Resolving Acknowledgment Ambiguity in
non-SACK TCP

Andrei Gurtov, Sally Floyd

Abstract— In the absence of support for Selective
Acknowledgments (SACK) from its peer, TCP suffers
from ambiguity regarding Duplicate Acknowledgments
after a Retransmit Timeout. In particular, TCP is not
able to determine if Duplicate Acknowledgments result
from packets that were retransmitted unnecessarily, or
from an earlier packet that was lost. Consequently,
TCP can either perform unnecessary Fast Retrans-
mits, or suppress the Fast Retransmit and have to wait
unnecessarily for a Retransmit Timeout. This paper
presents two heuristics that enable non-SACK TCP to
correctly determine the reason for Duplicate Acknowl-
edgments in most scenarios. Using these heuristics, a
sender in a non-SACK TCP connection can perform
significantly better over lossy paths.

Keywords— Transport protocol, retransmit timeout,
NewReno.

I. INTRODUCTION

TCP is a reliable transport protocol widely used
in the Internet. TCP uses both Retransmit Time-
outs and the Fast Retransmit procedure to recover
lost data. Of the two, the Fast Retransmit procedure
is preferable, as the additional delay and slow-start
of Retransmit Timeouts significantly decrease perfor-
mance [7]. The Fast Retransmit procedure is invoked
when the TCP sender receives three or more dupli-
cate acknowledgments. In a non-SACK TCP connec-
tion, duplicate acknowledgments (DUPACKS) carry
no information about received segments other than
confirming delivery of all segments below the cumula-
tive acknowledgment number.

After a TCP Retransmit Timeout, duplicate ac-
knowledgments can result either from unnecessarily
retransmitted packets or from a loss of a retransmit-
ted packet. If the sender always responded to three
or more duplicate acknowledgments with a Fast Re-
transmit, this could result in unnecessary Fast Re-
transmits, and unnecessary reductions of the conges-
tion window [2]. A solution called “bugfix” [3] dis-
ables Fast Retransmits after a Retransmit Timeout
or Fast Retransmit until recovery is completed, and
the possibility of three duplicate acknowledgments
from unnecessarily-retransmitted packets has been re-
moved. However, because the ambiguity is not re-
solved, the sender in this case might have to wait un-
necessarily for a Retransmit Timeout when a retrans-
mitted packet is lost.

The long-term solution to this problem is to use Se-
lective Acknowledgments [11], [1] to prevent unneces-
sary retransmissions, and to use the Duplicate SACK

A. Gurtov is with the University of Helsinki, Finland. E-mail:
gurtov@cs.helsinki.fi

S. Floyd is with the ICSI Center for Internet Research, Berke-
ley, USA. E-mail: floyd@icir.org

extension to the SACK option [5] to help resolve du-
plicate acknowledgment ambiguity. However, while
SACK TCP is fairly widely deployed, it is not ubiqui-
tous. Out of 6700 web servers tested in October 2003,
only 47% reported that they support SACK [12].

This paper presents two heuristics for a TCP sender
in a non-SACK TCP connection to determine whether
duplicate acknowledgments indicate unnecessarily re-
transmitted packets or a lost packet [4]. The heuristics
should be implemented with NewReno TCP, but could
be used also with older TCP versions, such as Reno.

The rest of the paper is organized as follows. In Sec-
tion II we describe the problem of duplicate acknowl-
edgment ambiguity in detail. The two heuristics are
presented in Section III. In Section IV, failure sce-
narios for the two heuristics are discussed. Section V
provides an evaluation of heuristics for various packet
loss patterns. Section VI concludes the paper.

II. THE AMBIGUITY PROBLEM

When the TCP sender invokes a Fast Retransmit
or a Retransmit Timeout, the TCP sender sets a vari-
able “recover” indicating the highest sequence num-
ber transmitted so far. If the TCP sender retransmits
three consecutive packets that have already been re-
ceived by the data receiver, then the TCP sender will
receive three duplicate acknowledgments below this
recovery point. In this case, the duplicate acknowl-
edgments are not an indication of a new instance of
congestion. They are simply an indication that the
sender has unnecessarily retransmitted at least three
packets, as illustrated in the left graph of Figure 1.

On the other hand, if a retransmitted packet is
lost, the duplicate acknowledgments indicate a hole
in the receive buffer, as illustrated in the right graph
of Figure 1. For a non-SACK TCP connection with a
sender that implements the algorithm recommended
in RFC2582 [3], the sender does not infer a packet
drop from duplicate acknowledgments in these circum-
stances. The retransmit timer is the backup mecha-
nism for inferring packet loss in this case. However,
due to the possibility of multiple Retransmit Time-
outs, it can take an excessively long time for a sender
to reach the recovery point. In addition, in the ab-
sence of the timestamp option [8], the retransmit timer
is kept backed-off according to Karn’s rule [13]. In
this case, each new Retransmit Timeout increases the
back-off counter. Even when timestamps are used,
the sender can be significantly delayed by Retransmit
Timeouts due to lost retransmissions.

Resolving Acknowledgment Ambiguity in non-SACK TCP

90

data = ﬁ
acks ©
80 r drops x T
& 70} g .
o
>
3 60 f 7
£ o
5 50 | . 1
£ {:
g 40 ’m -
@ of @
g 30r ale 5
> am aptld
220} g ’ 1
n
10 + ’ ! q
I T N /-

Time, seconds
Fig. 1.

90 T
data =

80 | acks o i
drops X

! g]

60 -

50 JW,E q

40 -

30 = ﬁ

w87 gg
.
45 5 55

Sequence Number (modulo 90)

20
10 ’
1:td
1 15 2 2.5 3 3.5 4

Time, seconds

6

90 T T
data =
acks =
80 drops % T

70 | E
60 | E
50 | E
40 | E
30 | ' o

20

Sequence Number (modulo 90)

lﬁfg " |

[Rz]

10 +

25 3 3.5 4 4.5 5 5.5 6
Time, seconds

0

1

NewReno TCP with unnecessarily retransmitted packets (left); a retransmitted packet that is lost (right).

90

data = 4
acks =
80 drops % T
70 g 1

60 -

50
40k 15]

30

Sequence Number (modulo 90)

20 -

10 +

15"

0 heli L F)
1 15 2 25 3 3.5 4 4.5 5 5.5 6
Time, seconds

Fig. 2. The acknowledgment heuristic with unnecessarily retransmitted packets (left); a retransmitted packet that is lost (right).

III. HEURISTICS

The sender in a non-SACK TCP connection is still
often able to detect whether the duplicate acknowledg-
ments after a timeout are from unnecessarily retrans-
mitted packets or a lost packet. Below we describe two
heuristics that may be used to trigger Fast Retransmit
below the recovery point.

A. Acknowledgment Heuristic

The acknowledgment heuristic is based on an ob-
servation that if the TCP sender unmnecessarily re-
transmits at least three adjacent packets, there will
be a jump by at least four segments in a cumula-
tive acknowledgment field. The sender will have cor-
rectly retransmitted at least one packet, to advance
the cumulative acknowledgment field, and unneces-
sarily retransmitted at least three more to result in
three duplicate acknowledgments. Following the ad-
vancement of the cumulative acknowledgment field,
the sender stores the value of the previous cumula-
tive acknowledgment as prev_highest_ack and stores
the latest cumulative acknowledgment as highest_ack.
Upon receiving the third duplicate acknowledgment,
the sender invokes a Fast Retransmit if its conges-
tion window is greater than one MSS (Maximum Seg-
ment Size), and the difference between highest_ack
and prev_highest_ack is at most three MSS. The con-

gestion window check serves to protect against a Fast
Retransmit immediately after a Retransmit Timeout,
when duplicate acknowledgments from the previous
flight of packets might still be arriving. Figure 2 gives
examples of applying the acknowledgment heuristic.

B. Timestamp Heuristic

The timestamp heuristic uses timestamps echoed
by the receiver in acknowledgments. Following
RFC1323 [8] or its attempted revisions [9], the receiver
echoes different timestamps depending on whether
there is a hole in the receive buffer. When the
timestamp heuristic is used, the sender stores the
timestamp of the last acknowledged segment. Upon
receiving the third duplicate acknowledgment, the
sender checks if the timestamp echoed in the last non-
duplicate acknowledgment equals to the stored times-
tamp. If so and the congestion window is greater than
one MSS, then the duplicate acknowledgments indi-
cate a lost packet, and the sender invokes Fast Re-
transmit. Otherwise, the duplicate acknowledgments
are assumed to be from unnecessary packet retrans-
missions, and are ignored. Figure 3 gives examples of
applying the timestamp heuristic.

If the TCP connection uses timestamps, then
the timestamp heuristic is to be preferred over the
acknowledgment-based heuristic, because it is more
accurate. Before applying either heuristic, the sender

NEW2AN 2004

St.Petersburg, Russia

90

data = ﬁ
acks o

80 r drops x T
& 70} g .
o
>
3 60 f 7
£ A
5 50 | - 1
£ £
E 40 & L
@ D’IR]I
S 30| u
o 5" °
=] S L
220} g : 1
n

10 + ’ ! q

o bonal? Y /b

1 1.5 2 2.5 3 35 4 4.5 5 55 6

Time, seconds

90

data =
acks = k!
80 drops % T
& 70t g 1
o
>
5 60 [7
£
— 50 = 4
g /
E sl Ié |
z 14
8 '’
S 30 20 .
[}
s jolas
L o |
& T
10 b : .
0 |E'§ Fl
1 1.5 2 25 3 35 4 4.5 5 5.5 6

Time, seconds

Fig. 3. The timestamp heuristic with unnecessarily retransmitted packets (left); a retransmitted packet that is lost (right).

should check that the timeout was not spurious to
avoid using acknowledgments generated in response
to the original and not retransmitted segments [10].

IV. PoOSSIBLE FAILURES

The acknowledgment heuristic can fail to trigger a
Fast Retransmit when a packet is lost as in the case
shown in Figure 4. If several acknowledgments are
lost, the sender can see a jump in the cumulative ac-
knowledgment of more than three segments. Following
the acknowledgment heuristic, the sender infers that
the duplicate acknowledgments are due to unneces-
sary retransmissions and ignores them. However, the
sender might have been better off by invoking Fast
Retransmit.

The acknowledgment heuristic is more likely to fail
if the receiver uses delayed acknowledgments, because
then a smaller number of acknowledgment losses are
needed to produce a sufficient jump in the cumula-
tive acknowledgment. If the receiver arbitrarily echoes
timestamps, the timestamp heuristic can fail. How-
ever, such use of timestamps by TCP receivers appears
to be rare in the Internet.

90

80

70

60

50

40

30

Sequence Number (modulo 90)

20

10

0

data
acks
drops

I

]

18

o
X

I
lgiw

1

15

2

3

3.5

4

4.5

5

5.5

6

Time, seconds
Fig. 4. The acknowledgment heuristic fails in the presence of
acknowledgment losses.

V. EVALUATION

In this section we evaluate NewReno TCP in the
ns2 simulator using bugfix, without bugfix, with the
acknowledgment heuristic, and with the timestamp
heuristic for various packet loss patterns.

All variants behave the same when the loss rate is
uniform and we do not show these results in detail.
The difference between variants can only appear when
there are Retransmit Timeouts and there is a sufficient
flight of packets in the network. These conditions are
not met with uniform packet losses, because at lower
loss rates there are no timeouts and at high loss rates
the flight size is small.

Next we experimented with bursty losses using a
three-state model with sequential transition between
states. The initial state is loss-free. The second state
is short and serves to trigger a Retransmit Timeout.
In the “loss” scenario all packets are dropped in the
second state. In the “duplicate” scenario, the sec-
ond state has a 50% loss rate and a fast retransmit-
ted segment is dropped. The third state lasts two
seconds and has a 10% loss rate. This state serves
to cause drops of a small number of retransmissions.
These simulations have been carefully designed to cap-
ture some of the behavior discussed earlier in the pa-
per, and therefore explore scenarios where TCP’s ac-
knowledgment ambiguity is most likely to affect per-
formance. We used a single short-lived TCP connec-
tion in simulations.

The left graph in Figure 5 shows results of simula-
tions for the “loss” scenario. As expected, without
bugfix TCP achieves higher throughput than when
bugfix is enabled. With bugfix, TCP experiences
unnecessary Retransmit Timeouts because of lost re-
transmissions. Both heuristics successfully determine
that duplicate acknowledgments result from lost seg-
ments and achieve the same throughput as without
bugfix, up to 300% improvement over TCP with bug-
fix.

The right graph in Figure 5 shows results of sim-

ulations for the “duplicate” scenario. As expected,
with bugfix TCP achieves higher throughput than

Resolving Acknowledgment Ambiguity in non-SACK TCP

bugf‘ix_on T
bugfix_off X
200 heu_ack *¥ 7
heu_ts 0O
m B ¥ ®
& 150 x B 2% 1
< 23]
5 ®
% =
5 100 = 4
= R
+ + + + 7
508 Lo+t + o+ o+ o+]
1+
0
100 200 300 400 500 600 700 800

Bandwidth, kbps
Fig. 5. Heuristics improve performance in

when bugfix is disabled. Without bugfix, TCP experi-
ences unnecessary Fast Retransmits because of dupli-
cate delivery of some segments. Both heuristics suc-
cessfully determine that duplicate acknowledgments
result from unnecessary retransmissions and achieve
the same throughput as with bugfix, up to 30% im-
provement over TCP without bugfix.

In both scenarios throughput is lower than the
bottleneck bandwidth, because the first Retransmit
Timeout forces the connection into Congestion Avoid-
ance with a low value of the slow start threshold.

VI. CONCLUSIONS

We presented two heuristics that enable a TCP
sender in a non-SACK TCP connection to decide
whether duplicate acknowledgments result from a lost
packet or from unnecessarily retransmitted packets.
Using these heuristics TCP can make a more informed
choice whether or not to invoke Fast Retransmit.

The acknowledgment heuristic is simple to imple-
ment but fails in some scenarios in the presence of
acknowledgment losses. The timestamp heuristic is
more robust to packet losses but requires the use of
the timestamp option and is more difficult to imple-
ment. We compared the two heuristics in detail and
provided quantitative results illustrating their benefit
to NewReno TCP over lossy paths. Using either of the
heuristics, TCP can achieve 300% higher throughput
than the standard TCP that disables Fast Retrans-
mits in go-back-N.

Simulations for Figure 1-4 are from the “test-all-
newreno” validation test in the ns2 simulator [14].
Simulation scripts for Figure 5 are publicly avail-
able [6]. We plan to add the heuristics to the Linux
TCP implementation.

ACKNOWLEDGMENTS

The authors thank Mark Allman, Reiner Ludwig,
and anonymous reviewers for useful comments.

REFERENCES

E. Blanton, M. Allman, K. Fall, and L. Wang. A conserva-
tive selective acknowledgment (SACK)-based loss recovery
algorithm for TCP. IETF RFC 3517, Apr. 2003.

1]

bugf‘ix_on 4 ‘ = &
bugfix_off X m B ®
200 heu_ack % g B 1
heu_ts 0O =2
23] xX X
X
[%] X X X *
2 150 2] % i
X
- B X
2 X
[=)] B
3 100 X 4
=
F x %
50 1
0
100 200 300 400 500 600 700 800

Bandwidth, kbps

“loss” (left) and “duplicate” (right) scenarios.

S. Floyd. TCP and successive fast retransmits. Technical
report, Oct. 1994.

S. Floyd and T. Henderson. The NewReno modification
to T'CP’s fast recovery algorithm. IETF RFC 2582, Aug.
1999.

S. Floyd, T. Henderson, and A. Gurtov. The NewReno
modification to TCP’s fast recovery algorithm. Work in
progress, draft-ietf-tsvwg-newreno-02.txt, Nov. 2003.

S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An
extension to the selective acknowledgment (SACK) option
for TCP. IETF RFC 2883, July 2000.

A. Gurtov. Extensions of ns2 simulator. Available at
http://www.cs.helsinki.fi/u/gurtov/ns/, Nov. 2003.

V. Jacobson. Congestion avoidance and control. In Proc.
of ACM SIGCOMM’88, Aug. 1988.

V. Jacobson, R. Braden, and D. Borman. TCP extensions
for high performance. IETF RFC 1323, May 1992.

V. Jacobson, R. Braden, and D. Borman. TCP extensions
for high performance. Work in progress, draft-jacobson-
tsvwg-1323bis-00.txt, Aug. 2003.

R. Ludwig and M. Meyer. The Eifel detection algorithm
for TCP. IETF RFC 3522, Apr. 2003.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
selective acknowledgement options. IETF RFC 2018, Oct.
1996.

A. Medina and S. Floyd. TBIT experiments, Oct. 2003.
V. Paxson and M. Allman. Computing TCP’s retransmis-
sion timer. IETF RFC 2988, Nov. 2000.
UCB/LBNL/VINT. The ns2 network simulator, Aug.
2003. http://www.isi.edu/nsnam/ns/.

