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Abstract— Process migration, or application mobility as we
call it, is the act of moving a process or an application between
hosts during its execution. It enhances load management, fault
resilience, and data access locality. Regardless of its impressive
potential, it can’t be considered a commercial success due to
its currently limited deployment. A reason for the failure is
the complexity process migration creates in order to operate
transparently from application’s perspective. Transparent net-
work communication for migration capable operating systems
has traditionally required either custom application or kernel
implemented protocols, both breaking general interoperability.
Perhaps surprisingly, mobility and multi-homing driven identi-
fier/locator split architecture model provides an elegant solution
for this classic problem.

In this paper, we present an initial architecture for application
mobility utilizing perhaps the most promising candidate for the
identifier/locator split, Host Identity Protocol (HIP). Our novel
use of the protocol introduces new requirements for HIP itself.
The paper identifies these requirements and based on them
introduces a protocol extension to enhance HIP’s suitability for
application mobility.

I. I NTRODUCTION

Process migration is the act of moving a process between
hosts during its execution. It enhances load management,
fault resilience, and data access locality [1]. In addition to
these classic benefits, process migration facilitates modern
user demands, namely user session mobility[2], [3] and energy
conservation of mobile devices[4].

Regardless of its impressive potential, process migration
can’t be considered a commercial success due to its currently
limited distribution. A reason for the failure is the complexity
process migration creates in order to operate transparently
from applications’ perspective[1].

The term migration itself is rather overloaded. Albeit
rarely used nowadays,host migrationactually refers to host
mobility[5]. We shall not use the term further, but instead
we refer to mobility if movement of hardware is meant.
Service migration[6] is more abstract; it typically refers to
relocation of a service from the clients’ perspective. No
detailed assumptions are made whether the service moves due
to process migration or simple stop and restart cycle.

Several techniques akin to the classic process migration re-
quire further clarification.Load distributionis about balancing
the load of a set of hosts. In a system capable of dynamic load
distributing process migration supports distribution by moving
executing processes from overloaded hosts to less loaded. In
load balancinga group of servers gets a public virtual address
which is actually the address of a load balancer distributing
transport layer connections and application layer sessions for
the servers. The distribution occurs at the creation time of the

connections and sessions[7]. Therefore, load balancing is a
static load distribution mechanism as server processes don’t
relocate themselves while running.

Although not called migration,checkpointingis a limited
form of process migration; an application is periodically
freezed for a short period of time and the operating system
(or the application itself) stores application state to a persistent
storage.1 The key difference to the process migration is exactly
this clear unidirectional interface of process state transfer;
checkpointing copies the state to a file while process migration
requires a more complex bidirectional interface between the
source and the target host. Enabling application recovery to the
last checkpoint is the primary motivation for checkpointing;
however, it can be used to relocate a process too. After storing
the process state, the process is stopped, its state is transferred
to a new host, and a new process is constructed and started
based on the state. As the previous implies, differentiating
process migration and checkpointing can be rather fuzzy in
practice as [8] illustrates.

The final technique worth of mentioning iscode mobility.
It concerns moving the code only, and no execution state is
moved[9]. Therefore, an application must restart from scratch
on a new host. Although, it must be noted that such applica-
tions are usually aware of the possibility of being relocated
and similarities to checkpointing may be significant.

Encouraged from the fuzziness between the checkpointing
and the process migration, we raise the level of abstraction
and redefine process migration to refer toapplication mobility
instead. This avoids us from fixating ourselves to a certain
specific technique to relocate a running application. Thus,
a reader familiar with the classic process migration should
slightly re-orientate herself while reading the rest of the paper.

In this paper we present an initial application mobility
architecture exploiting Host Identity Protocol (HIP)[10] to
solve the classical communications transparency problem of
process migration. Therefore, instead of building a protocol
from scratch as early process migration research often did
(e.g., [11]), we use a more generic protocol for solving this
specific problem. HIP introduces a layer into the TCP/IP
protocol stack between transport and network layers. This
together with our strict focus in communications aspects
only enables us to clarify our definition of process migration
further; we define the transferred process state to also include
the state of transport layers and layers above that. Therefore,
session mobility (such as the architecture presented in [12]) is

1In a way, checkpointing introduces transactional properties to process
state; a checkpoint can be seen as a commit and recovery as a rollback.
A resemblance with database transactions is crisp.



not our principal interest. In fact, process migration should be
rather transparent to the layers above the HIP layer.

There seems to exist a relationship of hardware mobility and
application mobility. One could consider application mobility
as a form of multi-homing with rather limited communica-
tion facilities between multi-homed host’s physical network
interfaces; in the end the result is same, a remote peer has
changed its preferred address. However, the relationship and
its consequences are rather vague, at least for us. Thus, in this
paper we also attempt to deepen our understanding of this
relationship. We crystallize our two-staged research question
as follows:

1) What kind of implications does HIP have to network
communications of process being migrated and can HIP
offer at least a partial remedy to a classical problem of
process migration, namely, transparency of communica-
tions?

2) What implications the above has to HIP i.e., does the
above create new requirements for HIP?

The paper is structured as follows. In Section II, we analyze
architectural issues related to improving the process migration
communication transparency. Section III presents a detailed
design of the architecture. Section IV draws conclusions.

II. A RCHITECTURAL ISSUES

This section attempts to identify the essential forces af-
fecting to the architecture and its need to support two key
functions: communication during migration and resolution of
addresses after migration.

A. Delegation

End-points identities are assumed to remain the same for the
whole lifetime of HIP associations. We liberate ourselves from
this current restriction and shall next consider the implications
if HIP had support for changing of end-point identities without
breaking an association between end-points from applications’
or transport layer’s point of view.

In our scenario the source entitydelegatesresponsibility of
its HIP end-point identity to the destination entity. As a result,
the client end-point assumes the destination entity torepresent
the same end-point that was earlier in the source host, even
its end-point identity has changed. This sounds rather simple,
at first at least.

The consequence is the same as if the identity were moved.
All processes bound to the end-point being delegated, must
be migrated to avoid an extra relay in the communications.
In fact, it may be stating obvious but at this point, when both
identity moving and delegation have been considered, it seems
one cannot migrate a subset of an end-point without causing
residual dependency. Clearly, an entity, which all applications
bound to the end-point belong to, is the smallest unit of
mobility even if application mobility is introduced. Clark et
al. have claimed the same [13].

Maintaining full transparency in the communications API
was identified to be a challenge. Changing the host identity
challenges this; clearly, the semantics of the API change if we

were to allow the end-point identifier to change together with
end-point identity from processes’ point of view. After all, an
application must be able to depend on the static properties of
a local binding of a socket, at least with the de facto standard
BSD socket interface[14].

At this point, an option to guarantee transparency for
the processes is address translation. In other words, let HIP
association delegation and application mobility together trigger
address translation in both hosts to hide the migration from
applications referring to a changing end-point identity. The
HIP base specification[15] already identifies a similar need, in
the context of supporting legacy applications, though. There-
fore, no new functional component is required as such and the
implementation is likely to be trivial. In fact, the current HIP
socket API proposal probably simplifies the task even further
due to its extra indirection layer protecting applications from
future protocol stack changes[16].

B. End-point resolution

Until now, we haven’t considered the problem of address
resolution after process migration. In the following, we shall
analyze address resolution from both end-point identity move-
ment and delegation point of view.

Moving an end-point and its identity seems to morph to the
regular late binding address resolution process of HIP; location
update procedure must be executed to responsible rendezvous
servers to guarantee their ability to redirect the initiators’ first
packets to the current location of an end-point. Moving an
end-point seems not change to the address resolution at all
from regular multi-homing.

However, if the responsibility for an end-point identity is
delegated, the scenario becomes slightly more complex as
relocation of a network attachment point is not the only
change in the association end-points have; the identifier of
the (service) end-point also changes. HIP DNS extensions[17]
become problematic, as DNS can’t anymore be expected to
have the identity of a service in touch, even though it were
updated during the migration. Hence, avoiding opportunistic
HIP handshake becomes difficult. The issue shall be discussed
in more detail later.

We stress that the service can still becontactedafter the
migration by means of rendezvous mobility support[18], if its
rendezvous information is properly managed. However, end-
point’s identity can’t be verified to correlate with the service
name. In fact, the security would drop below the current model
of IP addresses with dual meaning[13]. Clearly, the delegation
decision of the source host should be more persistent and
it should even leave auditable traces for future association
creations. A method for the destination host would be to store
the delegation order and hand it for anyone trying to connect
the destination host with an old host identifier.

Even the delegation order should be semi-persistent2, its
validity period must be finite. A finite validity period protects

2With semi-persistent we mean the order should remain available as long as
migrated application is running; therefore, storing to a truly persistent storage,
such as a hard drive, is unnecessary.



source hosts from security breaches of its destination hosts;
without the finite validity period, with a stolen end-point
identity an attacker could reuse the delegation order and imper-
sonate a source host even the migration and the current DNS
would not contain the stolen destination end-point identity.
The choice of ending time shall be discussed shortly. Clearly, a
finite validity period requires also a start time; the current time
is acceptable for this purpose. The enforcement of the validity
interval renders an unfortunate side-effect; peers must have
a real time clock that is in sufficiently right time. Moreover,
the global nature of Internet also requires the timestamps in
coordinated universal time (UTC) format, and thus, the peers
must have time zone information too.

As identified earlier, the migration may occur multiple times
sequentially. In other words, the current home of a process
may have to store and present several delegation orders.
Fortunately, the required storage time is finite as it’s ultimately
defined by the time DNS stores outdated information of a
service. Sequential migrations have an implication regarding
rendezvous servers too; a mechanism is needed to enable
foreign end-points to update the current IP address of an end-
point.

III. D ESIGN

This section introduces the architecture instantiated based
on the key issues identified earlier; it shall focus the earlier
discussion into a specific architecture. As pointed out in the
introduction, we shall emphasize the communications aspects
while presenting the architecture.

A. Overview

Next we shall be introduce main functionalities and a
component of our process migration architecture capable of
communication transparency:

• Address resolution enhancementsto HIP are required to
guarantee secure end-point verification;

• Maintaining application transparencyinduces internal
protocol stack modifications; and

• A migration componentis responsible for suspending,
transferring, and resuming a process state.

B. Address resolution

The end-point identity responsibility delegation approach
creates two new challenges regarding the HIP association
establishment after a process migration. First, how do initiating
end-points resolve a DNS name of a migrated end-point to
its current IP address? Second, even if the resolving could
be done, how can the migrated end-point show its migration
history in a trusted manner to the HIP association initiators?

A semi-persistent method to indicate the delegation is
required to solve the latter challenge. The source of the
application being migrated shouldcertify the new end-point
identity of the application to act on behalf of itself using its
end-point identifier. Certification is required as the HIP end-
point identifier, called as a Host Identifier Tag (HIT), is a hash
of end-point identity’s public key. In other words, once the
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Fig. 1. A certificate (a curve) authorizes a destination (a hollow circle) to
use the end-point identifier of a source (a black circle) for the communication
with another host (a grey circle).

end-point identity changes, one can not use a hash-function
to validate the relationship of an end-point identifier and a
end-point identity. Therefore, we require the source of the
process to sign an “end-point impersonating certificate”3 for
the destination, which can then include it to HIP R1 packets
while responding to handshake requests directed to the source.
Once included, the destination may use the source end-point
identifier in HIP headers, as after processing the certificate
there is a valid relationship between the end-point identifier
and the host identity of the destination. Figure 1 depicts the
delegation of an end-point identifier.

As the process migration may occur multiple times sequen-
tially, we do not restrict the number of certificates as such,
but instead, require initiators to support construction of a trust
chain using the certificates from the end-point identifier they
intended to connect to the end-point identifier they got a re-
sponse from. From performance point of view, it’s obvious the
introduction of the certificates raises the processing resource
consumption in initiating peers; as the length of the trust chain
increases, the consumption of resources increases in a linear
fashion. The exact side-effects are vague at this point of time.

Rendezvous servers principally exist to evade the limitations
of DNS; namely, the inability of DNS to remain up to date
with rapid information changes. In its basic form, a rendezvous
server merely redirects initiators I1 packets to a current IP
address of an end-point.4 Thus, the rendezvous model of
HIP fits nicely to the application mobility scenario as the
certificates limit the problem of proving the delegation not
to be a problem of a rendezvous server.

Two options exist to inform rendezvous servers about the
relocation of an end-point, and thus, to solve the first chal-
lenge. Either a source of the application executes the location
update procedure or a destination executes it. We are for the
latter, as it resembles more closely the way transparency is
maintained for applications (discussed later); implementations
are likely to benefit from the similarity. An extension needed
is one to enable the new end-point of a process to readdress
the old end-point of the process to the new address.

We require the readdressing end-point to include necessary
delegation certificates to a I1 packet it sends to a rendezvous
server while establishing a rendezvous association with the
server. Including only the delegation certificates obtained

3These certificates have nothing to do with X.509v3 certificates; instead,
SPKI certificates[19] are a closer match.

4Certain limitations to the scope of the paper are imminent; therefore, we
shall consider only the basic rendezvous scenario, that is, the redirection of
HIP I1 packets.
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Fig. 2. The mapping replacements a destination host causes within a remote
peer after a successful HIP association establishment. A solid arrow represents
a SA to HIT (or vice versa) mapping, while a dashed arrow represents the
new mapping after the new HIP base exchange. The remote HIT refers to the
HIT a remote source and a remote destination share.

since the last rendezvous readdressing is necessary. Thus, in
practice, I1 packets to rendezvous servers contain only a single
certificate and the construction of the trust chain remains light-
weight. Once the certificates have been included, the HIP
header may contain the end-point identifier of the source end-
point as above.

We shall next consider the modifications the above delega-
tion requires to a protocol stack to maintain transparency from
upper layer’s point of view.

C. Protocol stack modifications

IPsec Security Parameter Index (SPI) [20] provides a com-
pression of HITs [10]. In other words, within an end-point a
SPI translates to a HIT, and vice versa. This enables HIP to
multiplex and demultiplex between IPsec Encapsulating Secu-
rity Payload (ESP) traffic and their respective HITs. Therefore,
a HIP capable end-point has sort-of address translation in
place by default. Thus, as we are speaking of the required
functionality to maintain transparency for layers above HIP,
nothing would prevent us to modify the SPI and HIT rela-
tionships. In such a model, a destination host would contact
without attaching signed certificates to a handshake. Thus, the
destination would not appear as a representative of the source
for a remote application until the parameter sent by the source
host had been processed and mappings were altered use IPsec
Security Associations (SAs) established with the destination
host.

However, the above sounds a bit hackish; an end-point iden-
tity is effectively changed after the association establishment.
Architecturally it is more sound to let a destination represent
a source already during the creation of an association; in this
way delegation extensions highlight the symmetrical nature of
HIP associations[10]. As an additional benefit, it is identical
with the way destinations inform rendezvous servers.

Once a destination end-point end-point includes the certifi-
cates to the handshake, from a remote peer point of view there
could be several HIP associations with the entity represented
simultaneously by both a source and the destination host.
However, as HIP end-points are expected to share a single HIP
association, the new IPsec SAs established with the destination
simply replace the old SAs with the source within a remote
peer[10]. This renders the application mobility completely
transparent for the layers above HIP within the remote peer.
Figure 2 depicts the association replacement. As shown in
the figure, IPsec SAs are unidirectional. Thus, actually two

replacements occur within a remote peer: one to replace the
mapping of a HIT to an outgoing SPI and one to replace the
mapping of an incoming SPI to a HIT.

The above discussion applied to the remote peers not
involved in the migration directly. For the destination host of
the migration, it is easier: establishment of HIP associations
together with the certificates to remote peers guarantees trans-
parency for the layers above HIP. However, as the destination
and source host share an end-point identifier, an unfortunate
side-effect develops. If the destination were, accidentally, to
choose the same SPI the source has assigned for a remote
peer, from the remote peer’s point of view, separation of the
SA to the source and the SA to the destination would become
impossible. This could potentially introduce problems within
remote peers. Therefore, the destination and the source end-
point must coordinate to prevent usage of the same incoming
SPIs. It’s convenient to let this communication about SPIs
to happen out-of-band from HIP point of view. We feel that
this is insignificant requirement, as the hosts involved in the
migration must have a more complex migration protocol in
place anyway.

D. Migration implementation

In the classic process migration research, devising an pro-
tocol to transfer process state with minimal freezing time and
maximal execution throughput, once resumed, has been an art
of its own[1]. However, we confine ourselves to a simple
migration protocol as our focus is in the communications
aspects. The fundamental nature of the migration protocol
requires a rather secure communication channel between a
source and a destination host; after all, a transferred process
state is subject to contain critical information. Moreover, as
we wish not to limit mobility and multi-homing capabilities
of the hosts involved, we are prone to select HIP as a basis. In
this manner, the actual migration protocol may focus in plain
process migration aspects only.

However, integration of HIP to a full Single System Im-
age (SSI) migration environment such as [21] seems an
overkill and unnecessarily complex at this point, while a plain
checkpointing approach seems rather limiting from supported
applications point of view. Checkpointing can’t provide full
transparency for applications; and as a result, applications de-
pending on operating system allocated identifiers were outside
of the scope. In [8] Osman et al. introduce a concept ofprocess
domain, which is a collection of processes that potentially
depend on each other. Instead of migrating a process, they
migrate a checkpointed process domain, which contains a
virtual and static view for processes in the domain. Our future
implementation shall build on top of this sound hybrid model
combining full transparency and simplicity.

In our architecture an end-point actually refers to a process
domain and not to an individual process. From the migration
protocol point of view the requirements migration of commu-
nications renders are still the same. The protocol requires only
a decent amount of message exchanges:
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Fig. 3. The relationship of the application mobility architecture and TCP/IP
protocol stack. The arrows represent the different protocols the process
migration implementation (PM) needs between a source and a destination
host. They are from bottom to up: HIP, TCP, and a custom process state
transfer protocol.

1) A source transfers its delegation order (and the possible
previous orders it has received) to a destination;

2) Together with the orders, the source transfers location
and identity information of current remote peers of the
process domain to the destination;

3) The destination acknowledges the transfer with a set of
SPIs pointing to SAs it is about to establish with the
peers;

4) The source acknowledges the SPIs, if they do not create
conflicts, and the destination establishes HIP associa-
tions with the remote peers5; and

5) The source transfers a checkpointed process domain
state including the state of transport layer sockets rele-
vant for the migrated process domain.

Despite the above simplicity, the architecture has to integrate
into rather many internal kernel components of an operating
system. Figure 3 depicts the relationships from TCP/IP stack
point of view. In addition, the implementation has to provide
the process domain for applications, and thus, to virtualize
basically the whole system call interface of the kernel. We
aim to use existing code of [8] to manage issues not directly
related to the TCP/IP protocol stack.

At this point of research we cannot introduce the process
state transfer protocol in more details. Moreover, cross-layer
aspects are too blurry to comment about in detail. However,
it seems attractive to provide hints e.g., to TCP sockets about
an occurred migration rather than only copy a TCP state as
such from a protocol stack to another.

IV. CONCLUSION

We believe that the HIP architecture integrates with appli-
cation mobility almost seamlessly. Application mobility re-
quires only modest enhancements to the HIP protocol suite to
obtain full communications transparency without any residual
dependencies due to communications itself. To provide for
application mobility, we proposed adding a newdelegation
primitive to the HIP protocol. Clearly, further research is
required to understand the wider implications of the delegation
primitive. Finally, we feel that this work also shows the
importance of supporting multiple end-points within a host.

5In the worst case, a few additional message exchanges are introduced while
agreeing about SPIs. However, as the SPI space is rather large, the probability
of several negotiation messages is non-existent.
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