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Abstract

Behavior of current communication protocols as well as current and future networked ap-
plications is of fundamental importance for technical and commercial success of Mobile
Internet. The forthcoming wireless Wide-Area Networks, such as GPRS and UMTS, are
quite complex and network operators have a large set of parameters to tune the transfer
performance of these networks. In this situation it is of great value to be able to execute
practical experiments. The Seawind emulation software introduced in this paper enables
measurements of protocol implementations in modeled networking environments. The Sea-
wind software provides a rich set of ways to define transfer characteristics including delays
and errors. The software has also means to conduct large sets of experiments in an auto-
matic fashion. In addition, tools of analyzing measurement data has been integrated into the
Seawind software.

1 Introduction

Nowadays Wireless Wide Area Networks (WWAN) are widely used by mobile users to access
data services. New mobile data networks, as for example the General Packet Radio Service
(GPRS) [6, 8], and future third generation mobile communication systems [32] are expected to
provide a high-speed packet data access suitable for a wide range of Internet services. How-
ever, wireless links represent a different communication environment than the wireline Internet.
Hence, protocols and applications not particularly designed for wireless links often require en-
hancements in order to achieve reasonable performance in a wireless environment [4, 17].

Evaluating such enhancements over a real data link or network is often costly; if a system is
only in a development stage, the evaluation may be impossible. A frequently asked question is
whether next-generation wireless networks could provide multimedia services that meet the end-
user expectations. Network emulation is a convenient tool to examine how existing multimedia
applications behave. An emulator can also be used in usability studies involving real end-users.
The main difference to a field trial is that an existing network is replaced by a model describing
characteristics of transfer, delay and error behavior, for example. An emulation also allows
controlling the network characteristics and reproduce the environment. On the other hand, the
problems of emulation include the accuracy of the model; parameters drawn from real-world
phenomena and properties are always estimates.
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In this paper we describe the Seawind emulator and present a case study that demonstrates
its practical utility. The primary target of Seawind is performance studies of real protocols and
applications as seen by the end user in the present and future wireless networks. Although
Seawind was developed for modeling wireless networks, GPRS in the first hand, the Seawind
emulator is rather generic and it can be used in modeling a wide range of networks.

Emulation is a compromise between two other possible approaches in performance evalua-
tion; between simulation and measurements using a testbed [2]. The main advantage of a net-
work emulator is that the performance of actual implementations of protocols and applications
can be examined. This is a clear advantage, for example, over most of the TCP performance
studies that rely on the abstract TCP model available in the NS simulator [14]. However, most
end users – if not all – connected to the Internet use TCP implementations that are not neces-
sarily close to the one found in the NS simulator (for example, those in Windows or Linux).
Therefore, the NS simulator or other simulators having their own TCP implementations do not
allow a network operator to tune the networking parameters so that the performance is optimized
for real end users and their applications. Furthermore, a real-time emulator provides answers to
”what-if” type of questions. It also allows back-engineering parameters of closed networking
implementations.

Emulation studies can be time-consuming because the duration of an experimental session
is determined by the speed of the modeled network. In order to enhance the usability of the
emulator, the Seawind emulator supports an automatic set up of tests and collection of a suf-
ficient number of test repetitions for statistically valid results. Therefore, the experiments can
be run overnight and during weekends without any human intervention. The Seawind package
also provides basic tools for statistical analysis and for graphical presentation of results. We use
Seawind on the Linux operating system. The Seawind software runs in the user space and can
be easily ported to any Unix operating system.

Several extensive performance studies have been made using Seawind. TCP performance
has been studied in [13, 25] and GPRS performance in [18]. Seawind was also used in the
Monads demonstration at MOBICOM 2000.

The rest of the paper is organized as follows. After a brief summary of related work, we
discuss, in Section 2, common characteristics of wireless links. We also derive the requirements
for a network emulator taking those features into account. In Section 3 we describe the Seawind
architecture. We present the structure of the Seawind simulation Process that is the core of
the Seawind emulator. In Section 4 we discuss the features of Seawind that are important in
emulation of any wireless network. In Section 5 we present how we validated the Seawind
emulator. Finally, a case study is described in Section 6 in order to illustrate the practical value
of Seawind.

2 Related Work

Simulation of communication networks is an active research area. A wealth of different sim-
ulators are found worldwide; most of them are freely available while some are commercial
products. The software tools for network simulations can be divided into two categories: dis-
crete event simulators and real-time simulator or emulators, as we call them. Many simulation
tools are discrete event simulators that operate in virtual time. These simulators have their own
abstract implementations for modeling different links, protocols, and even applications. Prob-
ably the most well-known discrete event simulators are NS [14] and the commercial simulator
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OPNET [31]. The Monarch Project at Carnegie Mellow University has created a set of wireless
and mobile extensions to NS that provide a more detailed model of the physical and link layer
behavior of a wireless network and allow arbitrary movement of nodes within the network [7].
Other network simulation tools include MobSim [27], SWimNet [5] and GloMoSim [33]. A par-
allel environment for the simulation of mobile wireless network systems, based on the parallel
simulation language Maisie [3], has been presented in [26].

Discrete event simulators are great tools for overall network performance simulations and
other more theoretical testing. These cannot, however, be used with actual protocol imple-
mentations and applications, unless the implementations are ported to the simulation package.
During a product implementation and test, intermediate versions of the software emerge from
time to time, and it would not be feasible to port each version to the simulation environment for
testing. In addition, simulations cannot give a real-time view of how a user would experience
some service using a new application, protocol, or network. Therefore, real-time tests and actual
protocol implementation studies require a real-time simulator.

Real-time simulators or emulators allow researchers to create network topologies and con-
ditions, which are difficult to achieve in a reproducible manner on production networks, or to
perform real-time tests with various prototype protocols and products, for example. Such an
emulator environment is well controlled and reproducible.

The common nominator within the emulators available in this category is that they provide
different delay, packet drop, and queue-handling functionality in order to simulate some com-
munication medium or network. NIST Net [11] is implemented as a kernel module extension to
the Linux operating system and an X Window System-based user interface application. NIST
Net provides parameters such as delay, packet drop probability, fraction of duplicated packets,
and link bandwidth. Dummynet [24] is a similar tool, implemented as a FreeBSD Unix kernel
patch in the IP stack. Dummynet works by intercepting packets on their way through the proto-
col stack; it uses parameters similar to the ones in NIST Net to affect the flow of packets. A third
similar kind of emulator is the Ohio Network Emulator, ONE [1]. ONE uses three parameters
to simulate a communications network, namely a transmission delay, a propagation delay, and
packet queues.

The functionality offered in these emulators enable the simulation of a variety of different
links, networks, and protocols. However, parameters such as delay, bandwidth, and queue sizes
are not enough for all simulation purposes. A key functionality that is missing in the above emu-
lators is the lack of timed events and changes of the simulated network environments. Especially
in wireless networks, the network characteristics can change drastically due to the movement of
mobile terminals and even the present weather conditions. To expand the area of studies that can
be performed with an emulator, changes in the simulated environment and other timed events,
such as handovers, should be provided by an emulator. In addition, the portability of the emu-
lator to other platforms is more complicated in the emulators mentioned above since those have
been tightly coupled with specific operating system kernels.

3 Wireless Network Characteristics

In this section we present a summary of properties of wireless links that present challenges
for efficient data communication. Wireless links typically have relatively low bandwidths, high
latency and high error rates. We discuss how these properties relate to the requirements for the
network emulator.

3



Slow, asymmetric and changing line rate. The line rate of a wireless WAN link does not
often exceed some tens of kilobits per second. Such a link speed is typical also for dial-up
modem users. For some wireless links, the line rate can vary over time, due to a change in the
amount of radio resources assigned to the user or change of the channel encoding scheme. The
line rates may be asymmetric, for example when using certain types of satellite links or GPRS.
Thus, the emulator should provide the desired line rate by delaying data packets and provide
means to emulate changes in the line rate, in both directions independently. For the majority
of W-WANs a rate up to 100 kbps is sufficient. However, modeling future broadband wireless
networks will require line rates at least up to 2 Mbps.

High latency and variable delays. The propagation delay of wireless links is typically high.
The delay comes from the special transmission schemas on the wireless link and from the pro-
cessing delays of the link hardware. For example, the Global System for Mobile Communica-
tions (GSM) uses interleaving of data on the radio link to reduce the effect of error bursts, and
this introduces a latency of 90 ms independent of packet size [20]. Additional latency in using
a GSM data service is caused by the connection to the Internet Service Provider (ISP) and the
processing time within the GSM system. The total one-way latency in GSM sums up to 200-300
ms1. The emulator should correctly model this delay by adding a propagation delay to each
packet. Variable delays may appear on a wireless link due to a number of reasons, for example
Link-level ARQ recovery, radio resource (re-)allocation and handovers to mention a few. There
should be a possibility to add such random delays to a packet flow.

Error losses. Some wireless links impose a significant amount of data corruption due to trans-
mission errors. The error rate depends on the current radio conditions and the strength of the
channel coding schema. For example, in the transparent GSM data service the residual bit er-
ror rate (BER) of the link is allowed to be as high as ������� after the Forward Error Correction
(FEC) [21]. Radio conditions can vary greatly. In the ideal conditions all protocol data units
(PDU) are delivered correctly, and in the worst case nothing can be correctly sent over the link.
For accuracy of emulations and ease of use the emulator should be able to drop packets on a
per-packet basis or using a bit error probability. The transmission error on the link can be seen
by the upper layers as a delay in data delivery (reliable link level), loss of a PDU (error detection
in link layer) or as a corrupted data packet (transparent link layer). The emulator should provide
all three cases.

Congestion losses at the bottleneck queue, over-buffering. The wireless link is often the
bottleneck in the path of a data flow, because fixed networks are fast and reliable compared
to the capabilities of the wireless link. Routers play a significant role because congestion data
losses are most likely to happen at the bottleneck queue. A limited number of buffers can be
allocated in a last-hop router per user. The emulator should contain a queue at the emulated
bottleneck link and provide means to limit the queue size in terms of bytes and number of
packets. Optionally, a timer would be used to limit the time a packet can be buffered. New
queue management algorithms and drop policies should be easily attached.

1Note, that we do not include the transmission delay into the link latency. Thus the round-trip time is defined as
the sum of transmission and propagation delays in both directions.
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Handovers. In a cellular radio network the mobility is accomplished by changing the access
point that serves the user, according to the user’s current location. The handover process may
cause data losses and a drastic change in the service provided, when the user moves from a less
busy to a more occupied service area. Modeling a handover would cause a change in a number
of simulation parameters at once. For example, in a packet radio network, a new service area
may have more users using the same shared medium than in the previous location; the user will
notice this as less available bandwidth after the handover. In addition, the handover process
itself may cause a delay or loss in data delivery. The emulator should be able to allow changing
a set of parameters at the same point of time to emulate changes in network service.

Link blackouts. Wireless links are prone to temporal interruptions of service. A typical ex-
ample is loss of radio coverage; this might happen due to driving in a tunnel or moving away
from the serving access point. Blackouts cause a situation when, for a period of time, no user
data is successfully transmitted through the link. If QoS support is implemented in the wireless
network, higher priority packet traffic can as well cause blocking of lower priority traffic. The
emulator should provide means to specify the timing of blackout periods and the handling of
PDUs during that time, for example, whether to drop or store the PDUs during the blackout.

Finally, a number of features would enhance the usability of the emulator. It is desirable that
the emulator could be running in user space on an unmodified operating system. Binding the
emulator in the operating system kernel is not desirable because it complicates the portability of
the emulator between different operating systems and even between different operating system
versions. The emulator must provide accurate execution of all timed events and notify if some
scheduled event slipped past a certain threshold value and would thus affect the result of the test
run. The emulator should have an easy to use user interface to enable its use by a wide range of
specialists unfamiliar with its implementation details.

4 Seawind Architecture

The fundamental architecture behind the Seawind emulator is shown in Figure 1. Seawind
intercepts the traffic flow between the client and the server transparently to the endpoint hosts.
The desired link characteristics are emulated by delaying, dropping and modifying packets in
the flow. The socket API and the protocol implementations in the client and the server need not
be changed. The client and server can be directly connected to Seawind (e.g. by a serial cable),
or they can be located anywhere in the network. For example, the latter option is useful, if the
researcher wants to experiment with a data transfer over an emulated wireless link to a server
located in the global Internet.

We have been mostly interested in studying the TCP/IP protocols and the behavior of TCP-
based applications. However, Seawind can be used with any data flow, for example with traffic
produced by the WAP protocol [19]. This generic approach allows comparing the performance
of different protocols (e.g. WAP and TCP) or different implementations of the same protocol
(e.g. Windows TCP and Linux TCP) under the same emulated network characteristics.

4.1 Seawind components

Figure 2 illustrates the Seawind components, which are used in setting up the test runs and
running successive performance tests with various parameters automatically. The core of the
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Figure 1: Structure of Seawind.
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Figure 2: Architecture of the Seawind emulator.

emulation is the Simulation process (SP) that cause delays and packet losses to emulate the
target link or the target network with various queues and buffers. Before describing the SP
functionality in detail, we briefly introduce the other Seawind components shown in Figure 2.

The user sets up the tests using a Control Tool (CT) with a graphical user interface. With
the control tool the user creates a number of entities called replication sets. A replication set
defines the workload used in the performance tests and the parameters of the emulated network.
For each replication set the user also gives the number of test run repetitions (replications) to
be made with the given parameters. After the user has defined a sequence of replication sets to
be tested, he may save the parameter settings for later use and start the test run with the given
sequence of replication sets.

A replication set configuration consists of a network configuration and a workload configura-
tion which are set up independently. Any combination of workload and network configurations
can be selected to be repeatedly tested in a replication set. Workload configuration defines the
tools that are used for generating the workload for the test and the parameters for the tool. Any
external tool or script can be used as a workload generator. For example, the ttcp tool [30]
can be used with Seawind to generate simple bulk data. Seawind also works in manual mode, in
which the user may launch arbitrary, possibly interactive applications for generating the work-
load (e.g. a web browser and a http server), which communicate through the network emulated
by Seawind. Network configuration consists of parameters defining the characteristics of the
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emulated network and the Network Protocol Adapter (NPA) configuration, which we describe
below.

In addition to the CT, Seawind uses a number of other processes to set up the tests. CT
controls the creation and the cleanup of the processes in the beginning and in the end of each
replication set. The processes may be distributed into multiple hosts to avoid having multiple
resource-consuming processes running on the same host. To control the processes there is a
Seawind-daemon process running on each host in the background. A Seawind-daemon creates
the processes needed in a test run according to the requests from CT and terminates them after
the test run.

The task of the NPA is to capture network packets from the endpoint host and forward
the packets to the SP. For example, a NPA that captures IP traffic creates a dedicated network
interface from which it captures packets, and adds a route to the created network interface in
the IP routing table. There are various ways for doing this. One alternative is to use Point-
to-Point Protocol (PPP) [28] that uses a pseudo-terminal device connected to NPA. Secondly,
some operating systems support virtual network interfaces that deliver the received packets to
and from the user-space applications. Finally, it is possible to capture packets directly from the
Ethernet. We have implementations for all above-mentioned variants.

After the NPAs have been started and the simulation pipeline is properly initialized, Seawind
starts the workload generators (WLGs) at both ends of the simulation pipeline. Workload gen-
erator can be any conventional tool that generates network traffic. No modifications need to be
made, because the NPAs capture the network traffic transparently to the WLGs. For example,
when IP traffic is used, the workload generator can be any tool that generates IP packets using
the standard application interface (e.g. Berkeley sockets). The packets that are transmitted to the
specified IP address are routed to the network interface connected to NPA and furthermore to
SP. At the receiving end the NPA delivers the packet to the IP protocol using the created network
interface.

The architecture presented above allows replacing any of the WLG, NPA or even SP compo-
nents by alternative implementations. It is also possible to read the emulation data from a serial
port, which makes it possible to connect an arbitrary machine to the emulation host using a null-
modem cable. For example, we have used this facility to connect Windows hosts to Seawind.
Furthermore, the receiving end NPA does not have to be attached to the endpoint host, but it can
optionally be used to forward packets from SP to the network between the SP and the endpoint
host. Thus, any Internet host can be used as an endpoint in the performance tests, making it
possible to create a realistic model of communicating to a host in the Internet over the emulated
link.

4.2 Pipelining

A mobile network typically includes several logical entities that affect the overall performance
and throughput seen by the end user. For example, from the GPRS architecture [8] we can
identify three possible emulated components: the base station subsystem (BSS) including the
wireless link, the Serving GPRS Support Node which acts as a last-hop router in the GPRS net-
work and the Gateway GPRS Support Node, which is the gateway router in the mobile terminal’s
home GPRS network.

As a single SP is often used to model a single network element with a link, to model a
network path with multiple network elements, Seawind allows connecting several SPs together
to form a simulation pipeline. Data packets are forwarded between SPs, and the last SP in the
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pipeline sends the packet out to the destination.
Some links use flow control at the link level. This means that the rate at which the packets are

transmitted from one network element to another is controlled by the receiving network element.
Seawind supports flow control between SPs and between NPAs by using a sliding window based
algorithm.

4.3 Channel model

While computer networks become increasingly complex, the principle of having a set of routers
(switches, etc.) interconnected by communication links remains the same. In Seawind, a single
Simulation Process models an outgoing link, optionally attached to a network node with buffer-
ing and a specified queue management policy. Several SPs can be pipelined to represent a path
through the network between the client and the server.

The emulated link is modeled as a direction-specific channel, which is maintained separately
for the uplink (towards the fixed end) and for the downlink (towards the mobile end) traffic. The
downlink and uplink channels are largely independent, with an exception of some special events
(for example a blackout). The model of the channel is shown in Figure 3. Packets arriving to the
emulator are placed into the input queue. The maximum queue length can be limited in terms of
bytes or packets. Different packet-drop policies can be applied on the queue (e.g. the traditional
tail-drop or RED active queue management [9]). For example, the input queue can be used to
model a queue in a router, and thus inspect the effect of congestion and congestion-based losses
at a network node.

allocation delay
transmission delay

propagation delay
error delay

INPUT QUEUE LSB LRBLINK

ReassemblyFragmentation

Figure 3: The channel model.

Some link protocols (e.g. Radio Link Control (RLC) [23] in GSM) fragment PDUs of the
upper protocol layer as a part of internal operation. The fragmentation unit before the link and
the reassembly unit after the link allow to logically fragment the data packet into smaller pieces
for the purpose of the different events performed during the emulations. The actual size of the
transmitted data transmitted by lower-level protocols can increase due to protocol overhead (e.g.
added header) or decrease due to compression. This is also taken into account in the calculations.

The channel model also includes Link Send Buffer (LSB) and Link Receive Buffer (LRB) to
model the send and receive buffers that are present with real links. The link send buffer is used
to store the frames to be transmitted to the link, and the link receive buffer is used to store frames
at the receiving end until all pieces of a fragmented unit have arrived, allowing reassembly. The
link receive buffer is also needed to store out-of-order frames, when a link layer Automatic
Repeat Request (ARQ) mechanism is used for retransmitting corrupted or missing frames. The
size of these buffers should be large enough allowing the ARQ sliding window protocol to keep
the link fully utilized. These buffers may significantly increase the buffering capacity of the link.

Before data can be delivered over the link, the radio resources often have to be allocated
first. The delay can be rather high due to possible contention or even queueing for resources. In
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the current model the allocation delay is triggered when a data unit arrives to an empty queue.
Once the resources are allocated, data units are taken from the head of the queue one-by-one
for “transmission” over the link. The length of the transmission delay is computed according to
the line rate and the packet size. When the transmission delay for the data unit is completed, a
propagation delay is issued for the unit.

Transmission errors on a link are modeled by specifying a probability that is evaluated on
per-packet basis or on per-bit basis. If a data unit is corrupted, the following actions depend on
the desired error mode. In the corrupt mode the data unit is forwarded in the channel with the
corrupted bits. In the drop mode the corrupted data unit is dropped by Seawind (i.e. the link
layer receiver is assumed to detect the transmission error). In the delay model the data unit is
delayed for a user-specified amount of time. This can be used to emulate a link ARQ protocol
retransmitting the corrupted data unit to recover from transmission errors. In such a case the
upper protocol layers experience only an excessive delay for the affected packet.

5 Seawind Features

5.1 Emulation

Protocol filters. A protocol filter is a protocol-specific module that is implemented separately
for each protocol (e.g. TCP, WAP) used with Seawind. New protocol filters can be easily added
using the interface provided. A protocol filter has two functions: packet recognizer recognizes
the packet boundaries from the incoming data and populates Seawind structures used in different
emulation calculations. Usually the packet recognizer is based on the link layer protocol used for
transmitting the Seawind packets (e.g. PPP used over an asynchronous link). Another function
of the protocol filter is the packet printer, which scans the required information from the protocol
headers and stores it to a log file. This information later allows combining the packet trace with
the SP event log to determine various events, like the reason for a packet loss and to measure
round-trip times. For example, when using TCP/IP protocols the packet outputter uses an output
format which is compatible with the tcpdump [15] tool to allow interoperability with existing
tools used for analysis.

State changes. The user can define multiple sets of parameters (states) that are changed during
a test run. For example, the available bandwidth, error properties and delay properties can be
changed simultaneously according to the given time interval distribution. This feature can be
used to model changes in the mobile communication environment, e.g. due to handoffs. The
state is changed synchronously at all SPs used in the emulation. Seawind also provides an
interface to trigger state changes from an external program, thus providing a flexible way for
creating a wide range of mobility scenarios.

Random distributions. A wide variety of random distributions are included in Seawind to
model different kinds of network properties. The list includes the basic distributions (e.g. uni-
form, exponential, Cauchy) and a two-state Markov distribution. Additionally, any arbitrary
distribution can be stored in a file to be used by different parameters during the emulation.
Seawind uses its own random number generator to avoid being affected by the biased random
number generators that some operating systems may have.
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Parallel workload generators. Seawind allows using an arbitrary number of WLGs in au-
tomatically run tests and in manually executed tests. Starting the workload generating tools
manually is straightforward, as user may launch any number of applications using the command
shell, and Seawind transparently captures the data generated by the applications from the net-
work device interface. In automatic operation the user may enter a number of WLG definitions
with a starting time relative to the beginning of the test run. This makes it possible to inspect
competing traffic flows over the network emulated by Seawind.

Multiple queues. The user data packets may belong to different priority classes. Multiple
queues are present in SP to hold user packets of different priority and background load packets
(Figure 4). A number of algorithms are given for each queue. The classifier algorithm assigns a
specific queue to an arrived packet. The queue management algorithm (e.g. RED [9]) actively
marks packets based on the averaged queue length. The drop policy algorithm (e.g. head drop)
discards packets that exceed state queue size or length limits. Finally, packets can be marked
using Explicit Congestion Notification (ECN) [10]. All algorithms have well-defined interfaces
so new implementations can be easily added. We currently have a basic implementation of the
single-priority traffic, but in the near future we will implement more classifier algorithms for
handling multiple queues.

Background load. In addition to the main workload captured by the NPA components, Sea-
wind provides a framework for generating virtual background load (BGL), which affects the
internal queueing and delay calculations of SP components. With this feature, the user may
create a flexible model of the effects caused by other users in the emulated access network. Fig-
ure 4 illustrates the background load framework and how it can be used with multiple Seawind
input queues. A BGL generator can be attached to any SP in the simulation pipeline to generate
packets according to the defined model. Because the BGL packets exist only virtually, the in-
formation about BGL packets is forwarded to the next SP using a dedicated BGL channel. The
BGL can be consumed by any SP in the pipeline, but it is not forwarded to the NPAs.

Data ch.

BGL ch.

workload data workload data

BGL generator BGL sink

SP #1 SP #2Source Destination

Figure 4: Background load generators with two pipelined SPs with multiple queues.

5.2 Output analysis

The CT collects the log output from various Seawind components and stores them on the disc
for further analysis. Two kinds of logs are generated by the Seawind components. Filter log
is generated by the NPAs and SPs. It contains information about the network packets that have
traversed through Seawind. For example, when monitoring IP packets, Seawind uses tcpdump
for this purpose. The filter log is created by the protocol filter described above and is protocol
dependent. Seawind log contains Seawind-specific information of the test run. SP stores the
information about the events such as delays or losses on each data unit. For each event a times-
tamp is stored to make it possible to verify that the events have been performed on time. Seawind
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log is also collected from NPAs and WLGs. The contents of those Seawind logs depend on the
mechanism used in NPA or on the tool used as WLG.

During a test run there are usually a large amount of log information generated. Therefore it
is essential to have tools and scripts for analyzing the logs. For a filter log containing tcpdump-
compatible information about IP packets this is easy, as there are a wide variety of publicly
available tools such as tcptrace [22] available.

Currently our scripts collect information about various time measurements, throughput, num-
ber of retransmissions, number of packet losses and fairness (using Jain’s fairness index [16]).
Optionally, the information about different TCP variables in the Linux kernel, such as congestion
window size or RTT/RTO estimates, can also be stored to be coupled with the other statistics.
We also plan to enhance the graph plotting scripts to show various Seawind or Linux TCP events
such as delays, packet losses and retransmission timeouts.

6 Implementation Issues

Developing a real-time emulator for an operating system and network environment that do not
guarantee real-time response is not straightforward [12]. An off-the-shelf personal computer and
Unix OS are not designed for real-time use, have coarse timer resolution, and are prone to delays
caused by the I/O (a disk or network access). Especially in a multi-process environment, keeping
a real-time schedule is hard, because processes have to compete for the system resources.

We have not set any absolute real-time requirement for the response times of Seawind events,
as it would be impossible to guarantee the required response time in the general case. However,
in this section we introduce how we try to ensure that the Seawind response times are accurate
enough for performance tests and how we monitor the accuracy of emulation.

Simulation process. We have enhanced the timing accuracy of the events by waking up SP
a configurable amount of milliseconds prior the event is due and wait in a busy loop until the
actual event time is reached. Before running the performance tests, the user can take a few
preliminary runs to adjust the timing estimator for his environment, if the default value is not
good for some reason. By distributing the Seawind processes we wanted to make it possible to
run the simulation process in a lightly loaded host in order to avoid competition of the system
resources.

After each event Seawind takes a timestamp from the system clock and stores it to the log.
If a threshold value given by the user is exceeded, a warning message is printed so that the user
can discard the results for the particular test. However, if the timing estimator is correctly set
and there are no other resource-consuming processes running, this occurs very rarely. In our
experience the accuracy of Seawind remains within 1 ms with rare exceptions.

During the test runs Seawind avoids unnecessary I/O access, which could cause harmful
context switches. It only reads and writes the workload and background load to and from its
neighboring processes. The configuration file is read before the test starts and the log is only
stored in the memory buffers during the test. After the test is over, the memory buffer is flushed
on the disk.

Communication. The inter-process communication between Seawind components need to be
performed in a timely manner to ensure correct emulation results. Seawind uses TCP connec-
tions between the neighboring components. This is an obvious selection, because the compo-
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nents can be distributed into multiple hosts located anywhere in the network, and the connection
is required to be reliable. However, certain TCP features, namely the slow start and Nagle’s
algorithm [29], may cause unwanted delays in the delivery of workload data.

The packet size for the workload data should be selected to be small enough to fit in a single
TCP segment in order to avoid the effect of slow start on the transmission rate. Usually this is
the case, as the packet size is selected to be small on the emulated slow link, and on the other
hand, Seawind is often used over Ethernet using 1500-byte frames. We have disabled Nagle’s
algorithm from the TCP connections used in the internal Seawind communication in order to
allow TCP sender to transmit the TCP segments without delaying them. Finally, it is assumed
that the link used to transmit the packets between NPAs and SPs is substantially faster than the
emulated link. For example, 100 Mbps Ethernet is sufficient when emulating line rates up to 2
Mbps.

7 Case Study

We now show an example of how to study the behavior of a real TCP implementation by using
Seawind. Figure 5 illustrates the target environment we are modeling and how it is emulated
using Seawind. In this test case we assume a wireless last-hop link with a bandwidth of 9600
bps and a last-hop router with a buffer size for 7 network packets. The last-hop router is located
on the same 10 Mbps LAN with the remote end host. Additionally, there are link buffers for
four packets at both ends of the wireless link. Thus, the sending link buffer extends the total
buffering capacity to 11 packets. These network properties are close to what GSM data has, for
example. We do 20 replications of this test case.

data flow

ACK flow

Last−hop router
> 2 Mbps

constant
delay

9600 bps

Fixed hostMobile host

TCP dataTCP data

Mobile host Emulation host Fixed host

link buffers

target environment

file server

emulation environment

input queueLRB LSB

LRBLSB
receiver sender

simulation channel

transmission
errors

10 Mbps LAN

GUI/CT

Figure 5: The emulated environment and its setup in Seawind.

In our scenario the wireless link is prone to transmission errors. The transmission errors are
assumed to be detected and the corrupted packets are dropped. In our model the packet-drop
probability is 1 % for the first 40 seconds of the test run. After 40 seconds the link quality
decreases (e.g. the mobile user moves to a location with a weaker radio link quality) and the
packet drop probability decreases to 10 %.
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In Figure 5 we can see how the emulation is configured to use three hosts. One of the hosts
acts as the mobile-end receiver, one of the hosts is the fixed end sender and one host is dedicated
to the real-time emulation. Table 1 summarizes the Seawind parameters that were used by the
Seawind SP to model the link at the emulation host. The router buffer is modeled with an input
queue that drops the packets that do not fit in the queue using the tail-drop algorithm. The
scenario is modeled with two distinct states in the Seawind state machine, one state for the first
40 seconds and another state for the rest of the test. We have left out from the table the Seawind
parameters regarding the features that were not used in this test case. The workload we are using
in this test is a bulk transfer of 100 KB using a single TCP connection over the IP protocol.

Table 1: Seawind parameters used in the case
study.

Parameter Name Value

input queue length 7 pkts
queue overflow handling drop
queue drop policy tail-drop
link send buffer size 4 pkts
link receive buffer size 4 pkts
transmission rate 9600 bps
propagation delay 200 ms
error handling drop
packet error probability state 1: 0.01, state 2: 0.10

Table 2: Summary of measure-
ments.

Metric Value

Elapsed time, 10th percentile 153.27 s.
Elapsed time, median 170.51 s.
Elapsed time, 90th percentile 196.40 s.
Throughput, median 601 Bps
Rexmitted pkts, median 65
Dropped pkts, median 47

After the 20 replications of the test have been run, Seawind has generated the logs of the test
runs. First, we can have a look at the summary of the measurement results, which are shown in
Table 2. The shown values are measured from the sending end TCP log. The table shows the
median of the selected metrics. Additionally, 10- and 90- percentiles are shown for the elapsed
time to illustrate the level of variability in the results. It is also possible to have a separate look at
the statistics of each of the 20 replications. As every packet is logged with timestamps, protocol
information and related Seawind events, measuring different kinds of metrics and performing
different kinds of analysis is only a matter of having suitable scripts for the purpose.

After inspecting the general statistics for the replication set, the user can have a detailed look
at what happens at the packet level. One way to do this is to generate a time-sequence diagram
of the TCP segments, which is shown in Figure 6. When comparing the time-sequence diagram
to the the Seawind event log, we can have an understanding of what happened during the test
run.

There are only two corruption losses before the error rate changes after 40 seconds. These
two packet losses occur in the beginning of the test and they cause the TCP sender to adjust
its slow start threshold and enter congestion avoidance, in other words, reduce its sending rate.
Thus, the last-hop router buffer load increases moderately, and there are no congestion-related
losses until 35 seconds have passed. After the error rate has changed, there are 44 packet losses
due to emulated transmission errors. Because of the higher loss rate, the TCP sender keeps
transmitting at a low rate and the router buffer queue does not overflow for the rest of the test
run.

We used Linux kernel version 2.4.0 at the endpoint hosts. Therefore the phenomena shown
in the trace would really occur, if the Linux machine in question is used in the environment
similar to what was modeled here.
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Figure 6: A time-sequence graph of the TCP segments in a test run.

8 Concluding Remarks

This paper presented a wireless network emulator called Seawind. The emulation approach al-
lows performance evaluation of existing implementations of protocols and applications over a
wide range of network characteristics. User scenarios that are difficult to reproduce in existing
wireless networks or impossible when the network is only in the design phase can be easily
presented in the emulator. Distinguishable features of the Seawind network emulator are its
wireless-oriented design, portability, easy extendibility and an extensive environment of scripts
and tools for the automatic set up of tests and analysis of results. The practical utility of Sea-
wind is demonstrated by a case study and a number of studies beyond this paper. We have
experimented with different operating systems and discovered a number of implementation spe-
cific features, of which some did not conform to the RFC specifications. We believe that slow
links are an environment which have not been considered carefully enough when designing and
testing the different implementations of TCP and other protocols. Therefore, we believe that
Seawind is a valuable tool for testing the protocol implementations in different networking en-
vironments in a controllable fashion.
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