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Abstract

We consider equilibrium in multiuser multipath routing optimization
problem in Wardrop model where selfish players distribute their TCP
traffic in the shared multipath network. Minimization of the end-to-end
traffic delay over all paths for each user is the criterion of optimality.

We discover that in the game with latency function fe(δ) = 1−e−αeδ
approximating the TCP congestion control over the paths, the price
of anarchy is bounded, leading to the conclusion that non-cooperative
selfish users can safely coexist in the multipath network and successfully
achieve a good performance if each adheres to the equilibrium flow
splitting strategy.
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1 Introduction

Nowadays many communication systems are based on the principle of shar-
ing a common resource among different users. One of the examples is Inter-
net, where TCP traffic comprises a major share. TCP is traditionally the
conventional networking scheme [8], [20], where multiple users share the same
communication links and buffering capabilities of the network routers.

One of the main objectives of the communication protocol is to establish
a number of rules guaranteeing that the common resources are fairly shared
among all the users. TCP-friendliness [21] and TCP-fairness [12] have emerged
as measures of correctness in Internet congestion control. A congestion control
mechanism should restricts non-TCP flows from exceeding the bandwidth of
a conforming TCP running under comparable conditions.

Recent studies has demonstrated the benefits of multipath data transfer in
obtaining high available bandwidth, better loss patterns and bounded delay
in the best-effort Internet environment [4], [5], [11]. However, new multipath
mechanisms are often accused in unfriendliness when they share network re-
sources with traditional flows. Proper per-flow congestion control is required
to limit aggressiveness of the proposed multipath solutions.

In the prior work [11] we showed how a single user could maximize his TCP
throughput if he is given a control over multiple end-to-end paths simultane-
ously. Nonetheless, as the same paths are shared between many users in the
Internet, how much throughput a single user can achieve depends not only on
his own decisions but also on decisions of the other users of the same network.
Greedy behavior can be not optimal.

In this paper we analyze a scenario where multiple selfish users route their
traffic in a shared multipath network between the common source and desti-
nation. The users send TCP traffic and are not allowed to change transport
protocol parameters, as, for example, in a Linux kernel the end users could
have no permission to tune TCP congestion control settings or choose trans-
port protocol for data transmission. Flow growth in each path is also con-
trolled by a TCP-like function. We take game-theoretic approach to answer
the following questions: do multiple users with selfish objectives each exploit-
ing similar scheduling techniques share multipath network fairly? Is such a
network sharing optimal or needs to be improved by applying some global
congestion controllers?

The main contributions of this work include mathematical modeling, which
quantifies the effect of selfish behavior of multiple independent users sharing a
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multipath network. We define the traffic delay function fe(δ) = 1−e−αeδ, which
approximates the dependency between end-to-end delay of the TCP traffic
and total path load. Wardrop equilibrium in such a model coincides with the
optimal scheduling strategy proposed in our prior work, proving correctness of
our choice of the latency function.

We discover that the proposed optimal traffic splitting policy leaves a very
small room for fairness improvement. The price of anarchy is bounded by
the value of 1.3, leading to the conclusion that selfish users can successfully
achieve their personal goals without cooperation, and the resulting unfairness
is rather moderate and could be tolerated.

The rest of the paper is organized as follows. Section 2 summarizes the
related work. Model description are given in Section 3. Analytical results for
Wardrop equilibrium and the price of anarchy are presented in Section 4, and
followed by the experimental evaluation in Section 5. Section 6 concludes the
paper and presents the ideas for future work.

2 Related Work

The game theoretic frameworks are powerful in describing and analyzing
competitive decision problems. Game theory has been used to study vari-
ous communication and networking problems including routing, service pro-
visioning, flow-rate controlling by formulating them as either cooperative or
non-cooperative games. The authors of [2] summarized different modeling
and solution concepts of networking games, as well as a number of different
applications in telecommunication technology.

Networking games have been studied in the context of road traffic since
1950, when Wardrop proposed his definition of a stable traffic flow on a trans-
portation network [22]. Both Wardrop and Nash [18] equilibria are tradi-
tionally used to give and idea on the fair resource sharing between the play-
ers [6], [9], [15]. However, they do not optimize social costs of the system. In
1999 the concept of the price of anarchy was proposed by Koutsoupias and
Papadimitriou to solve this problem. In [13] network routing was modeled as a
non-cooperative game and the worst-case ratio of the social welfare, achieved
by a Nash equilibrium and by a socially optimal set of strategies. This concept
has recently received considerable attention and is widely used to quantify the
degradation in network performance due to unregulated traffic [14], [19].

In the conventional TCP/IP networking [20] multiple users share commu-
nication links and buffering capabilities of the network routers. When users
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do not cooperate and do not respect the protocol rules, it is possible that
unfair or unstable behaviors emerge in the system. This problem of the TCP
protocol has already been addressed in the networking literature using a game-
theoretic perspective. For example, Nagle [17] and Garg et al. [10] proposed
solutions based on creating incentive structures in the systems that discourage
evil behavior and show the potential applications of Game Theory within the
problem of congestion control and routing in packet networks.

An excellent analysis of TCP behavior in the context of Game Theory has
been proposed by Akella et al. [1]. In this work, a combination of analyses and
simulations is carried in an attempt to characterize the performance of TCP in
the presence of selfish users. Our results for multipath networks presented in
this paper agree with one of the main conclusions for the traditional unipath
networks from [1]: when the users use TCP New Reno loss-recovery [8] in
combination with drop-tail queue management the equilibrium strategies of
the users are quite efficient for fair resource allocation.

3 Multiuser Multipath Network Routing

Game

3.1 Model Description and Notations

First we formulate the problem as a non-cooperative static routing game
and construct a Wardrop equilibrium model with splittable traffic. The amount
of flow to route through the network is a variable whose value is set optimally,
simultaneously with the routes, as a function of network characteristics and
the users demand. Minimization of the end-to-end traffic delay for each user
is the criterion of optimality.

The problem is modeled as the game Γ = 〈n,m,w, f〉, where n users send
their TCP traffic through m parallel routes from the source S to destination
D as shown in Figure 1.

Each user of the network is multihomed, which gives him the ability to
deliver his traffic along multiple paths simultaneously. The global TCP con-
gestion window grows and shrinks according to the TCP New Reno AIMD
(additive increase multiplicative decrease) policy. The change in the window
size, which occurs when a new acknowledgement message is received by the
source from the receiver, represents a step in the decision-making process. On
each step a user makes identical decisions how to split the given amount wi of
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Figure 1: Multiuser multipath network model

his TCP traffic flow among the available paths.
The users act selfish and choose routes to minimize their maximal traffic

delay. User’s i strategy is xi = {xie ≥ 0}, where xie is the traffic amount
that he sends on the path e so that

∑m
e=1 xie = wi. Then x = (x1, . . . , xn)

is users’ strategy profile. Denote for the original profile x the new profile
(x−i, x

′
i) = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) where the user i changes his strategy

from xi to x′i and all other users keep their strategies the same as in x.
Each path e has some characteristics, which depends on the end-to-end

path parameters, such as propagation delay De and the bottleneck link band-
width Be. The total load of the path e is a function δe(x) that is continuous and
non-decreasing by xie. A continuous traffic delay function fie(x) = gie(δe(x))
is defined for each user i and each route e. It is non-decreasing by the path
load and hence by xie.

Function PCi(x) defines an individual i-th user’s costs. Each user i tries
to minimize his individual costs – the maximal traffic delay among the routes
that he uses PCi(x) = max

e:xie>0
fie(x).

Social costs depend on the users’ traffic volume w = (w1, . . . , wn), char-
acteristics of the paths and users’ strategies. Here social costs are the total
traffic delay on the paths of the network [9]:

SC(x) =
n∑
i=1

m∑
e=1

xiefie(x).
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3.2 Nash and Wardrop Equilibria

Remark 1. A strategy profile x is a Nash equilibrium iff for each user i for
any profile x′ = (x−i, x

′
i) holds PCi(x) ≤ PCi(x

′).

Remark 2. A strategy profile x is a Wardrop equilibrium iff for each i: if xie >
0 then fie(x) = min

l
fil(x) = λi and if xie = 0 then fie(x) ≥ λi.

Nash and Wardrop equilibria definitions are not always equivalent. It de-
pends on the type of traffic delay functions defined in the model.

Theorem 1. If the strategy profile x is a Wardrop equilibrium then x is a
Nash equilibrium.

Theorem 2. If all delay functions fe(x) in the model are strictly increasing
by all xie then in this model any Nash equilibrium is a Wardrop equilibrium.

A property in the theorem 2 means that it is always possible to redistribute
some small user’s traffic amount from any of routes to the less loaded routes
in order to decrease traffic delay on this route for this user.

4 Routing Game with Traffic Delay Function

1− e−αeδe(x)

The amount of time needed to traverse a single path of a network is typ-
ically load-dependent, that is, the traffic latency in a path increases as it
becomes more congested. Basing on a series of simulations of TCP traffic with
variable path characteristics, conducted with the use of ns-2 simulator [16],
we choose a traffic delay function fie(δ) = 1 − e−αieδ to approximate the de-
pendency between the end-to-end delay of the TCP traffic controlled by New
Reno loss-recovery [8] in combination with drop-tail queue management, and
the total path load δ. TCP regulates the load by relying on the packet loss
and reduces the rate in response to that. When path load is large, packet loss
on the path is large too, so it prevents an infinite growth of the delay.

In the model with the traffic delay function fie(x) = 1 − e−αieδe(x), where

δe(x) =
n∑
i=1

xie, Nash and Wardrop equilibria are obviously coincident, because

the theorem 2 property holds.

6



The social costs are SC(x) = W −
n∑
i=1

m∑
e=1

xiee
−αieδe(x), where

W =
∑n

i=1wi – is a total traffic in the network.
Now we suppose that traffic delay on a path e is the same for each user and

equals fe(x) = 1− e−αeδe(x), resulting in SC(x) = W −
∑m

e=1 δe(x)e−αeδe(x).

4.1 Wardrop Equilibrium

Let a profile x be a user’s profile in a Wardrop equilibrium. By definition
if xie > 0 then fe(x) = min

l
fl(x) = λi and if xie = 0 then fe(x) ≥ λi. Since

traffic delay on the path e is equal for all users, for each i, such that xie > 0,
λi = λ. Delays on the unused routes are equal to zero, that is why in the
Nash equilibrium each path must be used by at least one user. Moreover, if
for some user i on the path e the traffic load is xie = 0, then traffic delay
on this path must not be less than delays on the paths which he uses, i.e.
1 − e−αeδe(x) ≥ λ > 0. It means that there is at least one user k, such that
xke > 0, hence the traffic delay on this path is exactly equal to λ. So, we have:
in the Wardrop equilibrium traffic delays on each route equal to λ and for all
e ∈ {1, . . . ,m} holds δe(x) = − ln(1−λ)

αe
.

Summing these expressions by e we get

W = − ln(1− λ)
m∑
e=1

1

αe
, and λ = 1− e

− W
m∑
e=1

1
αe .

Substituting λ into the expression for δe(x) we obtain that in a Wardrop
equilibrium loads are distributed by routes as follows:

n∑
i=1

xie = δe(x) =
W

αe
∑m

e=1
1
αe

for each e ∈ {1, . . . ,m},

4.2 The Price of Anarchy

Price of Anarchy is a ratio of equilibrium social costs in the worst case
equilibrium and optimal social costs

PoA(Γ) = max
x is an equilibrium

SC(x)

SCopt
.

Here the social optimum SCopt is a solution of a minimization problem
SC(x)→ min

x is a strategy profile
.
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Then the equilibrium social costs are SC(x) = W

1− e
− W

m∑
e=1

1
αe

 .

The value is the same for any Wardrop equilibrium providing the Price of
Anarchy cannot be infinite.

4.2.1 Stationary Point

Next we find a socially optimal situation. A strategy profile x is a social
optimum if it provides a minimum of social costs by all the profiles. Social
costs function is not convex, and its local minimum can difer from the the
global optimum. But we can try to obtain some stationary points and check
their optimality.

According to the Karush-Kuhn-Tucker theorem, x is a stationary point if
for each user i and each link e, such that xie > 0, holds

∂

∂xie

(
SC(x)−

n∑
i=1

γi

(
m∑
e=1

xie − wi

))
= 0

or e−αeδe(x)(αeδe(x)− 1) = γi.

In equilibrium 1−e−αeδe(x) = λi for all e, or αeδe(x) = − ln(1−λi) = const
by e, which satisfies the requirement to be a stationary point, but the question
of its social optimality needs to be investigated more.

However, since ea ≥ 1+a for a > 0, we can give a lower estimation LSC(x)
for our social costs function:

SC(x) ≥ LSC(x) = W −
m∑
e=1

δe(x)

1 + αeδe(x)
.

The function LSC(x) is convex, so it has a unique minimum, which is also
global. The stationary point for SC(x) is also a stationary point for its lower
estimation LSC(x). Thus, minimum for LSC(x) and a lower estimation for

8



SC(x) is Wardrop equilibrium profile xWE, such that δe(x
WE) = W

αe
∑m
e=1

1
αe

:

SC(x) ≥ LSC(xWE) = W −
∑m

l=1

 1
αl

W

(
∑m
e=1

1
αe

)
(
1+αl

W

αl
∑m
e=1

1
αe

)


= W −
∑m

e=1
1
αe

W

(
∑m
e=1

1
αe

)
(
1+ W∑m

e=1
1
αe

)

= W − W
1+ W∑m

e=1
1
αe

= W

(
1− 1

1+ W∑m
e=1

1
αe

)
.

The following example demonstrates that Wardrop equilibrium stationary
point can be the worst and the best case for the different parameters of the
same network. Consider a network with two paths connecting the source and
distination. Total users’ traffic is 1, and the path loads are δ(x) and 1− δ(x)
respectively. Let first α1 = 10 and α2 = 20. In this case Wardrop equilibrium
gives a maximum value of SC(x) (and a minimal value of LSC(x)) as shown
in Figure 2. Here Wardrop equilibrium is the worst case profile.
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1
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SC(x)
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Figure 2: WE is a maximum of SC(x)

Now set α1 = 1 and α2 = 2. In this case Wardrop equilibrium gives a
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minimum value of SC(x) and also a minimal value of LSC(x)(see Fig. 3).
This Wardrop equilibrium is an optimal case.
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Figure 3: WE is an optimum of SC(x)

4.2.2 The Price of Anarchy

Now we can estimate the Price of Anarchy for the game with parallel paths,
defined as a ratio of equilibrium social costs and the optimal social costs.
Obviously its lower bound is 1, since Wardrop equilibrium can be optimal
profile. According to the result from the previous subsection we can give an
upper estimation for Price of Anarchy as follows:

PoA(Γ) =
SC(xWE)

SCopt
≤
(

1− e
− W∑m

e=1
1
αe

)
/

1− 1

1 + W∑m
e=1

1
αe

 .

Denote W∑m
e=1

1
αe

as C ≥ 0.

Then,

PoA ≤ (1− e−C)(1 +
1

C
).

This function has one maximum on interval [0; +∞) and its maximal value is
about 1.3, leading to the total latency of each user in Wardrop equilibrium is
not higher than a small constant times that of a system optimum.
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5 Experimental Modeling and Simulation

Consider the multipath scheduling problem described in [11]. Traffic sent
by a user is presented as a sequence of data packets each of size S located at the
sender. m available paths connect the sender and the receiver, each of which
could consist of a number of consecutively connected links, with the following
end-to-end path characteristics: De - delay in the path e; Be - bottleneck
bandwidth of the path e. According to the proposed model if a packet is sent
to a busy channel it will arrive to the receiver at the time tfreee + S/Be, where
tfreee indicates the time when this path becomes free after delivering previously
sent packets. If N packets are sent to the same route, the next packet sent will
be delayed by N ∗S/Be. Here N is roughly the number of packets in progress,
or the current load of the path δe.

A variation of the Fastest Path First scheduling was suggested to achieve
the optimal scheduling, so that for each packet p the expected delivery time tpe
if sent to route e is estimated and the packet is sent to the path with minimum
value of tpe. In other words the optimal strategy is to distribute packets among
paths according to their capacities.

Now we apply the model to our multipath multiuser routing game with the
only addition that we allow more than one user to use the same network. We
set parameter of the route αe = S/Be. Then path load of each of our users
profile in Wardrop equilibrium δe(x) = W∗Be∑m

j=1Bj
. The loads are distributed by

the routes as
∑n

i=1 xie = δe(x) for each path e ∈ {1, . . . ,m}. Equilibrium
strategy for each user in the multiuser game is to distribute traffic load among
the paths according to their capacities and coincides with the optimal strategy
proposed for single user in [11]. The result confirms correctness of our choice
of traffic delay function for approximation of TCP-controlled flows.

Now we simulate a multipath multiuser game using ns-2 network simu-
lator [16] in order to evaluate the price of anarchy for a chosen setup. Six
multipath TCP agents are attached to the source of the 3-path network con-
necting the source and destination nodes. The paths bandwidths were chosen
as follows: 8 Mbps (megabit per second), 4 Mbps and 4 Mbps (16 Mbps net-
work total) with the corresponding propagation delays: 60ms, 60ms and 20ms,
which provide diversity in the path parameters. Each user sends 15 Mbytes
of individual TCP traffic (90 Mbytes total). The resulting traffic delays for
each of the six users correspond to their personal costs in equilibrium and are
distributed as follows: 48.84, 47.02, 47.09, 48.23, 46.91, 45.08 s.

We compare the total equilibrium social costs SC(eq) = 48.84 s to the
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theoretical optimum, which corresponds to the minimum possible delay of
90 Mbytes traffic in such a network SC(opt) = 45 s. And the price of anarchy
PA = SC(eq)/SC(opt) = 1.082 < 1.3.

6 Conclusions and Future Work

We found an upper bound for the price of anarchy in the system, where
all users adhere to the equilibrium flow splitting strategies and all end-to-end
subflows in the multipath network are controlled by TCP New Reno congestion
control policy, providing the selfish users can successfully achieve their personal
goals fairly without cooperation.

The work could be extended by modeling the dynamic multipath multiuser
selfish routing network games. In dynamic routing [3], [7], network states like
traffic load and congestion can vary in time. This approach could better reflect
congestion situation in the real networks where performance degradation of a
single data flow could be caused not only by competition between the network
users but also by a natural variation in the network parameters, for example,
variable quality in WLAN or HSDPA network links.
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