
Lifetime Packet Discard for Efficient Real-Time
Transport over Cellular Links

Andrei Gurtov
�

Reiner Ludwig
�

gurtov@cs.helsinki.fi reiner.ludwig@ericsson.com
�

Dept. of Computer Science, University of Helsinki, Finland
�

Ericsson Research, Germany

Mobile cellular users often experience significant delay jitter that undermines quality of
real-time applications. Delay jitter can cause unnecessary delivery of stale packets with
passed playback deadline and duplicate packets retransmitted by the end host after experi-
encing a timeout. With Lifetime Packet Discard (LPD) a flow adaptive link can tailor the
trade-off between the maximum delay jitter and reliability if quality of service requirements
of a flow are known. We propose using an IP option to communicate the flow requirements
to the link layer. The packet lifetime is set to the minimum of the data lifetime determined by
application and the retransmit timeout value determined by the transport protocol if selec-
tive reliability is supported. For congestion-responsive flows, the link transmits only head-
ers of expired packets to prevent unnecessary triggering of end-to-end congestion control.
Our simulations show that LPD is efficient in reducing stale data delivery and increases the
number of packets delivered in time for real-time flows. For semi-reliable flows throughput
and goodput are improved because duplicate packet delivery is prevented.

I. Introduction

By definition, the usefulness of real-time data is lim-
ited by a certain deadline. For a video streaming ap-
plication, the data lifetime is determined by the size
of the playback buffer at the receiver. For a telemetric
application, old measurement samples become obso-
lete when a new sample is recorded. If delivery across
the network takes longer than the data lifetime, pack-
ets become stale and are typically discarded by the
receiver.

Slow last-hop links, especially those provided by
wide-area cellular networks, often have significant de-
lay jitter. A measurement study of dial-up connections
reported occasional delay jitter of several seconds due
to link-layer error recovery by a modem [26]. Fre-
quent delay spikes of 3 to 15 seconds were observed
in a wide-area cellular network due to handovers [14].

Consider Figure 1(a) showing delay jitter of UDP
packets transmitted at 30 kbps over a cellular link.
The trace is about an hour long, with 20 minutes of
walking, 20 minutes in stationary conditions, and 20
minutes in a moving train. Packets of 500 bytes are
transmitted at a constant bit rate downstream on a
GPRS link [5]. Delay spikes of several seconds are
clearly visible in mobile conditions. About 8% of all
packets were lost. To confirm that delays were not
only due to congestion, we repeated measurements us-
ing a congestion-responsive TFRC flow [11] and still

observed significant delay jitter.

Many real-time applications account for delay jitter
in the network by buffering data at the receiver. How-
ever, extensive buffering increases a start-up delay and
harms interactivity for rewind-type operations. For
certain types of media, such as live streaming, con-
versational audio or stock quote updates, significant
delaying of the playback may not be an option.

In summary, we believe that eventual disruptions in
delivery of real-time data in a wireless environment
are inevitable. The goal of our work is to make sure
that such disruptions bring minimum dissatisfaction to
the user.

The approach that we explore is to assign a lifetime
to every packet at the sending host. It gives the link
layer the necessary information on how persistent it
should be on transmitting a packet. We show that Life-
time Packet Discard (LPD) improves performance by
nearly eliminating delivery of stale and duplicate data
over an expensive wireless link. Although the idea of
LPD is not entirely new [41, 13], we are not aware of
its systematic evaluation. We provide extensive simu-
lations of LPD for constant bit rate (CBR), TCP, and
TFRC flows.

We show that LPD can unnecessarily trigger end-
to-end congestion control and suggest a method to
avoid it. Furthermore, a solution to the problem of
spurious timeouts in transport protocols is proposed
using LPD. The rest of the paper is organized as fol-

November 26, 2003 1



0

2

4

6

8

10

0 5000 10000 15000 20000 25000 30000

T
im

e 
in

 fl
ig

ht
, s

ec
on

ds

Packet number

Walking Stationary Train

(a) One-way delay of data packets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Time in flight, seconds

(b) Cumulative distribution of one-way delay

Figure 1: Delay jitter in a streaming test in a live GPRS network.

lows. In Section II, our view of the architecture for
delivery of real-time data over wireless links is pre-
sented. Section III motivates this work by describing
problems that can be solved by our approach. Sec-
tion IV shows in detail how LPD avoids delivery of
stale and duplicate data. In Section V, we evaluate
the effect of LPD on performance of various types of
flows. Section VI presents ideas for future work. Sec-
tion VII concludes the paper.

II. The Architecture for Real-Time
Transport

Generally speaking, limited bandwidth and battery
power are two primary concerns for wireless users.
Therefore, an efficient architecture would attempt to
satisfy Quality of Service (QoS) requirements of all
flows at the minimum cost of bandwidth and battery
power.

II.A. Network Architecture

We assume the network architecture illustrated in Fig-
ure 2 that resembles the architecture of a GPRS cellu-
lar network [5]. The Radio Link Control (RLC) proto-
col provides recovery of error losses on the radio link
between the mobile station (MS) and the Base Station
Controller (BSC). Link-layer retransmissions and mo-
bility signaling during handovers are main sources of
delay jitter.

The last-hop router implements LPD by dropping
packets with a remaining packet lifetime of less than
it would take to deliver them over the wireless link.
The packet lifetime can be used for several other pur-

InternetRouter

Client RLC
MS

ServerReal−Time

BSC

NTP Server

Last−hop

Figure 2: Network architecture.

poses in the last-hop router, such as the earliest dead-
line scheduling [39]. In this paper, we only consider
using the packet lifetime for discarding stale and du-
plicate data. When the real-time server is located in
the Internet, clock synchronization between the last-
hop router and the server would typically be required.
The Network Time Protocol (NTP) [34] can provide
sufficient accuracy for our purposes. When the real-
time server is located close to the last-hop router or the
network delay to the server is static and known, clock
synchronization is not necessary. In our experience, it
is a common practice for network operators to locate
servers as close as possible to their intended users.

In this paper we focus on downlink flows from the
real-time server to the client. In practice, the client
and the mobile station are often combined in a single
device; thus, removing stale data from the bottleneck
queue is straightforward for uplink flows. For down-
link flows, a real-time server has no direct control over
data buffered in the last-hop router; therefore, a mech-
anism to inform the router of the packet lifetime is
needed.

Unfortunately, the time-to-live (TTL) field in IPv4
and IPv6 headers is too short to provide sufficient ac-
curacy for the packet lifetime. Using a custom for-

2 November 26, 2003



mat of the IP timestamp option [36] could be one pos-
sibility for carrying the packet lifetime. However, a
generic method for cross-layer communication would
be helpful for future generations of transport protocols
and wireless links. As an example, if a transport pro-
tocol could inform the link layer that it is tolerant to
packet reordering, the link layer could avoid overhead
of ordered packet delivery. Therefore, we defined a
new IP option to carry the packet lifetime and infor-
mation about preferences of a transport protocol.

Appendix A gives a detailed format of the proposed
IP option. Using the IP option does not cause a lay-
ering violation, in contrast to using transport-layer
timestamps. As routers operate on the networking
layer, they are not supposed to examine other packet
headers than the IP header [6]. A drawback of an IP
option is that it costs several bytes of overhead and
can load a router because of slow-path processing.

Sending the packet lifetime in an IP option is con-
venient when the server determines the data lifetime.
If the receiver determines the data lifetime, a mecha-
nism is needed to convey it to the sender or the last-
hop router. Some existing wireless networks already
allow a mobile station to send the maximum delay re-
quirement to the base station and last-hop router using
link layer signaling [1].

If all packets in a flow have the same lifetime, then
only the first packet in the flow could have the IP op-
tion. This approach eliminates overhead of having an
option in every packet, but raises concerns with man-
aging per-flow state in routers and robustness for un-
reliable flows. Although these concerns can be partly
solved with periodic state refreshments, for example
using ICMP messages, including lifetime information
in every packet appears more suitable.

II.B. End-to-End Real-Time Transport

We believe that future transport protocols for real-
time data will support 1) selective reliability and 2)
TCP-friendly congestion control. Real-time data can
have tight delivery constrains; recovery of lost packets
through retransmissions is not always feasible. How-
ever, it was shown that selective reliability is highly
beneficial for certain types of data, such as a com-
pressed MPEG-4 video stream [9]. By recovering
important packets within the playback delay, the per-
ceived quality of the application can be significantly
enhanced. SR-RTP is a backward-compatible RTP
extension that supports selective reliability [9]. PR-
SCTP is another example of a partially reliable trans-
port protocol [40].

Congestion control is a general requirement for all

SR−RTP

DCCP/TFRC

Application

IP

Data Lifetime

Packet Lifetime

Figure 3: End-to-end transport for real-time flows.

Internet flows [10]. However, the oscillatory nature of
TCP congestion control may not be desirable for real-
time applications. The notion of TCP friendliness per-
mits a smoother transmission rate if the average rate
is the same as of a TCP flow in similar conditions.
TCP Friendly Rate Control (TFRC) is one of proposed
slowly responsive congestion control algorithms [11].
Datagram Congestion Control Protocol (DCCP) [23]
is a new unreliable transport protocol that allows ap-
plications to use TFRC congestion control.

Figure 3 shows how SR-RTP and DCCP fit into our
architecture. The application passes a data object to
SR-RTP for transmission indicating a maximum tol-
erable delivery delay (the data lifetime). The SR-RTP
protocol verifies if the data object can be delivered
within the data lifetime. If retransmissions are fea-
sible within the data lifetime, SR-RTP sets the packet
lifetime to the value of the retransmit timeout. Other-
wise, the data lifetime is copied to the packet lifetime.
The DCCP protocol provides TCP friendly rate con-
trol to SR-RTP.

III. Motivation of the Approach

In this section we argue why controlling the packet
lifetime in the network is a right approach from an ar-
chitectural point of view. A practical argument is that
since many wireless networks employ billing based on
the amount of transferred data, users become particu-
larly concerned about the usefulness of the data they
receive.

III.A. Flow Adaptive Link Layer

It is well known that wireless links can potentially in-
troduce high loss rates on data traffic. To effectively
carry IP traffic, most modern wireless networks de-

November 26, 2003 3



ploy retransmissions at the link layer. The link per-
sistency is defined as time the link protocol attempts
to recover a corrupted packet before discarding it and
proceeding with transmission of other packets. Previ-
ous work has shown that the link layer operating on
small data blocks is more efficient than purely end-to-
end error recovery [29].

A natural problem for a link carrying a mixture of
reliable and real-time traffic is how persistent it should
be on a given packet. It was shown that high per-
sistency is beneficial for reliable transport protocols,
such as TCP. In opposite, real-time flows favor timely
delivery over reliability and require low persistency.
Existing link layers do not discriminate among data
packets and use the same persistency for reliable and
real-time data, thus giving a non-optimal trade-off.

A concept of a flow-adaptive link layer was pro-
posed to tailor link behavior to demands of various ap-
plication flows [31]. The proposed solution is a simple
heuristic of being highly persistent on TCP packets
and low persistent on UDP packets. That paper itself
recognized that this crude discrimination is not suffi-
cient, as there are UDP applications, such as the Net-
work File System (NFS), that assume nearly reliable
delivery from the network. Furthermore, the choice
of persistency for each class is arbitrary and may not
correspond to actual requirements of applications.

An improvement [42] over a simple TCP/UDP
heuristic is to use quality of service information from
DiffServ code points [3]. However, there are only
256 code points available and this number may not
be sufficient to convey the packet lifetime with suffi-
cient granularity. With our approach, every packet has
exact information about its maximum tolerable delay.
This information allows a flow-adaptive link to opti-
mally control the delay versus loss probability in the
presence of transmission errors.

III.B. Competing Error Recovery

Another problem resulting from uncontrolled link
layer retransmissions is possible competition between
link layer and end-to-end error recovery. Because link
error recovery is observed as delay jitter by the end
hosts, the retransmit timer of a transport protocol can
expire prematurely. Spurious timeouts trigger unnec-
essary retransmissions and congestion control.

The Eifel algorithm [28] was proposed as an end-
to-end solution for detecting [30] and recovering spu-
rious TCP timeouts [27, 16]. The Eifel algorithm uses
the TCP timestamp option to determine if arriving ac-
knowledgments after a timeout refer to original or to
retransmitted segments. F-RTO is an alternative end-

to-end proposal for the problem of spurious timeouts
in TCP and SCTP [38].

There are several advantages of our approach ver-
sus end-to-end solutions for real-time protocols:

� End-to-end protocols rely on delivery of old
packets in the network and suppress transmission
of duplicate packets after a delay. Our approach
allows the end host to retransmit a fresh version
of data after a delay.

� End-to-end solutions proposed so far are for
TCP or SCTP, that are window-based proto-
cols acknowledging every or at least every other
packet. Our approach is well suited for rate-
based real-time protocols with infrequent ac-
knowledgments. End-to-end proposals would be
inefficient for such protocols.

� Ideally, our approach entirely avoids delivery of
duplicate packets. End-to-end solutions often re-
quire several unnecessary retransmissions to de-
tect that a timeout was spurious.

The strong side of end-to-end solutions is that false
congestion control actions can be easily undone at the
sender. However, our approach can be complemented
by a mechanism to undo congestion control at the end
hosts.

III.C. Application Empowerment

A popular paper on the next generation of proto-
cols [7] argues that the application should be given
control over recovery from lost and delayed packets.
Indeed, the application may not need recovery of that
particular data object or can re-generate a fresh ver-
sion of it for retransmission. Our approach supports
this principle by empowering the application to con-
trol for how long time the network should try to de-
liver the data.

Another trade-off that should be under the control
of the application is a maximum transmission burst
size versus a maximum queuing delay. The size of the
link buffer sets this trade-off in the network. Having
a small buffer reduces the queuing delay and possibly
the amount of stale data delivered to the receiver.

However, a small link buffer can also cause undesir-
ably high packet loss rates for a bursty real-time appli-
cation with a variable bit rate data encoding. With our
approach, the network buffer can be sufficiently large
to accommodate bursty sources, because the applica-
tion can explicitly limit the maximum queuing delay.

4 November 26, 2003



0

20

40

0 5 10 15 20 25 30 35

S
eg

m
en

t n
um

be
r

Time, seconds

Delay

-10

-5

0

5

10

0 5 10 15 20 25 30 35

P
ac

ke
t l

ife
tim

e,
 s

ec
on

ds

Delay

(a) Without LPD

0

20

40

0 5 10 15 20 25 30 35

S
eg

m
en

t n
um

be
r

Time, seconds

Delay

snd_data
drops

-10

-5

0

5

10

0 5 10 15 20 25 30 35

P
ac

ke
t l

ife
tim

e,
 s

ec
on

ds

Delay

(b) With LPD

Figure 4: Disruption introduced to an unresponsive ON/OFF flow by a delay spike.

Discarding stale data in the network is particu-
larly useful when the data lifetime is comparable with
round trip time of the path. In this case, end-to-end
mechanisms to compensate for delay variation cannot
adapt effectively. However, a situation when a sig-
nificant fraction of packets persistently expires in the
network should be avoided. On a network path with
multiple congestion points, packets that expire after
crossing a congested router consume resources from
useful traffic. Therefore, an application or transport
protocol should detect persistent expiration and adapt
by increasing the packet lifetime.

IV. Lifetime Packet Discard

IV.A. Preventing Stale Packet Delivery

In this section, we show how LPD can improve the
performance of UDP flows that are unresponsive to
congestion. Packets buffered in the network become
stale and are unnecessarily transmitted after a delay
spike producing two negative effects:

� Transmitting stale data wastes resources.

� Transmitting stale data delays delivery of packets
that contain fresh data.

Figure 4(a) shows a trace from ns2 simulator of
an ON/OFF UDP flow experiencing a 10 second de-
lay spike. In this example, the packet lifetime is set
to five seconds that equals the interval at which the
application generates new data objects. The bottom
graph shows packet sequence numbers at the sender
and the top graph shows the remaining lifetime of ar-
riving packets at the receiver. Negative values mean

that the packet is stale and should be discarded. When
the delay spike starts on the 10th second, no packets
are delivered until it ends, but newly arriving pack-
ets get queued in the last-hop router. When the de-
lay spike ends on the 20th second, for following seven
seconds the link delivers only stale packets. The back-
log of stale packets prevents fresh updates to be deliv-
ered to the receiver.

Figure 4(b) shows a similar scenario when the
router implements LPD. Immediately when the delay
spike ends, fresh updates are delivered to the receiver.
Furthermore, no stale packets are sent over the wire-
less link that saves resources.

IV.B. Preventing Duplicate Packet De-
livery

Transports protocols, such as TCP, SR-RTP [9],
HPF [25], and PR-SCTP [40], provide some degree of
reliability by retransmitting lost packets. A packet is
considered lost when a retransmission timer expires at
the sender. When the delay in the network increases,
the timer can expire prematurely. As a result, two or
more duplicate packets can be transmitted over the
wireless link wasting resources. Below we describe
this situation for TCP in detail.

When a sudden delay occurs in the network that
exceeds the current value of the TCP retransmission
timer, the oldest outstanding segment is retransmit-
ted. Since data segments are delayed but not lost,
the retransmission is unnecessary and the timeout is
spurious. A spurious TCP timeout is shown in Fig-
ure 5(a). The delay spike is generated between the
10th and 20th seconds in this test. The first retrans-

November 26, 2003 5



0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

S
eg

m
en

t n
um

be
r

Time, seconds

Delay

snd_data
snd_ack

drops

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

S
eg

m
en

t n
um

be
r

Delay rcv_data
rcv_ack

(a) Without LPD

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

S
eg

m
en

t n
um

be
r

Time, seconds

Delay

snd_data
snd_ack

drops

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

S
eg

m
en

t n
um

be
r

Delay rcv_data
rcv_ack

(b) With LPD

Figure 5: Duplicate packet delivery in a TCP flow after a spurious timeout. The receiver trace (top) and the
sender trace (bottom).

mission that occurs on the 17th second is also delayed.
The sender interprets the acknowledgment generated
by the receiver in response to the delayed segment as
related to the retransmission, not the original segment.
TCP retransmits all outstanding segments using the
slow start algorithm. Such a retransmission policy is
referred to as go-back-N, because the sender forgets
about all segments it has earlier transmitted. On the
30th second, retransmitted segments arrive to the re-
ceiver and generate duplicate acknowledgments as the
original segments have already been delivered.

In summary, spurious timeouts in a semi-reliable
transport protocol cause two problems:

� Unnecessary end-to-end retransmissions pro-
duce duplicate packet delivery over a wireless
link.

� Congestion control is disturbed. In the short run,
retransmissions using slow-start can overload the
network. In the long run, the network can be un-
derutilized.

Figure 5(b) shows the same scenario with LPD. The
packet lifetime is set to the retransmit timeout value
at the TCP sender. When the sender times out and
retransmits the first segment on the 17th second, the
last-hop router has dropped all outstanding segments
from the flow. When the delay spike ends, the sender
immediately gets an acknowledgment for the retrans-
mitted segment and continues retransmitting segments
using go-back-N. Since all originally transmitted seg-
ments are dropped, no duplicate packets are delivered
to the receiver.

LPD alone does not solve the second problem trig-
gered by spurious timeouts, unnecessary congestion
control at the end hosts. In Figure 5(b) the problem
is not significant because the bandwidth-delay prod-
uct of the path is small. However, a reduction of the
transmission rate after a spurious timeout can reduce
performance on paths with a larger bandwidth-delay
product [16]. In the next section we discuss how this
problem can be alleviated.

Another possible complication is that setting the
packet lifetime correctly can be difficult for trans-
port protocols that update the retransmit timer after
sending a segment. During bulk data transmission in
TCP, the retransmit timer is offset by one RTT be-
cause the timer is restarted upon every acknowledg-
ment [33, 35]. Furthermore, the retransmit timeout
value can be updated more frequently than once per
RTT [19]. For optimal performance (to avoid occa-
sional dropping of valid packets and delivery of du-
plicates) the transport protocol should not update the
retransmit timeout value nor restart the timer until the
oldest outstanding segment is acknowledged. How-
ever, if RTT increases significantly, the timer has to
be updated to avoid many spurious timeouts.

IV.C. Interactions with End-to-End Con-
gestion Control

End-to-end congestion control in the Internet is based
on an assumption that almost all packet losses are due
to congestion [18]. Hence, discarding expired packets
in the network incorrectly triggers a reduction of the
transmission rate at the sender. In this section, we ex-

6 November 26, 2003



0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50

S
eg

m
en

t n
um

be
r

Time, seconds

Delay

snd_data
snd_ack

(a) Without LPD

0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50

S
eg

m
en

t n
um

be
r

Time, seconds

Delay

snd_data
snd_ack

drops

(b) With LPD

Figure 6: Behavior of end-to-end TFRC congestion control after a delay spike.

plore how TFRC congestion control reacts to packet
drops by LPD.

Figure 6(a) shows a sender trace of a TFRC flow
when a 10 second delay spike is introduced. We as-
sume the data and packet lifetime of five seconds in
this example. The sender gets no feedback during the
delay spike and gradually slows down to eventually
transmit one packet per RTT. When the delay spike
ends, several feedback packets that were delayed ar-
rive to the sender. It takes about 15 seconds after the
delay spike ends for the sender to return to the normal
transmission rate. Because the receiving application
discards stale data, the transport protocol does not see
any data loss in this example. The receiver reports
no loss events and the sender does not further invoke
congestion control.

Figure 6(b) shows the same flow with LPD. Until
the delay spike ends, the sender’s behavior is identi-
cal to Figure 6(a), as expected. But later, feedback
packets report packet losses and the sender keeps the
transmission rate reduced. Still, the sender is able to
reach a higher sequence number than without LPD
because unnecessary transmission of stale packets is
eliminated. However, in tests with higher link band-
width we observed that unnecessary triggering of con-
gestion control reduces performance.

Figure 7 shows how the undesired triggering of
end-to-end congestion control can be avoided. We
call our solution headercasting. The idea of header-
casting is to transmit only IP and transport headers
of stale packets. The receiver knows upon getting a
header that there was no packet loss due to congestion
and there is no reason to trigger congestion control
at the sender. When a feedback packet arrives to the

sender, it can undo the reduction of the transmission
rate that occurred because of no-feedback timeouts. A
flow uses a bit in the IP option to indicate if it is in-
terested in headercasting or its packets can be simply
dropped. Headercasting requires re-computing check-
sums and may not work in the presence of IPsec.

0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50

S
eg

m
en

t n
um

be
r

Time, seconds

Delay

snd_data
snd_ack

Figure 7: Interference of LPD with end-to-end con-
gestion control is resolved by transmitting headers of
stale packets.

3 Mbps


50 ms

MS
 R2
 R1


S2


S1


3Mbps

10 ms


30 Kbps

150ms
 3 Mbps
50 ms


Sources


Sink

TCP


TFRC/CBR


Figure 8: Simulation setup in ns2.

November 26, 2003 7



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 15 20 25 30 35 40

V
al

id
 p

ac
ke

ts
 r

ec
ei

ve
d 

(f
ro

m
 a

ll 
se

nt
)

Router buffer size, packets

DropTail-3s
LPD-3s

DropTail-5s
LPD-5s

DropTail-8s
LPD-8s

DropTail-10s
LPD-10s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30 35 40

S
ta

le
 p

ac
ke

ts
 r

ec
ei

ve
d 

(f
ro

m
 a

ll 
re

ce
iv

ed
)

Router buffer size, packets

DropTail-3s
DropTail-5s
DropTail-8s

DropTail-10s
LPD-3,5,8,10s

Figure 9: Effect of LPD on performance of a single CBR flow with various packet lifetimes.

V. Performance Evaluation

We run an extensive set of ns2 simulations to ex-
plore the effects of LPD on CBR, TCP, and TFRC
flows. Figure 8 shows the topology we have used;
it resembles the setup of a GPRS user. We used the
state-of-the-art TCP with SACK, delayed acknowl-
edgments, limited transmit, segments of 1000 bytes,
the retransmit timer compliant to RFC2988, and the
receiver window of 50 segments. Delay jitter was in-
troduced by inserting delay spikes of 7-10 seconds at
a 30-second interval according to real-world traces in
Figure 1(a). We present simulations using Drop-Tail
buffers, but we also experimented with Random Early
Detection (RED) [12] with similar results. LPD is
executed in R1. Our simulation scripts are publicly
available [15].

V.A. Constant Bit Rate Flows

In this section, we evaluate performance of a CBR
flow in the presence of delay jitter in the network.
We are interested in two main performance metrics.
A fraction of valid packets (received within their life-
time) describes perceived quality of the application. A
fraction of packets delivered stale describes how effi-
cient are the use of wireless link bandwidth and bat-
tery power of the mobile station.

Figure 9 shows performance of a 25-kbps CBR flow
with various values of data lifetime. In this test, the
packet lifetime is assumed to be determined by the ap-
plication according to the available playback buffer.
With a Drop-Tail buffer, fewer packets are delivered
valid when the data lifetime becomes tighter. Further-
more, the number of valid packets quickly decreases
with increase of the buffer size in the last-hop router.
The fraction of stale packets increases with a smaller

data lifetime or a larger buffer size. Eventually, nearly
all packets are delivered stale.

When LPD is enabled, performance for different
data lifetimes and buffer sizes is stable and nearly op-
timal. About 85% of the packets are delivered valid.
At the same time, no stale packets are sent over the
wireless link.

V.B. TCP Flows

In this section, we explore how LPD can prevent de-
livery of duplicate segments in the presence of spuri-
ous TCP timeouts. We compare performance of TCP
over LPD, the standard TCP, and TCP with the Eifel
algorithm. The download time reflects the perceived
performance of the application. The number of du-
plicate segments received shows efficiency of the re-
source use. The packet lifetime is set to the retransmit
timeout value of the TCP sender.

In Figure 10, download time of TCP over Drop-Tail
is 10-20% higher than over LPD. TCP with the Eifel
algorithm has only a slightly higher download time
than TCP over LPD for large buffers. However, when
the buffer size is small, Eifel suffers from genuine re-
transmission timeouts due to congestion losses [16].
Its download time is variable and up to 60% higher
than of TCP over LPD. When congestion control is
not undone after a spurious timeout with the Eifel
algorithm (Eifel-CC), then its performance is even
worse compared to TCP over LPD.

The number of duplicate segments for standard
TCP grows with a larger buffer size. Up to 16% of
all delivered segments are duplicates. Both the Eifel
algorithm and TCP over LPD perform well in reduc-
ing the number of duplicate delivered segments below
3%.

We would like to note that the goal of LPD was not

8 November 26, 2003



360

380

400

420

440

460

480

500

10 15 20 25 30 35 40

D
ow

nl
oa

d 
tim

e,
 s

ec
on

ds

Router buffer size, packets

DropTail
Eifel

Eifel-CC
LPD

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 15 20 25 30 35 40

D
up

lic
at

e 
se

gm
en

ts
 r

ec
ei

ve
d 

(f
ro

m
 a

ll 
re

ce
iv

ed
)

Router buffer size, packets

DropTail
Eifel

Eifel-CC
LPD

Figure 10: Comparison of TCP with LPD, TCP with the Eifel algorithm, and standard TCP. The packet lifetime
is set to the TCP retransmit timeout.

to beat end-to-end solutions, such as Eifel, for non-
real-time flows. We believe that end-to-end solutions
work well for fully reliable protocols. Instead, main
benefits of LPD are for real-time flows as described in
Section III.A. The reason we used TCP for evaluation
is lack of support for semi-reliable transport protocols
in ns2.

V.C. TFRC and TCP Flows

In this section, we compare concurrent TCP and
TFRC flows with and without LPD. For TCP flows,
we use download time and the number of received du-
plicate segments as performance metrics. The packet
lifetime of TCP segments is set to the TCP retransmit
timeout value. For TFRC flows, we look at the total
size of received stale packets. The packet lifetime of
TFRC packets is set to 3, 5, 8 or 10 seconds to corre-
spond to various data lifetimes.

In Figure 11, the two top graphs show TFRC perfor-
mance and the two bottom graphs show TCP perfor-
mance. TFRC flows over Drop-Tail receive less valid
packets than over LPD for given data lifetime. The
difference is growing with an increase in the router
buffer size. Similarly, the number of bytes delivered
stale is large for Drop-Tail and small for LPD.

For TCP, download time over LPD is lower than
over Drop-Tail, with a growing difference when the
data lifetime in the TFRC flow gets lower. The num-
ber of unnecessary retransmissions is low and stable
for a TCP flow over LPD, but grows quickly over
Drop-Tail with the increasing buffer size.

Figure 12(a) and 12(b) show in detail why perfor-
mance with LPD is better. Unnecessary go-back-N
retransmissions are prevented for the TCP flow when
LPD is enabled. Stale packets of the TFRC flow

are discarded when LPD is enabled that saves band-
width. Finally, throughput of TCP and TFRC flows
are closer, which is a crude indicator that LPD im-
proves fairness between flows.

VI. Considerations for Future Work

In this section, we discuss issues that should be con-
sidered in more detail in future work. First, we discuss
concerns of using LPD in the presence of IP security
and incremental deployment. Second, a possibility of
dropping entire application data units with stale frag-
ments is considered.

VI.A. Operation with IPsec

The use of IP security (IPsec) [22] can affect LPD if
the router is unable to read the packet lifetime from an
IP option or recompute checksums for headercasting.

The IPsec architecture provides two modes for pay-
load encryption, the transport mode and the tunnel
mode. In the transport mode, IP options for IPv4 and
IPv6 are not encrypted [20]. Therefore, the router can
read the packet lifetime but cannot recompute check-
sums. In the tunnel mode, some outer fields are con-
structed from the original header, but IP options are
“never copied” according to RFC2401 [22]. There-
fore, the router can have difficulties executing LPD in
the tunnel IPsec mode.

A similar problem with the Explicit Congestion No-
tification (ECN) and DiffServ was solved by a cor-
rection to RFC2401 that requires copying the rele-
vant fields to the outer header. A similar correction
for IP options was proposed stating that the “post-
IPsec code may insert/construct options for the outer
header” [21]. Furthermore, the IPsec tunnel is often

November 26, 2003 9



350

400

450

500

550

600

650

700

750

10 15 20 25 30 35 40

D
ow

nl
oa

d 
tim

e,
 s

ec
on

ds

Router buffer size, packets

LPD-3s
LPD-5s
LPD-8s

LPD-10s
DropTail-3,5,8,10s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10 15 20 25 30 35 40

D
up

lic
at

e 
se

gm
en

ts
 r

ec
ei

ve
d 

(f
ro

m
 a

ll 
re

ce
iv

ed
)

Router buffer size, packets

LPD-3s
LPD-5s
LPD-8s

LPD-10s
DropTail-3,5,8,10s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30 35 40

V
al

id
 p

ac
ke

ts
 r

ec
ei

ve
d 

(f
ro

m
 a

ll 
se

nt
)

Router buffer size, packets

DropTail-3s
LPD-3s

DropTail-5s
LPD-5s

DropTail-8s
LPD-8s

DropTail-10s
LPD-10s

0

100

200

300

400

500

600

700

800

900

10 15 20 25 30 35 40

S
ta

le
 d

at
a 

re
ce

iv
ed

, k
ilo

by
te

s

Router buffer size, packets

DropTail-3s
LPD-3s

DropTail-5s
LPD-5s

DropTail-8s
LPD-8s

DropTail-10s
LPD-10s

Figure 11: Effect of LPD on performance on concurrent TFRC (top) and TCP (bottom) flows for various data
lifetimes.

terminated before the last-hop router that allows LPD
execution without problems.

VI.B. Deployment Concerns

As for many new proposals, LPD raises some de-
ployment concerns. The sender end host has to be
modified to set the packet lifetime. The last-hop
router needs a modification to check for expired pack-
ets. However, real-time transport protocols support-
ing TCP-friendly congestion control and selective re-
liability are still in development. Therefore, it is not
a significant burden to complement them now with
packet lifetime functionality. Furthermore, in our ex-
perience software in last-hop routers in cellular net-
works is updated frequently that facilitates deploying
LPD. We recognize that it is not feasible to require
that all hosts and routers be upgraded in order to de-
ploy a new solution. Fortunately, LPD can be incre-
mentally deployed starting from a limited number of
real-time servers.

The server can discover if routers in the path to the
destination support, or at least tolerate, carrying the
packet lifetime as an IP option. The IP timestamp op-

tion is a part of the standard [36] and should be sup-
ported by all Internet routers. However, some misbe-
having routers or firewalls can discard IP datagrams
with IP options. To avoid unnecessary overhead if
LPD is not supported and prevent dropping of pack-
ets if routers do not tolerate an IP option, the sender
host should first probe the destination by sending a
train of knowingly stale and valid packets. Based on
the transport layer acknowledgments or ICMP “packet
discarded” notifications the sender host can decide
whether to send the IP option with packet lifetime for
a given destination.

As a simple experiment, we sent ICMP ping mes-
sages from a host in ICSI, Berkeley to a host in UH,
Helsinki. The path contained 19 hops. All pings con-
taining the IP timestamp option returned successfully,
but the RTT was 214-515 milliseconds, which is more
variable than a nearly constant RTT of 191 millisec-
onds with “normal” pings. This variability is proba-
bly because of slow-path processing for packets with
IP options and overhead of adding a timestamp to an
ICMP message in routers. Finally, when we pinged a
host located behind a firewall in Helsinki, pings con-

10 November 26, 2003



0

20

40

60

80

100

0 20 40 60 80 100

S
eg

m
en

t n
um

be
r

Time, seconds

tcp_snd_data
tcp_snd_ack

0

20

40

60

80

100

0 20 40 60 80 100

S
eg

m
en

t n
um

be
r tfrc_snd_data

tfrc_snd_ack

(a) Without LPD

0

20

40

60

80

100

0 20 40 60 80 100

S
eg

m
en

t n
um

be
r

Time, seconds

tcp_snd_data
tcp_snd_ack

0

20

40

60

80

100

0 20 40 60 80 100

S
eg

m
en

t n
um

be
r tfrc_snd_data

tfrc_snd_ack

(b) With LPD

Figure 12: LPD improves goodput, throughput and fairness of TCP and TFRC flows when delay spikes occur in
the network. The packet lifetime of the TFRC flow is five seconds. The packet lifetime of the TCP flow is set to
the retransmit timeout.

taining an IP option did not get through, but “normal”
pings did.

VI.C. Discarding Application Data Units

The concept of application-level framing suggests that
data objects should be delivered over the network as
application data units (ADU) [7]. One ADU corre-
sponds to the data entity convenient for the applica-
tion, such as a video frame. The ADU size can exceed
the maximum transmit unit (MTU) of an IP network.
Therefore, large ADUs are transmitted as several IP
datagrams, or as fragments of a single datagram.

A congested router in today’s Internet drops IP
datagrams arbitrarily between ADUs. When the ap-
plication has tight real-time constraints, there is no
possibility to recover lost ADU fragments. Therefore,
the receiver host can drop large ADUs with only a
few missing fragments. Consequently, the playback
quality of the application can deteriorate to an unac-
ceptable level. A similar problem appeared previously
in the context of dropping ATM cells from TCP seg-
ments [37].

To prevent this problem, the router could drop en-
tire ADUs while possibly taking their priority and the
lifetime into consideration. However, if ADU framing
is at a transport or upper layer, the router cannot clas-
sify packets into ADUs without snooping into trans-
port or application headers. Such “layering violation”
is undesirable from the point of view of the Internet
architecture [6].

A possible solution is to rely on IP fragmentation

for delivery of large ADUs. In this case, the router can
identify and discard an entire ADU based on the stan-
dard datagram identifier field in the IP header without
snooping into upper layer headers. We are investigat-
ing possible performance benefits of this approach for
real-time data transport.

VII. Conclusions

Emerging real-time transport protocols combine se-
lective retransmissions and TCP-friendly congestion
control. In our architecture for efficient real-time
transport over wireless links, new transport protocols
are reinforced with Lifetime Packet Discard at the link
layer. In this paper we evaluated effects of LPD on
CBR, TCP, and TFRC flows.

The lifetime of a packet is set to the minimum of
the data lifetime determined by the application and the
retransmit timeout value determined by the transport
protocol. The packet lifetime coordinates operation of
link and transport layers. A flow adaptive link can use
the packet lifetime for determining the number of re-
transmission attempts, data encoding, and scheduling
of transmissions. The transport protocol can recover
lost packets faster by deploying a more aggressive re-
transmission timer [33], because the cost of spurious
timeouts is minimal with LPD.

End-to-end congestion control in the Internet is
based on the assumption that all packet losses result
from congestion. Therefore, discarding stale data in
the network can incorrectly trigger end-to-end con-
gestion control reducing the transmission rate at the

November 26, 2003 11



sender. We show that transmitting only headers of
packets with expired lifetime prevents interactions
with congestion control and still provides significant
efficiency gains. The benefit of LPD is higher for a
larger size of the bottleneck buffer. Below we provide
some arguments on why using a very small buffer is
not a desirable solution.

� A small buffer causes a short congestion avoid-
ance cycle that generates frequent packet drops.

� A small buffer is inadequate for smoothing
bursty traffic generated by variable bit rate
codecs.

� A larger buffer can accommodate bandwidth
variation occurring during vertical handovers.

� The current practice is to use large buffers in cel-
lular links [32]. A per user buffer of 50-200 kilo-
bytes was measured in a GPRS network [17].

Using an active queue management algorithm, such
as RED [12], may seem an attractive alternative to
LPD. However, we run tests using RED instead of
Drop-Tail and obtained similar results. Drop From
Head (DFH) [24] could be used together with LPD
to increase performance.

In future work, we will consider use of explicit
loss notification [2] as an alternative to headercast-
ing for avoiding unnecessary triggering of conges-
tion control by expiration losses. The cumulative ex-
plicit transport error notification [8] takes a different
approach from providing fine-grain feedback per ev-
ery discarded packet. Instead, routers tell the sender
the average fraction of lost packets due to transmis-
sion errors. The sender makes a smaller decrease in
the transmission rate on individual loss events. Pre-
liminary evaluation of this approach suggests that it
is effective in improving TCP throughput over links
with error losses while remaining congestion-friendly
to other TCPs. We expect these results to be directly
applicable to our work.

Acknowledgments

Authors thank Rajiv Chakravorty and members of the
Sahara project at UC Berkeley for valuable sugges-
tions. Many thanks to Sally Floyd and Randall Stew-
art for comments on the paper.

References

[1] 3GPP. TS 23.107: QoS concept and architecture,
Mar. 2002.

[2] H. Balakrishnan and R. Katz. Explicit loss no-
tification and wireless web performance. In
Proc. of Globecom Internet Mini-Conference,
Nov. 1998.

[3] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. An architecture for
differentiated services. IETF RFC 2475, Dec.
1998.

[4] E. Blanton and M. Allman. On making TCP
more robust to packet reordering. ACM Com-
puter Communication Review, 32(1):20–30, Jan.
2002.

[5] G. Brasche and B. Walke. Concepts, services
and protocols of the new GSM phase 2+ gen-
eral packet radio service. IEEE Communications
Magazine, 35(8):94–104, Aug. 1997.

[6] D. D. Clark. The design philosophy of the
DARPA internet protocols. In Proc. of ACM
SIGCOMM’88, Aug. 1988.

[7] D. D. Clark and D. L. Tennenhouse. Architec-
tural considerations for a new generation of pro-
tocols. In Proc. of ACM SIGCOMM’90, Sept.
1990.

[8] W. Eddy, S. Ostermann, and M. Allman. New
techniques for making transport protocols robust
to corruption-based loss. Submitted for publica-
tion, July 2003.

[9] N. Feamster and H. Balakrishnan. Packet loss re-
covery for streaming video. In Proc. of 12th In-
ternational Packet Video Workshop, Apr. 2002.

[10] S. Floyd and K. Fall. Promoting the use of
end-to-end congestion control in the internet.
IEEE/ACM Trans. on Networking, 7(4):458–
472, Aug. 1999.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast
applications. In Proc. of ACM SIGCOMM’00,
Aug. 2000.

[12] S. Floyd and V. Jacobson. Random early
detection gateways for congestion avoidance.
IEEE/ACM Trans. on Networking, 1(4):397–
413, Aug. 1993.

[13] D. J. Goodman, R. A. Valenzuela, K. T.
Gayliard, and B. Ramamoorthi. Packet reser-
vation multiple access for local wireless com-
munications. IEEE Trans. on Communications,
37(8):885–890, Aug. 1989.

12 November 26, 2003



[14] A. Gurtov. Effect of delays on TCP perfor-
mance. In Proc. of IFIP Personal Wireless Com-
munications (PWC’01), Aug. 2001.

[15] A. Gurtov. Extensions of ns2 simulator. Avail-
able at http://www.cs.helsinki.fi/u/gurtov/ns/,
Nov. 2003.

[16] A. Gurtov and R. Ludwig. Responding to spu-
rious timeouts in TCP. In Proc. of IEEE INFO-
COM’03, Apr. 2003.

[17] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola.
Multi-layer protocol tracing in a GPRS network.
In Proc. of IEEE Vehicular Technology Confer-
ence (VTC’02 Fall), Sept. 2002.

[18] V. Jacobson. Congestion avoidance and control.
In Proc. of ACM SIGCOMM’88, Aug. 1988.

[19] V. Jacobson, R. Braden, and D. Borman. TCP
extensions for high performance. IETF RFC
1323, May 1992.

[20] S. Kent. IP Encapsulating Security Payload
(ESP). Work in progress, draft-ietf-ipsec-esp-
v3-06.txt, July 2003.

[21] S. Kent. Security architecture for the Inter-
net Protocol. Work in progress, draft-ietf-ipsec-
rfc2401bis-00.txt, Oct. 2003.

[22] S. Kent and R. Atkinson. Security architecture
for the Internet Protocol. IETF RFC 2401, Nov.
1998.

[23] E. Kohler, M. Handley, and S. Floyd. Designing
DCCP: Congestion control without reliability.
Available at http://www.icir.org/kohler/dccp/,
May 2003.

[24] T. Lakshman, A. Neidhardt, and T. J. Ott. The
Drop from Front Strategy in TCP and in TCP
over ATM. In Proc. of IEEE INFOCOM’96,
Mar. 1996.

[25] J. Li, S. Ha, and V. Bharghavan. HPF: a transport
protocol for heterogeneous packet flows in the
Internet. In Proc. of IEEE INFOCOM’99, Mar.
1999.

[26] D. Loguinov and H. Radha. Measurement study
of low-bitrate internet video streaming. In Proc.
of the First ACM SIGCOMM Internet Measure-
ment Workshop (IMW-01), Nov. 2001.

[27] R. Ludwig and A. Gurtov. The Eifel response
algorithm for TCP. Work in progress, draft-ietf-
tsvwg-tcp-eifel-response-04.txt, Oct. 2003.

[28] R. Ludwig and R. H. Katz. The Eifel algorithm:
Making TCP robust against spurious retransmis-
sions. ACM Computer Communication Review,
30(1):30–36, Jan. 2000.

[29] R. Ludwig, A. Konrad, A. D. Joseph, and R. H.
Katz. Optimizing the end-to-end performance of
reliable flows over wireless links. ACM/Baltzer
Wireless Networks, 8(2):289–299, Mar. 2002.

[30] R. Ludwig and M. Meyer. The Eifel detection
algorithm for TCP. IETF RFC 3522, Apr. 2003.

[31] R. Ludwig and B. Rathonyi. Link layer enhance-
ments for TCP/IP over GSM. In Proc. of IEEE
INFOCOM’99, Mar. 1999.

[32] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden,
and A. Joseph. Multi-layer tracing of TCP over
a reliable wireless link. In Proc. of ACM SIG-
METRICS’99, May 1999.

[33] R. Ludwig and K. Sklower. The Eifel retrans-
mission timer. ACM Computer Communication
Review, 30(3):17–27, July 2000.

[34] D. Mills. Simple network time protocol (SNTP)
version 4 for IPv4, IPv6 and OSI. IETF RFC
2030, Oct. 1996.

[35] V. Paxson and M. Allman. Computing TCP’s re-
transmission timer. IETF RFC 2988, Nov. 2000.

[36] J. Postel. Internet protocol. IETF RFC 791, Sept.
1981.

[37] A. Romanow and S. Floyd. The dynamics of
TCP traffic over ATM networks. In Proc. of
ACM SIGCOMM’94, Aug. 1994.

[38] P. Sarolahti, M. Kojo, and K. Raatikainen. F-
RTO: A new recovery algorithm for TCP re-
transmission timeouts. Technical Report C-
2002-07, University of Helsinki, Feb. 2002.

[39] S. Shakkottai and R. Srikant. Scheduling real-
time traffic with deadlines over a wireless chan-
nel. ACM/Baltzer Wireless Networks, 8(1):13–
26, 2002.

[40] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and
P. Conrad. SCTP partial reliability extension.
Work in progress, draft-ietf-tsvwg-prsctp-01.txt,
Aug. 2003.

November 26, 2003 13



[41] J. Wong and Y. Liu. Deadline based network
resource management. In Proc. of the Inter-
national Conference on Computer Communica-
tions and Networks (ICCCN’00), Oct. 2000.

[42] G. Xylomenos. Multi Service Link Layers: An
Approach to Enhancing Internet Performance
over Wireless Links. PhD thesis, University of
California at San Diego, 1999.

A. IP Option for Cross Layer Com-
munication

Figure 13 is a proposal for an IPv4 option for cross-
layer communication. Using an IP option seems to
be the only feasible way to implement the concept.
Enabling the router to access headers above IP would
be a poor design choice and changing the basic for-
mat of IPv4 or IPv6 header is not realistic. However,
the proposed format is preliminary. There are differ-
ent alternatives to explore, such as creating a separate
IP option for the lifetime, reordering, and corruption
information versus combining them all in a single IP
option.

Fields type and length have the same meaning as for
all IPv4 options. The type could be any unallocated
number; the length is eight bytes.

The field reorder tells how deep reordering the
transport protocol is willing to tolerate. As an exam-
ple, for standard TCP the value would be three, that is
the number of duplicate acknowledgments required to
trigger fast retransmit. This field could be set dynam-
ically if the value of the duplicate acknowledgment
threshold is made adaptive [4].

The lifetime field carries the packet lifetime in mil-
liseconds and determines for how long time a packet
can be kept in the network. If the value is less than
65535, the lifetime value is relative to the sender’s
clock. In this case every router can decrement it by the
delay introduced to the packet. If the timestamp value
is larger than 65535, it is absolute deadline time (mod-
ulo 24 hours from midnight UT plus 65535). This for-
mat requires that participating routers have synchro-
nized clocks with the sender.

The flags field contains four flags. The corruption-
tolerable bit tells that it is acceptable to deliver a
packet with corrupted payload (that otherwise would
be dropped by the link layer). This flag is useful when
an application is resilient to errors and the transport
protocol implements partial checksums. The data cor-
rupted bit is set by the link layer if some data in the
packet is known to be corrupted. Two stale-treatment
bits determine desired treatment of a packet with ex-

type

0 15

length flags

23

lifetime

31

reorder

7

Figure 13: An IP option for cross-layer communica-
tion.

pired lifetime. A value 00 indicates that the packet
should be forwarded, 01 that it should be discarded,
10 that the packet should be forwarded with truncated
payload. The slow bit is set if the packet belongs to a
slowly-responsive flow.

The IPv6 option follows the same format as above.
It is a hop-by-hop option. The highest two order bits
of the type field are set to 00 to inform the router to
ignore this option if not understood and forward the
packet. The third highest order bit is set to 0 if the
timestamp field is in a deadline form. It indicates that
the option does not change in transit. If the times-
tamp field is in a lifetime form, this bit is set to 1 to
indicate that the option can change in transit (when
routers decrement the packet lifetime).

Biographies

Andrei Gurtov received his master’s and licenti-
ate’s degrees in Computer Science at the University
of Helsinki in 2000 and 2002. He is currently finaliz-
ing a doctoral thesis at the same university. In 2003
he spent six months in the International Computer
Science Institute at Berkeley working in a project on
building better simulation models. He is currently a
senior researcher at TeliaSonera.
Reiner Ludwig received his diploma and doctoral de-
grees in computer science from the University of Tech-
nology in Aachen, Germany, in 1994 and 2000. He
pursues his research as an employee of Ericsson Re-
search where he joined in 1994. He has spent over two
years, between 1997 and 1999, at the University of
California at Berkeley, working as a guest researcher
on behalf of Ericsson Research. He currently focuses
his research on the performance analysis of end-to-
end protocols, and their interaction with wireless link
and physical layer functions.

14 November 26, 2003


