
Certificate-Based Pairwise Key Establishment
Protocol for Wireless Sensor Networks

Pawani Porambage∗, Pardeep Kumar∗, Corinna Schmitt†, Andrei Gurtov‡ and Mika Ylianttila∗

∗Centre for Wireless Communications, University of Oulu, P.o.Box 4500, FI-90014 Oulu, Finland
{pporamba, pkumar, mika.ylianttila}@ee.oulu.fi

†Institute of Informatics, University of Zurich, Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
schmitt@ifi.uzh.ch

‡Department of Computer Science and Engineering, Aalto University, FI-00076 Aalto, Finland
gurtov@cs.helsinki.fi

Abstract—In order to guarantee the privacy and safety of data
transactions in Wireless Sensor Networks (WSNs), secure key
transportation and unique node identification have become major
concerns. WSNs are deployed in a wide range of applications
with a high demand for secure communications. When designing
a secure key management protocol for WSNs, special attention
should be given to the resource constraints of the devices and the
scalability of the network. In this paper, we exploit public-key
nature protocols to define a hybrid key establishment algorithm
for symmetric key cryptography. We propose an Elliptic Curve
Cryptography based implicit certificate scheme and show how to
utilize the certificates for deriving pair-wise link keys in a WSN. By
a performance and security analysis, we justify that the proposed
scheme is well fitting with the functional and architectural features
of WSNs. Both experimental results and theoretical analysis show
that the proposed key establishment protocol is viable to deploy
in a real-time WSN application.

Index Terms—Wireless Sensor Networks, Implicit certificate,
Security, Link key establishment, Elliptic Curve Cryptography

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are deployed in wide
ranges of applications such as environmental monitoring, health
care, industrial automation and battlefields where information
security and confidentiality are prime requirements [1]. Depend-
ing on the application scenario of the WSN, sensor nodes can
be statically located or mobile. The network is constructed with
one or few powerful base stations and thousands to millions of
sensor nodes, which are inherently resources restricted in terms
of memory, battery capacity and computational power [2]. In or-
der to defend malicious attacks and ensure hop-by-hop security,
symmetric key encryption is used for secure communication
between WSN nodes as motivated in references [3] and [4].
However, it is impractical to incorporate conventional network
layer key management protocols in their original formats since
they are too expensive for low-power low-performing sensor
nodes [3]. Therefore, it is quite challenging to implement
an appropriate key management algorithm, which should be
compatible with the resource scarcity of sensor nodes and other
WSN characteristics.

In this paper, we propose an Elliptic Curve Cryptogra-
phy (ECC)-based public key cryptography (PKC) solution for
secure key management in WSNs. Our main contribution is

the design of an implicit certificate-based key establishment
protocol for low performing WSNs and the justification of its
appropriateness in terms of performance and security strength.
We present the real-time implementation results on a simple
TelosB senor network in terms of memory and execution time.
Moreover, we explain how the new nodes can join the net-
work and change the locations dynamically, obtain certificates,
and establish the pairwise keys with the neighboring nodes.
The resource consumption and overhead of the protocol are
analyzed, in such a way to support the WSN characteristics.
The protocol consists of two phases: Authenticated certificate
generation for legitimate nodes (Phase I) and secure link key
establishment (Phase II). In Phase I, sensor nodes are granted
implicit certificates by the resource rich cluster head, which
is considered as the Certificate Authority (CA). The sensor
nodes send certificate requests to the CA for new certificates or
renovating expired certificates. On receiving the certificates, the
nodes can calculate their own public and private keys. In Phase
II, nodes exploit the obtained certificates to establish pair-wise
ephemeral keys (i.e., the link keys) with their neighbor nodes.
Since we use ECC to design the protocol, it brings an equal
security level as RSA, which is a conventional and standardized
PKC scheme. However, ECC induces less processing overhead,
resource, and time consumptions than RSA [5].

The rest of the paper is organized as follows. Section II
presents the related work which motivated our proposed proto-
col. Section III provides the assumptions, the system model, and
the list of notations that we consider relevant. Section IV de-
scribes the theoretical design of our proposed certificate-based
key establishment protocol. Two phases, certificate generation
and link key establishment, are discussed in subsections IV-A
and IV-B respectively. Section V gives a performance and
security analysis for the proposed protocol. Finally, Section VI
concludes the paper and gives future directions for further
enhancements of the proposed scheme.

II. RELATED WORK

This section introduces related work that inspired the pro-
posed system model and our developed protocol solution.

WSNs should be designed to maximize the network lifetime,
sensing coverage, network connectivity, data delivery ratio and
optimum energy consumption [6]. Network structure is mod-
eled according to the sensing model, transmission range, time
synchronization, failure model, and location information [7].
In reference [1] Zhou et. al have presented the main security
considerations in WSNs as key management, authentication,
integrity, availability, secure routing, and intrusion detection.
It was pointed out that, the new trends of keying mecha-
nisms for WSNs are the hybrid versions of symmetric and
asymmetric key techniques. Three key distribution approaches
were addressed as random, deterministic, and location-based.
Nevertheless, in all approaches, the nodes have to store the
key information of neighboring nodes. Due to the dynamic
characteristics of the network and memory restrictions in the
devices, these approaches do not fit well for a WSN with
millions of sensor nodes. As stated in reference [8] security
goals for a particular WSN are depending on its network life
time and application scenario. Generally, cryptographic keys
play the most important role in initializing any kind of security
in WSN. Secure initialization is intrinsic with many other
security protocols such as secure routing, authenticated data
processing or secure distributed data storage. Therefore, it is
significant to have well secured cryptographic keys as link keys
for communication channels in WSN. Due to the high resource
demand, PKC algorithms such as RSA are not recommended
for WSN applications. However, ECC (i.e., a light weight PKC
alternative) based security solutions are no more new to WSNs.
The utilization of implicit certificates for generating pair-wise
ephemeral keys is yet a improving realm. There are several
implicit certificate generation schemes for WSNs presented in
references [5] and [9]. Elliptic Curve Qu-Vanstone (ECQV)
is one of such schemes embedded in ZigBee Smart Energy
applications [10].

TinyECC is a stable ECC implementation for WSNs. In
reference [11] the authors provide implementation details and
measurement results of ECC security schemes in WSNs. Ba-
sically, they have produced performance results for Elliptic
Curve Digital Signaturing Algorithm (ECDSA) and Diffie-
Hellman key establishment (ECDH). Several ECC based se-
curity schemes have been proposed for WSNs as published
in references [12], [5], [13] and [14]. Specifically in ref-
erence [14] the authors suggest a hybrid key establishment
algorithm using ECDH and implicit certificates. However, they
claim the communication and computation overhead only by a
theoretical analysis. The scalability and mobility of the protocol
are low since the sensor nodes cannot renovate their certificates
after deployment. The communication overhead is also high
in their protocol due to four message transactions for the key
establishment.

III. SYSTEM MODEL, ASSUMPTIONS AND NOTATIONS

This section introduces the assumed system model, the
assumptions and the notations, which are to be used for the
key establishment protocol.

A. System Model

According to reference [2] we consider the standard WSN
architecture with cluster tree topology as shown in Figure 1.
However, based on WSN applications, different topologies

Sensor Node Base Station Cluster Head

Fig. 1. WSN topology

can be established for both heterogeneous and homogeneous
networks. Irrespective of the topology, in every type of data
collecting and monitoring WSNs, there is a cluster head (CH) or
a network coordinator node. This coordinator node is resource
richer than the ordinary senor nodes. This special node is illus-
trated as a black box in Figure 1 compared with common sensor
nodes as circles. The sensor nodes are deployed in predefined
clusters under the control of particular CH. Generally, the CH
acts as the intermediate coordinator between sensors and the
base station. Sensor nodes gather data from their corresponding
area and send data to CH or the base station via single hop or
multi-hops. There can be scenarios where both sensor nodes
and CH can be mobile. In such a scenario, the communication
links are very short-term and dynamic changing. For such
cases, ephemeral pair-wise link keys are required for secure
communication since symmetric key encryption is more cost
effective than PKC encryption. The new node addition should
be also considered for the network expansion purposes.

B. Assumptions

In our approach, we have five assumptions briefly described
in the following. First, comparing with ordinary sensor nodes,
CH is a more resource rich entity in terms of memory, battery
capacity (or main power) and transmission power. CH performs
the role of CA in the particular cluster. Second, Elliptic
Curve (EC) parameters, authentication key K, CA’s public key
(QCA) and a valid unique identity (ID) are pre-deployed in
sensor nodes at the initialization phase (in off-line mode).
Third, CA can verify the validity of sensor node identities and
recognize whether the sensor node belongs to its cluster or
not. Fourth, CH can directly send messages to sensor nodes
within its cluster. Sensor nodes can reach the corresponding

CH by single or multiple hops. Finally, physical node capturing
attacks are to be identified by beacon messages as explained
in references [9] and [4]. When one node is compromised the
CH will identify it and broadcast its ID to the cluster. The
neighboring nodes of the compromised node will demolish the
pre-established pairwise keys with the compromised node.

C. Notations

The notations used in this paper are defined in Table I.
EC parameters are denoted by q, a, b, G, n. q is a prime
which indicates finite field Fq . a and b are coefficients of
EC y2 = x3 + ax + b where 4a3 + 27b2 6= 0. G is the base
point generator with order of n, which is also a prime.

TABLE I
NOTATIONS USED IN CRYPTOGRAPHIC ALGORITHMS

Notation Description

K Network-wide symmetric key for initial authentication
rU Secret random integer value generated by U
RU EC point for certificate request sent by node U
CertU Implicit certificate of ith node
e An integer value used to keep hash value of CertU
s An integer value used to compute private key of the

requestor node
dU Node U’s private key
QU Node U’s public key
NU A random cryptographic nonce generated by node U
KUV Link key between nodes U and V

IV. OUR SOLUTION

We present the key establishment protocol based on the
assumptions and the system model described in Section III.
The protocol is mainly divided into two phases: (1) Implicit
Certificate Generation and (2) Pairwise Link Key Establish-
ment. Every sensor node has to undergo the first phase at
bootstrapping phase and certificate revocation instances. The
second phase should be executed whenever two neighboring
sensor nodes want to establish a pairwise key.

A. Implicit Certificate Generation (Phase I)

Firstly, EC parameters, authentication key K, CA’s public key
(QCA) and a valid ID are pre-deployed in each sensor node at
the off-line mode. K is common to all sensor nodes and the CH
(i.e., CA) of the cluster. The flow of the certificate generation
scheme is illustrated in Figure 2, where gray boxes indicate
value ranges and required equations, and white boxes indicate
the operations performed by the entities.

The certificate generation process is inspired by the design
principles of ECQV implicit certificate scheme as explained
in [10]. When a sensor node wants to obtain a new certificate
or renovate an existing one, it broadcasts a certificate request
message. The request may reach the CA by single or multiple
hops. While creating a certificate request, first, the node gen-
erates a random number rU ∈ [1, . . . , n − 1] and computes
RU = rU × G. Secondly, the node produces a cryptographic
random nonce NU and computes MACK[RU , NU , U], where U
is the node identity. Then, the node broadcasts U, RU and NU

along with MAC. When the CA receives the message, it checks
the validity of the node identifier (U) and verifies the MAC. If
the identifier is legitimate and the verification is successful, the
CA generates a random number rCA ∈ [1, . . . , n − 1] and
computes the certificate CertU = RU + rCA × G. Then the CA
calculates s using CertU , rCA and its own private key (dCA);
e = H(CertU) and s = erCA + dCA (mod n). Value e should be
computed using a one-way cryptographic hash function such as
SHA. Later, the CA will send a random nonce NCA, Certificate
CertU and s along with the MAC on [CertU , NCA, s, U].

Since the CA has a higher transmission power, it can directly
send the message to the requestor node. When receiving this
message, the requestor node U first verifies the received MAC
and if it is correct U calculates e = H(CertU). The identical
hash function should be used as in CA. Then the node can
compute its own private key dU = erU + s (mod n) and public
key QU = dU × G. The CA (i.e., CH) only has to participate in
this phase of the protocol in two scenarios, node bootstrapping
state and certificate renovation state.

B. Pairwise Link Key Establishment (Phase II)
In this phase, two sensor nodes can use the certificates and

pre-computed keys to perform the authenticated pairwise key
establishment as shown in Figure 3. Assume that U and V
sensor nodes are in the same cluster. Node U initiates the key
establishment by choosing a random nonce NU and broadcast-
ing it along with CertU , identity U and MACK[CertU , NU , U].
Likewise in Phase I MAC is appended for the initial authen-
tication. Once the neighboring node (V) receives the message,
it verifies the MAC. If the verification succeeds, the receiver
can ensure that U is an authenticated node. Furthermore V can
have an implicit assurance that U is a legitimate node of the
given cluster by computing sender’s public key QU using QCA;
e = H(CertU) and QU = eCertU + QCA. According to the
following derivation, this calculation also gives exactly the same
QU as computed by the node U.

QU = dUG
= (erU + s(mod n)) G
= (erU + erCA + dCA(mod n)) G
= e(rU + rCA(mod n)) G+ dCAG
= e(rUG+ rCAG) +QCA

= e(RU + rCAG) +QCA

= eCertU +QCA

(1)

Then the node V generates a random nonce NV and sends it
along with CertV , identity V and MACK[CertV , NV , V]. In the
meantime V computes the pairwise key KUV from its private
key dV and U’s public key QU ; KUV = dV QU . Similar
to V, upon receiving the message, node U verifies the MAC
and if the verification is successful, then it computes QV and
KUV = dUQV . Therefore, at the end of two way message
transferring, both parties can derive a common pairwise key for
actual secure communication.

V. EVALUATION

This section provides a detailed evaluation of our proposed
protocol, which is presented in terms of a performance eval-

Requestor Node (U) Certificate Authority (CA)

rU єR [1, ..., n-1]

RU = rUG

Generate NU

Calculate MACK[RU , U , NU]

Verify MAC

Check validity of U

rCA єR [1, ..., n-1]

CertU = RU + rCAG

e = H(CertU)

s = erCA + dCA (mod n)

Generate NCA

Calculate MACK[CertU , s , NCA, U]

RU, U, NU , MAC[RU , U , NU]

CertU, s, NCA , MAC[CertU || s || NCA || U]

Verify MAC

e = H(CertU)

dU = erU + s (mod n)

QU = dUG

Fig. 2. Implicit certificate generation (Phase I)

Node U Node V

Generate NU

Calculate MACK[CertU , U , NU]

Verify MAC

Check validity of U

e = H(CertU)

QU = eCertU + QCA

Generate NV

Calculate MACK[CertV , V , NV]

CertU, U, NU , MACK[CertU , U , NU]

CertV, V, NV , MACK[CertV , V , NV]

Verify MAC

e = H(CertV)

QV = eCertV + QCA

KUV = dUQV = dVdUG

KUV = dVQU = dVdUG

Fig. 3. Pairwise link key establishment (Phase II)

uation, a network scalability analysis, and a security analysis.
The subsection V-A presents the numerical measurements we
obtained for the memory consumption and timing values of
the key establishment protocol. Subsections V-B and V-C
contribute a theoretical justification of scalability and security
strength of the protocol. Finally, a comparison with existing
ECC related approaches is given in Section V-D.

A. Performance Evaluation

Our experimental setup is implemented on TelosB mote
platform [15], which has IEEE 802.15.4 compliant CC2420 RF
transceivers. The hardware includes 8 MHz, 16-bit MCU with
10 Kbyte RAM and 48 Kbyte ROM. CC2420 RF transceiver
has a maximum data rate of 250 kbps and frequency band of
2400 MHz. The proposed scheme is developed in NesC on
TinyOS 2.1.2 [16]. ECC (i.e., for EC arithmetic operations) and
natural number (NN) (i.e., for large natural number operations)
interfaces are utilized from TinyECC configurable library [11].
secp160r1 EC domain parameters are used as defined in [17].
TinyECC provides EC optimization techniques such as Bar-
rett Reduction to speed up modulo operations, Hybrid mul-
tiplication and squaring for integer multiplication, Projective
Coordinate Systems for the point addition, Sliding Window for
scalar multiplication, and Shamir’s trick for summing two scalar
multiplications.

The experimental setup comprises three TelosB nodes, one
as the CA and the rest as the cluster nodes. For the sake of
simplicity and comparison, CA functionalities are also imple-
mented on a sensor node itself. The measurements are taken
in terms of execution time and memory (i.e., RAM and ROM)
consumption. ECC operations are extremely costly than other
cryptographic operations (i.e., MAC, SHA-1) [11]. Therefore,
we have considered three different techniques of EC operation
optimizations (i.e., provided with TinyECC) for taking time and
memory readings: Disable all the optimization techniques, en-
able all the optimization techniques, and disable Shamir’s trick.
SHA-1 is used as the one-way cryptographic hash function.
The memory consumption values are measured for requestor
operations, CA operations and pairwise key calculation with
three optimized techniques. The check size.pl script is used to
obtain RAM and ROM sizes required by each operation. The
execution times are measured directly on the sensor nodes for
the collective operations such as protocol initialization, request
generation, certificate generation, certificate verification and
pairwise key computation.

As depicted in Figures 4 and 5, when the EC optimization
techniques are disabled, the memory consumptions of ROM
and RAM sizes are very small for all three operations (i.e.,
Requestor operations, CA operations and Pairwise Key Calcu-
lation).

After enabling EC optimization techniques, massive incre-
ments can be seen for the memory utilization values of all
operations. Nevertheless, by disabling Shamir’s trick, we can
save 802 bytes of ROM size and 676 bytes of RAM size for
every operation. Key calculation consumes lower memory size

6
4

9
2 7

9
0

8

4
9

1
4

1
2

4
1

4

1
2

5
2

0

1
2

2
9

0

1
1

6
1

2

1
1

7
1

8

1
1

4
8

8

0

2000

4000

6000

8000

10000

12000

14000

Requestor operations CA operations Key calculation

R
O

M
 s

iz
e

 (
b

y
te

s)

Operation

Disable all opt. Enable all opt. Without Shamir's trick

Fig. 4. ROM size of certificate generation and key calculation

1
5

4

1
3

2

1
0

0

2
0

3
6

2
0

5
8

2
0

1
4

1
3

6
0

1
3

8
2

1
3

3
8

0

500

1000

1500

2000

2500

Requestor operations CA operations Key calculation

R
A

M
 s

iz
e

 (
b

y
te

s)

Operation

Disable all opt. Enable all opt. Without Shamir's trick

Fig. 5. RAM size of certificate generation and key calculation

than the certificate generation operation. However, for last two
optimization techniques (i.e., enabling all EC optimizations and
disabling Shamir’s trick only), for each case separately, the
ROM consumption values are showing slight variations around
a common value for all three operations. A similar behavior
can be seen for the RAM utilization.

TABLE II
EXECUTION TIME

Disable Enable Without
all opt. all opt. Shamir’s trick

Operation (ms) (ms) (ms)

Initialization 1 5227 2709
Certificate request generation 41799 2755 2764

Certificate generation 86377 5724 5728
Certificate verification 42129 2755 2758

Key computation 86891 5767 5768

Table II shows the execution time of distinctive operations

(i.e., protocol initialization, request generation, certificate gen-
eration, certificate verification and pairwise key computation)
under three aspects of EC optimization techniques. Once we
disable all the EC optimization techniques, the algorithm ini-
tialization time has become very close to zero. However, initial-
ization takes 5227 ms when all the optimizations are enabled.
Without Shamir’s trick, the initialization time is 2709 ms,
which is approximately two times faster than with all the
optimizations. Contrasting to initialization operation, all the
other operations have been speed-up 20 times faster by enabling
EC optimization techniques.

When we consider both execution time and memory alloca-
tion, it is clear that the optimizations accelerate the operations
of the protocol though they consume reasonably large mem-
ory. However, only by eliminating Shamir’s trick, we cannot
impose a significant impact on the overall performance of the
protocol. Therefore, in cooperation, the best solution for our
key establishment protocol is to enable all the other techniques
except Shamir’s trick (i.e., third technique). According to the
last optimization aspect, the sensor node takes 8231 ms for
protocol initialization, request generation and certificate ver-
ification. On CA’s side, the execution time is 8437 ms for
protocol initialization and certificate computation. Therefore
the computation time for the certificate generation phase at
both ends is 16668 ms. The key establishment phase expends
8477 ms for initialization and key calculation. From the given
observations, we can claim the feasibility of deploying the
proposed scheme is viable in wireless sensor nodes. Memory
costs for our protocol are tolerable by the extreme resource con-
strained sensor nodes such as TelosB mote platform. Moreover,
timing values can be reduced with the further improvements of
more efficient implementation of ECC basic operations.

In both, certificate generation phase and key establishment
phases, the communication cost is restricted to two way mes-
sage transfers for the purpose of minimizing the communication
overhead. Since each message contains an EC point (44 bytes),
node ID (2 bytes), random nonce (4 bytes), and MAC value
(8 bytes), the average message size is about 58 bytes. Therefore,
we have changed the default size (29 bytes) of the data of
message t header field in TinyOS 2.1.2, according to the
protocol requirement (58 bytes). Similar to memory and time
consumption optimizations, we can further reduce the message
sizes by using well designed EC curves.

B. Scalability

Our protocol supports the scalability of the network (i.e., ex-
panding the network with the new node addition) and the
location changes of the sensor nodes with in the same cluster.
When a new node is added to the network, a valid node identity,
keying information (i.e., K and QCA) and EC domain parame-
ters should be stored while the node is at the off-line mode.
Figure 6 illustrates how our protocol supports a new node
addition to the network, within a particular cluster. In Stage
1, at the bootstrapping phase, the newly added node (marked
white double circled) can send the certificate request and obtain
a certificate from the CA for computing its own keys. Therefore,

the size of the network is not necessary to be pre-defined during
the initial design phase and the deployment phase.

After receiving a new node request, the CA only needs to
verify the validity of the sensor node identities to issue the
certificate. In Stage 2, the new node receives its certificate.
Finally in Stage 3, the node can establish the pairwise link
keys with its neighbors, using that received certificate.

Similarly, the sensor nodes do not need prior knowledge
about their neighbors. Whenever a new node is added to the
network or it changes the neighboring set, it can establish the
ephemeral pairwise link keys, with the corresponding neighbors
using the certificate. The certificates always provide an implicit
assurance for the sensor nodes that they are authenticated nodes
in the given cluster. Even though the sensor nodes frequently
change their locations (i.e., also the neighboring set), they can
derive the pairwise keys securely without previous awareness
of the new neighboring nodes. According to reference [1], if the
pairwise keys between neighbors are pre-installed, then there
should be a large number of stored keys per node. This may
not be desirable for the large scale networks. However, in our
protocol such a large scale key pre-installation is not needed at
all since the ephemeral link keys have to be established before
starting communication. Furthermore, the keys are derived
based on their certificates which are exchanged during the initial
handshake.

C. Security Analysis

Our proposed certificate based key establishment protocol is
developed using one of the lightest PKC schemes ECC. Though
it is comparatively more expensive than symmetric key algo-
rithms, it is inherently secured due to the PKC characteristics.
However, we have shown in the above section, that the proposed
scheme is feasible to deploy in real-time WSNs. While using
EC scalar-point multiplication, the scheme is provably secured
under the random oracle model that the discrete logarithm prob-
lem over the subgroup is untractable. The proposed pairwise
key establishment extends the security strength of the standard
ECDH key agreement, by using mutually authenticated keying
materials (e.g., CertU and s). Since the link keys are derived
using two pre-evaluated values (e.g., dU and QV), it is implicitly
assured the legitimacy and trust between two parties. In order to
overcome illegal message alternations by malicious nodes and
denial of service attacks (DoS), every message contains MAC
with the common authentication key K for preserving data
integrity. The availability of the proposed protocol is ensured
by giving permission to two legitimate nodes, which possess
the certificates granted from the CA, to establish a secure
pairwise key for their mutual communication. The freshness
of the messages is guaranteed by appending true nonce. In
Phase I, the origin of the message (i.e., CA) cannot deny being
sent the message (i.e., non-repudiation property) since the CA
uses its key pair to generate the certificate and private key
reconstruction value (s). Likewise, during the key establishment
phase, the sender of the messages cannot deny that the messages
are sent by itself since the receiver always uses the certificate
of the sender to derive its (i.e., the sender’s) public key.

Stage 1 Stage 2 Stage 3

Sensor Nodes:

Already integrated node

Newly adding node

Cluster Head
(CH)

Certificate
Request

Certificate Link Key
Establishment

Fig. 6. Behavior of the protocol when a new node enters the cluster.

In the security analysis, we are considering three attacks
including, node compromising attacks, masquerade attacks
and impersonate attacks. In node compromising attacks, an
adversary can physically capture a node and obtain its keys.
Similarly in Phase II, an attacker can impersonate a legitimate
sensor node using its certificate or try to masquerade the key
establishment between two legitimate nodes.

Node compromise attacks
Our protocol is resilient to node compromise attacks. If a

node U is captured, the adversary can reveal CertU , QU , dU
and QCA. However, with CA’s public key, an adversary can
not create a new valid certificate and private key reconstruction
data, since they are derived using dCA, which is only known
to CA. Though a node pretends to be a forgery CA and issues
certificates with QCA, eventually the fake certificates and
public keys are disclosed during the key establishment phase
(i.e., calculating KUV = dUQV). We assume that the CH can
identify compromised nodes using beacon message technique,
as explained in references [9] and [4]. Then the CA will
broadcast the compromised node ID to the non-compromised
nodes. Upon receiving CA’s message (i.e., compromised
node ID), the other sensor nodes will discard the certificate
of the corresponding node and the pre-established pairwise
keys. Then the compromised node cannot appear itself as a
legitimate node in future, because its certificate and node ID
are already abandoned by the legitimate nodes.

Impersonate and Masquerade attacks
In the key establishment phase, nodes are authenticated in

order to prevent impersonation attacks and masquerade attacks.
The node V computes the node U’s public key using its CertU
and CA’s public key QCA. The pairwise key KUV calculation at
both ends will be the same, only if the certificates are issued by
the valid CA. Therefore the node V has an implicit assurance
that the received certificate is genuine (i.e., issued by the CA).
Likewise, when two legitimate nodes initiate a pairwise key, an
attacker (without a valid certificate) cannot come in between
them and masquerade the key establishment. Since the pairwise

key is derived on the basis of the certificates and private keys
of both legitimate parties, an attacker cannot proceed it by only
using a valid certificate.

D. Comparison With Related Work

The development of our proposed key establishment protocol
is inspired by the different ECC based security schemes, which
are presented in the Section II. Therefore, in this section
we compare the certificate-based pairwise key establishment
protocol with the related work.

In reference [11], timing and memory utilization values are
presented for three ECC schemes. Among them, ECDSA and
ECDH are the most related schemes to our proposed protocol.
Table III gives the comparison results between ECDSA scheme
and the proposed certificate scheme on behalf of the sensor
node and CA. All the empirical results are measured on TelosB
sensor nodes. For the sake of comparison, we have considered
the enabling of all the ECC optimization techniques except
Shamir’s trick (i.e., third technique). At both ends our scheme
is more efficient than the conventional ECDSA scheme in terms
of memory consumptions and timing values. Similarly, Table IV
shows the comparison results between ECDH scheme and
the proposed key establishment protocol. The values witness
the high performing capability of our scheme in the resource
constrained sensor nodes.

TABLE III
COMPARISON OF PROPOSED CERTIFICATE SCHEME WITH ECDSA SCHEME

Proposed solution
ECDSA Requestor CA
scheme operations operation

[11] (sensor node) (CH)

ROM (bytes) 12640 11612 11718
RAM (bytes) 1586 1360 1382

Time consumption (ms) 14789 8231 8437

In security aspects, conventional ECDH scheme is vul-
nerable to impersonate and masquerade attacks since two
communicating parties do not have an authentication phase

TABLE IV
COMPARISON OF PROPOSED KEY ESTABLISHMENT SCHEME WITH ECDH

SCHEME

ECDH Proposed
scheme key establishment scheme

[11]

ROM (bytes) 12102 11718
RAM (bytes) 1866 1382

Time consumption (ms) 6146 5768

during the key establishment. However, as explained above our
key establishment is well secured at both types of attacks.
Originally, ECDSA and ECDH schemes do not address the
possibility of network scalability. However, in the paper we
have analyzed how the proposed scheme supports the scalability
of the network. Therefore, the authors of this paper believe
that the proposed solution extends the existing pool of security
solutions are concerned with ECC and can optimize the key
establishment in WSNs.

VI. CONCLUSION

In this paper, we introduced a certificate based pairwise key
establishment protocol for WSNs. The proposed key manage-
ment scheme comprises two phases: For providing certificates
for the resource constrained sensor nodes and establishing pair-
wise link keys for mutual node communication. The security
protocol is a PKC based solution used for deriving a common
secret key for symmetric key encryption. The novelty is the
utilization of implicit certificates for generating pairwise keys.
Our experimental results show the feasibility of deploying
the proposed scheme in an actual resource constrained WSN.
However, the further optimized EC operations may incur less
resource consumptions on sensor nodes and accelerate the
protocol execution. Moreover, we have discussed and justified
the appropriateness of the protocol for the resource utilization
and scalability of WSN. Though there is a simple concept
behind the proposed scheme, the security analysis has proven
the robustness of the protocol for different security pitfalls.

In future, we intend to extend this protocol by changing
the content of the certificate in such way to provide higher
security for mobile sensor nodes in massive scale IoT networks.
We can customize the content of the implicit certificates by
adding other information such as the time stamp, location
identity or IPv6 over Low power Wireless Personal Area
Network (6LoWPAN) identity, depending upon the application
requirements. Furthermore, we intend to extend the utilization

of implicit certificates for group key management in large scale
sensor networks.

ACKNOWLEDGEMENT

This work has been supported by Tekes under Massive
Scale Machine-to-Machine Service (MAMMotH) project and
Academy of Finland project SEMOHealth.

REFERENCES

[1] Y. Zhou, Y. Fang, and Y. Zhang, “Securing Wireless Sensor Networks:
A Survey,” IEEE Communications Surveys Tutorials, vol. 10, no. 3, pp.
6–28, 2008.

[2] “IEEE Standard for Low-Rate Wireless Personal Area Networks (LR-
WPANs),” IEEE Std 802.15.4. 2011(Revision of IEEE Std 802.15.4-
2006), 2011.

[3] Y. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A Survey
of Key Management Schemes in Wireless Sensor Networks,” Comput.
Commun., vol. 30, no. 11-12, pp. 2314–2341, Sep. 2007. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2007.04.009

[4] S. H. Jokhio, I. A. Jokhio, and A. H. Kemp, “Node Capture Attack
Detection and Defence in Wireless Sensor Networks,” Wireless Sensor
Systems, IET, vol. 2, no. 3, pp. 161–169, 2012.

[5] K. Malasri and L. Wang, “Design and Implementation of a SecureWireless
Mote-Based Medical Sensor Network,” Sensors, vol. 9, no. 8, pp. 6273–
6297, 2009.

[6] X. Li, Y. Mao, and Y. Liang, “A Survey on Topology Control in Wireless
Sensor Networks,” in Proceedings of the 10th International Conference
on Control, Automation, Robotics and Vision, ser. ICARCV, 2008, pp.
251–255.

[7] Z. Gengzhong and L. Qiumei, “A Survey on Topology Control in Wireless
Sensor Networks,” in Proceedings of the 2nd International Conference on
Future Networks, ser. ICFN, 2010, pp. 376–380.

[8] S. Stelle, M. Manulis, and M. Hollick, “Topology-Driven Secure Ini-
tialization in Wireless Sensor Networks: A Tool-Assisted Approach,”
in Proceedings of the 7th International Conference on Availability,
Reliability and Security, ser. ARES, 2012, pp. 28–37.

[9] R. Lu, X. Li, X. Liang, X. Shen, and X. Lin, “GRS: The Green, Relia-
bility, and Security of Emerging Machine to Machine Communications,”
IEEE Communications Magazine, vol. 49, no. 4, pp. 28–35, 2011.

[10] “SEC4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV),
version 0.97,” www.secg.org, August 2013.

[11] A. Liu and P. Ning, “TinyECC: A Configurable Library for Elliptic
Curve Cryptography in Wireless Sensor Networks,” in Proceedings of
the 7th international Conference on Information Processing in Sensor
Networks, ser. IPSN. IEEE Computer Society, 2008, pp. 245–256.
[Online]. Available: http://dx.doi.org/10.1109/IPSN.2008.47

[12] Y. Liu, J. Li, and M. Guizani, “PKC Based Broadcast Authentication
using Signature Amortization for WSNs,” IEEE Transactions on Wireless
Communications, vol. 11, no. 6, pp. 2106–2115, 2012.

[13] X. H. Le, S. Lee, I. Butun, M. Khalid, R. Sankar, M. (Hyoung-
IL) Kim, M. Han, Y.-K. Lee, and H. Lee, “An Energy-Efficient Access
Control Scheme for Wireless Sensor Networks based on Elliptic Curve
Cryptography,” Journal of Communications and Networks, vol. 11, no. 6,
pp. 599–606, 2009.

[14] P. Kotzanikolaou and E. Magkos, “Hybrid Key Establishment for Multi-
phase Self-Organized Sensor Networks,” in Proceedings of the 6th IEEE
International Symposium on a World of Wireless Mobile and Multimedia
Networks, ser. WoWMoM. IEEE, 2005, pp. 581–587.

[15] “TelosB Datasheet,” Crossbow Inc., Tech. Rep., 2013. [Online]. Available:
http://www.datasheetarchive.com/4--Crossbow*-datasheet.html

[16] “TinyOS Documentation,” www.tinyos.net, August 2013.
[17] D. Hankerson, S. Vanstone, and A. J. Menezes, Guide to Elliptic Curve

Cryptography. Springer, 2004.

