1 200.16 220.38 256.60 465.00 69.00 96.00

buf3_err0.05 139.38 147.08 156.85 696.00 41.00 58.00

buf3_err0.02 113.22 115.76 119.08 885.00 30.00 36.00

buf5_err0.1 173.25 210.69 236.13 486.00 57.00 90.00

buf5_err0.05 130.73 136.83 144.18 748.00 33.00 51.00

buf5_err0.02 109.79 111.84 118.54 916.00 25.00 29.00

buf7_err0.1 167.87 199.54 238.34 513.00 53.00 87.00

buf7_err0.05 127.16 129.57 139.41 790.00 29.00 47.00

buf7_err0.02 107.88 111.69 115.44 917.00 21.00 27.00

buf10_err0.1 169.92 193.33 236.52 530.00 52.00 84.00

buf10_err0.05 129.14 139.54 153.29 734.00 27.00 46.00

buf10_err0.02 106.90 109.04 117.67 939.00 20.00 26.00

buf20_err0.1 171.13 195.65 230.96 523.00 50.00 84.00

buf20_err0.05 124.32 139.33 144.09 735.00 27.00 44.00

buf20_err0.02 104.22 108.10 121.30 947.00 12.00 22.00

B.3 Initial Window of Three Segments

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf0_err0 101.85 101.85 101.86 1005.00 0.00 0.00

buf3_err0.1 205.43 219.37 271.17 467.00 70.00 96.00

buf3_err0.05 140.34 146.58 151.63 699.00 42.00 59.00

buf3_err0.02 113.51 115.51 121.36 887.00 29.00 35.00

buf5_err0.1 172.72 189.93 250.51 539.00 58.00 90.00

buf5_err0.05 130.62 135.51 141.63 756.00 33.00 51.00

buf5_err0.02 109.17 112.36 118.09 911.00 25.00 30.00

buf7_err0.1 168.48 200.12 240.79 512.00 54.00 88.00

buf7_err0.05 127.60 131.70 138.05 778.00 30.00 48.00

buf7_err0.02 107.54 112.11 115.28 913.00 21.00 27.00

buf10_err0.1 168.70 201.90 237.07 507.00 52.00 85.00

buf10_err0.05 128.91 135.07 142.99 758.00 27.00 46.00

buf10_err0.02 105.66 107.30 112.35 954.00 20.00 26.00

buf20_err0.1 166.94 195.88 244.36 523.00 50.00 84.00

buf20_err0.05 124.96 130.19 138.12 787.00 26.00 45.00

buf20_err0.02 103.96 107.37 117.10 954.00 13.00 22.00

Measurement Data 87

B.4 Initial Window of Four Segments

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf0_err0 101.85 101.85 101.86 1005.00 0.00 0.00

buf3_err0.1 203.07 229.19 279.66 447.00 66.00 97.00

buf3_err0.05 138.21 150.45 154.93 681.00 41.00 57.00

buf3_err0.02 112.96 115.05 120.33 890.00 28.00 35.00

buf5_err0.1 178.56 204.26 245.33 501.00 57.00 90.00

buf5_err0.05 132.52 137.31 142.66 746.00 33.00 49.00

buf5_err0.02 108.98 111.08 114.66 922.00 24.00 30.00

buf7_err0.1 166.64 202.37 236.02 506.00 54.00 89.00

buf7_err0.05 129.85 132.23 138.47 774.00 31.00 49.00

buf7_err0.02 107.86 111.65 113.00 917.00 23.00 28.00

buf10_err0.1 165.37 202.99 232.31 504.00 52.00 86.00

buf10_err0.05 129.01 134.87 141.86 759.00 27.00 46.00

buf10_err0.02 105.64 108.66 113.55 942.00 21.00 26.00

buf20_err0.1 166.13 199.06 229.85 514.00 50.00 84.00

buf20_err0.05 126.35 132.40 144.68 773.00 26.00 45.00

buf20_err0.02 103.96 107.40 117.98 953.00 14.00 22.00

B.5 Receiver Window of 2048 bytes

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf0_err0 102.05 102.06 102.07 1003.00 0.00 0.00

buf3_err0.1 194.57 221.59 250.09 462.00 63.00 94.00

buf3_err0.05 137.60 141.77 163.42 722.00 39.00 57.00

buf3_err0.02 114.26 114.75 122.44 892.00 26.00 33.00

buf5_err0.1 184.90 202.98 236.01 504.00 53.00 85.00

buf5_err0.05 132.69 137.76 152.76 743.00 29.00 45.00

buf5_err0.02 113.41 117.45 119.82 872.00 16.00 22.00

buf7_err0.1 172.81 195.75 216.38 523.00 52.00 84.00

buf7_err0.05 131.50 138.69 155.41 738.00 23.00 40.00

buf7_err0.02 107.34 109.06 116.57 939.00 8.00 14.00

buf10_err0.1 172.50 202.04 215.98 507.00 52.00 84.00

buf10_err0.05 131.53 138.76 155.59 738.00 23.00 40.00

buf10_err0.02 107.35 109.07 116.75 939.00 8.00 14.00

buf20_err0.1 172.60 195.94 216.24 523.00 52.00 84.00

buf20_err0.05 131.51 138.75 161.00 738.00 24.00 40.00

buf20_err0.02 107.37 109.07 116.55 939.00 8.00 14.00

Measurement Data 88

B.6 Receiver Window of 3840 bytes

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf0_err0 102.06 102.06 102.07 1003.00 0.00 0.00

buf3_err0.1 201.52 222.85 265.76 460.00 67.00 96.00

buf3_err0.05 139.25 151.16 156.46 677.00 41.00 58.00

buf3_err0.02 114.01 115.71 121.59 885.00 31.00 35.00

buf5_err0.1 174.32 213.56 236.03 479.00 57.00 89.00

buf5_err0.05 133.86 138.06 144.58 742.00 33.00 52.00

buf5_err0.02 109.62 112.79 115.95 908.00 25.00 29.00

buf7_err0.1 169.69 201.06 225.36 509.00 53.00 87.00

buf7_err0.05 127.99 132.52 140.50 773.00 28.00 46.00

buf7_err0.02 109.00 112.65 118.02 909.00 19.00 25.00

buf10_err0.1 171.04 193.11 222.01 530.00 51.00 84.00

buf10_err0.05 133.84 138.93 143.98 737.00 26.00 44.00

buf10_err0.02 105.82 108.07 115.69 947.00 13.00 20.00

buf20_err0.1 171.25 199.95 221.88 512.00 50.00 84.00

buf20_err0.05 123.60 136.42 148.20 751.00 23.00 40.00

buf20_err0.02 104.71 105.81 110.43 968.00 7.00 14.00

B.7 SACK Enabled

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf0_err0 102.05 102.05 102.07 1003.00 0.00 0.00

buf3_err0.1 135.87 146.72 161.20 698.00 61.00 96.00

buf3_err0.05 115.08 117.37 122.15 872.00 45.00 61.00

buf3_err0.02 109.59 111.90 113.23 915.00 43.00 48.00

buf5_err0.1 125.54 137.31 152.45 746.00 50.00 87.00

buf5_err0.05 112.20 116.58 121.07 878.00 36.00 52.00

buf5_err0.02 107.28 109.12 112.71 938.00 37.00 39.00

buf7_err0.1 123.21 133.37 141.91 768.00 45.00 83.00

buf7_err0.05 110.60 112.93 115.82 907.00 29.00 48.00

buf7_err0.02 104.48 105.41 109.53 971.00 28.00 31.00

buf10_err0.1 123.84 133.12 144.63 769.00 45.00 83.00

buf10_err0.05 109.76 111.48 114.22 918.00 25.00 46.00

buf10_err0.02 104.17 105.03 105.57 975.00 24.00 28.00

buf20_err0.1 123.31 133.18 140.93 769.00 44.00 83.00

buf20_err0.05 109.77 112.01 113.67 914.00 23.00 44.00

buf20_err0.02 103.69 104.11 106.22 983.00 12.00 22.00

Measurement Data 89

B.8 New Reno Disabled

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf0_err0 102.06 102.07 102.07 1003.00 0.00 0.00

buf3_err0.1 200.94 237.13 268.68 432.00 68.00 100.00

buf3_err0.05 145.29 156.40 161.32 655.00 40.00 59.00

buf3_err0.02 115.43 121.25 126.11 845.00 31.00 35.00

buf5_err0.1 181.91 214.43 244.02 478.00 58.00 90.00

buf5_err0.05 140.53 149.11 166.59 687.00 33.00 51.00

buf5_err0.02 112.18 114.02 122.63 898.00 29.00 28.00

buf7_err0.1 186.71 211.88 246.83 483.00 56.00 89.00

buf7_err0.05 135.39 145.82 158.19 702.00 31.00 47.00

buf7_err0.02 112.15 116.28 120.79 881.00 27.00 26.00

buf10_err0.1 184.39 212.19 250.38 483.00 54.00 86.00

buf10_err0.05 136.75 146.53 152.11 699.00 27.00 46.00

buf10_err0.02 108.59 109.64 112.02 934.00 30.00 25.00

buf20_err0.1 184.26 212.03 243.26 483.00 51.00 84.00

buf20_err0.05 131.85 143.37 151.64 714.00 27.00 44.00

buf20_err0.02 107.49 109.94 115.70 931.00 20.00 22.00

B.9 Burst Error Losses

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf3_len10_err0.2 113.16 114.04 117.94 898.00 28.00 30.00

buf3_len10_err0.4 119.10 120.28 121.02 851.00 29.50 31.00

buf3_len20_err0.2 119.95 121.93 129.63 840.00 31.00 33.50

buf3_len20_err0.4 127.75 137.27 138.18 746.00 31.00 32.00

buf10_len10_err0.2 111.83 112.90 116.91 906.50 20.50 24.50

buf10_len10_err0.4 117.12 117.52 119.36 871.50 24.00 25.00

buf10_len20_err0.2 120.22 127.14 132.29 805.00 23.00 24.00

buf10_len20_err0.4 133.89 134.40 136.70 762.00 25.00 26.50

Measurement Data 90

B.10 One Connection Over the RED Buffer

Test name elapsed time
25%

elapsed time
50%

elapsed time
75%

throughput
50%

rexmt pkts
50%

dropped
pkts 50%

buf10_maxp0.05_w0.2 113.14 114.60 119.30 893.00 32.00 37.00

buf10_maxp0.05_w0.4 111.75 112.90 116.75 907.00 30.00 33.00

buf10_maxp0.1_w0.2 114.52 118.18 127.41 866.00 35.00 37.00

buf10_maxp0.1_w0.4 114.44 116.17 120.59 881.00 29.00 34.00

buf20_maxp0.05_w0.2 106.78 108.53 115.57 943.00 22.00 26.00

buf20_maxp0.05_w0.4 104.66 108.03 115.77 948.00 19.00 26.00

buf20_maxp0.1_w0.2 107.67 118.43 126.49 864.00 20.00 27.00

buf20_maxp0.1_w0.4 105.18 109.45 122.65 935.00 18.00 25.00

buf40_maxp0.05_w0.2 104.39 108.08 116.83 947.00 11.00 20.00

buf40_maxp0.05_w0.4 103.93 110.32 114.58 928.00 10.00 17.00

buf40_maxp0.1_w0.2 104.53 110.32 118.66 928.00 12.00 20.00

buf40_maxp0.1_w0.4 104.20 106.36 110.99 963.00 12.00 18.00

B.11 Two Connections Over the Drop-Tail Buffer

Test name elapsed
time
(min)
25%

elapsed
time
(min)
50%

elapsed
time
(min)
75%

elapsed
time
(max)
25%

elapsed
time
(max)
50%

elapsed
time
(max)
75%

rexmt
pkts
(min)
50%

rexmt
pkts
(max)
50%

buf_10 78.24 78.25 78.27 93.23 93.24 93.25 15.00 19.00

buf_11 82.53 82.55 82.56 93.23 93.24 93.26 16.00 21.00

buf_12 87.52 87.52 87.53 93.43 93.43 93.44 16.00 22.00

buf_15 83.48 83.49 83.50 103.86 103.87 103.88 3.00 29.00

buf_20 85.33 85.34 85.37 119.55 119.57 119.60 2.00 27.00

buf_3 93.36 99.25 100.06 100.05 102.50 109.92 28.50 36.50

buf_4 69.80 71.76 75.86 104.97 106.65 108.90 14.00 28.00

buf_40 86.96 86.97 86.98 112.20 112.21 112.23 3.00 42.00

buf_5 93.76 94.12 94.43 94.96 97.54 98.98 17.50 23.00

buf_6 94.01 94.51 95.63 97.96 101.73 103.93 12.00 31.00

buf_7 92.35 93.40 93.53 105.08 105.19 105.43 11.00 37.00

buf_8 87.12 87.89 95.49 95.79 96.27 97.37 14.50 34.50

buf_9 91.37 93.53 96.24 99.67 102.50 110.83 37.00 44.00

buf_infinite 52.36 52.37 52.37 93.37 93.38 93.38 0.00 5.00

Measurement Data 91

B.12 Two Connections Over the RED Buffer

Test name elapsed
time
(min)
25%

elapsed
time
(min)
50%

elapsed
time
(min)
75%

elapsed
time
(max)
25%

elapsed
time
(max)
50%

elapsed
time
(max)
75%

rexmt
pkts
(min)
50%

rexmt
pkts
(max)
50%

buf10_maxp0.05_w0.2 64.87 77.30 91.94 111.20 114.16 121.86 19.00 33.00

buf10_maxp0.05_w0.4 86.70 93.21 98.25 105.55 110.01 113.52 17.00 29.00

buf10_maxp0.1_w0.2 81.84 93.45 99.00 107.27 113.11 115.79 21.00 32.00

buf10_maxp0.1_w0.4 80.38 98.62 101.64 106.11 109.57 119.05 21.00 30.00

buf20_maxp0.05_w0.2 78.61 88.75 95.27 100.16 104.01 110.33 9.00 25.00

buf20_maxp0.05_w0.4 85.37 92.35 94.67 96.62 101.03 105.10 11.00 19.00

buf20_maxp0.1_w0.2 84.92 88.48 96.27 100.31 105.54 115.62 13.00 25.00

buf20_maxp0.1_w0.4 80.72 87.73 94.96 95.79 101.51 106.38 10.00 18.00

buf40_maxp0.05_w0.2 72.29 84.11 92.92 97.18 101.87 103.47 6.00 9.00

buf40_maxp0.05_w0.4 79.80 88.69 94.90 96.03 103.19 109.60 6.00 12.00

buf40_maxp0.1_w0.2 84.43 90.06 94.29 96.76 104.22 111.02 7.00 11.00

buf40_maxp0.1_w0.4 74.65 84.36 93.60 95.57 97.79 103.47 7.00 11.00

