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Internet users often abort their transfers in progress,
for example by clicking on the “Reload” button or an-
other link in a web browser. Analysis of backbone
Internet traces [5] shows that 15-30% of all TCP con-
nections are abnormally terminated via a reset. The
average length of reset connections is not significantly
different from completed connections. Thus, resets
are not merely generated by TCP connection refusals
or misbehaving firewalls [1].

Packets from aborted transport connections are of-
ten sent unnecessarily to the user over a slow last-hop
link delaying useful traffic. This is a particular con-
cern for wide-area wireless links, because unneces-
sary transmissions waste scarce radio bandwidth, bat-
tery power at the mobile terminal and incur monetary
cost due to billing by data volume.

Although the total fraction on aborted traffic is only
a few percent in backbone Internet traces, we believe
it is a significant problem for slow last-hop links for
two reasons. First, users easily get impatient while
waiting for a transfer to complete over a slow link.
Second, the round trip time for such links can reach
several seconds during a bulk transfer. This delays
delivery of an abort notification from the receiver to
the sender.

Measurements in a live cellular network show that
loading of a new web page is often delayed up to
ten seconds due to delivery of data from previously
aborted pages. Figure 1 shows a trace of a web page
download being aborted. It takes seven seconds until
the server receives the abort notification, stops send-
ing and page data drains from the link queue. About
25 kilobytes of data is unnecessarily transmitted over
a 30-kbps GPRS link.

Deploying an active queue management algorithm,
such as RED, in the last-hop router can reduce the
number of aborted packets sent over the last-hop link.
AQM keeps the average queue size low without penal-
izing bursty sources. However, cellular links require a
buffer larger than the bandwidth-delay product of the
link to efficiently implement local error recovery. In
existing cellular networks we often find the bottleneck
buffer of about ten times the bandwidth-delay product
of the link [3].
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Figure 1. Aborted TCP connection over GPRS to
www.zed.com (receiver trace, Mozilla/HTTP 1.1).

The standard TCP receiver generates reset (RST)
packets after receiving (and discarding) packets on an
aborted connection. We propose a Fast Reset algo-
rithm to eliminate delivery of aborted data over a last-
hop link. The algorithm can be included into a perfor-
mance enhancing proxy snooping packet headers at
the last-hop link. The algorithm is illustrated in Fig-
ure 2 and has the following steps:

1. An application on the mobile client opens a TCP
connection and requests a web object.

2. The server receives the request and starts trans-
mitting data to the client.

3. Data packets are buffered in the last-hop router
and transmitted to the client.

4. The user decides to abort the download, for ex-
ample by pressing a “Reload” button. The TCP
receiver responds with reset packets to data pack-
ets arriving from the server.

5. The last-hop router notices a reset packet and dis-
cards buffered packets in the downlink direction
that belong to the aborted connection. It then for-
wards the reset packet toward the server.

6. The server receives the reset packet and stops
transmitting data on the aborted connection.

Step 5 can be further detailed as follows:



for every arriving pktl in uplink
if pktl is RST
for each queued pkt2 in downlink
if (srcl, dstl, sportl, dportl, protl)
= (dst2, src2, dport2, sport2, prot2)
discard(pkt2)
forward (pkt1)

The 5-tuple (src, dst, sport, dport, prot) uniquely
identifies a transport connection by its source and
destination IP addresses, source and destination port
numbers and the protocol number.

I a reset packet gets lost, the sender retransmits a
TCP segment after a timeout. This segment will not
be dropped by the last-hop router according to the al-
gorithm. Instead, the retransmitted segment will gen-
erate another reset packet at the receiver. There is
no state kept in the router, thus there is no harm to
new TCP connections if the client reuses ports from
aborted connections. Fast Reset works robustly for all
TCP applications including HTTP, FTP, and peer-to-
peer.

Since web browsing is the main contributor of
aborted connections, we describe how resets affect
HTTP in detail. HTTP v1.0 allows a maximum of four
concurrent TCP connections to a server. Thus, abort-
ing a web page download can generate resets for sev-
eral TCP connections. This reduces the performance
benefit of Fast Reset, because aborted data contained
in the buffer of the last-hop router is distributed over
several TCP connections.

HTTP v1.1 defines persistent connections. With
pipelining, several HTTP requests can be outstanding
over a single TCP connection. Once an abort of a sin-
gle request is initiated, the whole pipeline is aborted.
This helps the Fast Reset algorithm, because with a
single reset packet unnecessary data from several data
objects can be eliminated.

We evaluated Fast Reset using the Netscape
browser in Linux over a GPRS cellular link. When the
loading of a web page is aborted, 5-25 packets unnec-
essarily arrive to the receiver from aborted TCP con-
nections. This corresponds to 1-10 seconds of time
wasted before a new page begins loading. Fast Reset
reduces the penalty of aborting a web page to one-two
packets per a TCP connection. As a result, the re-
sponse time is reduced, battery power and radio spec-
trum are preserved.

The main limitation of the Fast Reset algorithm
is the requirement for a TCP connection to traverse
through the last-hop router in both directions. Al-
though we expect this requirement to be met in most
cases, there are asymmetric setups, e.g. for satellite
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Figure 2: The Fast Reset algorithm.

links [6]. Another drawback of Fast Reset is the pro-
cessing load on the router to parse the queue on ev-
ery arriving reset packet. We expect the load to be
acceptable for low rate links [2]. Finally, Fast Reset
creates a layering violation because the router has to
access transport-layer headers. TCP/IP header com-
pression is another example of a layering violation.
If the network-layer protocol, such as ISO CONP, is
connection-oriented, Fast Reset can avoid this prob-
lem.

Fast Reset can also be implemented in the mo-
bile client to eliminate aborted data delivery for up-
link transfers. We expect it to have only a modest
performance gain because the clients and not servers
seem to initiate aborts. Fast Reset can be adopted
for other connection-oriented transport protocols than
TCP, such as SCTP and DCCP [4].
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