
FDPW��� Volume �� ����

Technical Issues of Real�Time

Network Simulation in Linux

Andrei V� Gurtov

Department of Computer Science� University of Helsinki
Department of Computer Science� University of Petrozavodsk

P�O�Box �� �Teollisuuskatu �	

FIN����� University of Helsinki� Finland

E�mail� gurtov�cs�helsinki�fi

Abstract

Real�time network simulation requires dealing with miscella�

neous technical problems to achieve a correct and timely execution�

Ignoring those issues can render a valid model useless� because its

implementation would produce erroneous results� This paper iden�

ti�es and discusses the problems speci�c for a Linux operating sys�

tem on the x�� architecture� A problem of accurate event schedul�

ing in a simulation process without disturbing other processes is the

most important and is considered in detail� Several solutions to this

problem are evaluated by measurements� The results show that no

single solution �ts all criteria� but the most appropriate method

can be selected according to the goals of a simulation study�

c� Andrei V� Gurtov� ����



� Andrei V� Gurtov

If you�re trying to solve real�time sort of problems�
you are dealing with some fairly thorny technical issues�

B� Gallmeister� a vice�char of POSIX�� ���

� Introduction

Studying the behavior of Internet protocols over a real data link or net�
work is often costly or� if a system is only in a development stage� impos�
sible� An alternative way is to build a model that emulates the network
of interest and then using this model to measure the performance of real
networking applications�

An understandable desire
of any modeler is to concen�
trate the e�ort on developing
a conceptual model of the
system under study and to
treat the computer as a per�
fect implementation tool that
accurately follows the event
schedule� Unfortunately� this
does not work� as most o��the�
shelf personal computers and
UNIX�like operating systems
are not designed for real�time
use� have coarse timer resolu�
tion� and are prone to delays
caused by the hardware �a disk
or network access
 and by the
operating system� Especially
in a multi�process environment�
keeping a real�time schedule
can be hard� because a simu�

0 20 40 60 80 100
0

20

40

60

80

100

Requested line rate (kbps)

A
ct

ua
l l

in
e 

ra
te

 (
kb

ps
)

Figure �� Actual versus requested

line rate� Measured with WINES

simulator using ����byte packets�

Sleeps are performed using a stan�

dard Linux system call

lation process has to compete with other processes for system resources�
Consider Figure �� for example� It presents performance results from

the �rst version of the Wireless Network Simulator �Wines
� a tool for
studying the behavior of network protocols over GSM� developed at the
Department of Computer Science� University of Helsinki� Wines emulates



Real�Time Network Simulation in Linux �

a slow wireless link by delaying data packets� and the actual line rate
maintained by the simulator is expected to be the same as requested in a
con�guration �le� In practice� as can be seen from the �gure� the actual
line rate is lower than the requested line rate� The error is produced
because the simulator relies on a standard Linux system call to perform
accurate delays�

Appropriate services of an operating system for real�time applications
is an active research area� An important landmark is POSIX� speci��
cations for portable real�time programming ���� However� many related
issues are highly speci�c for a particular hardware and operating system�

In this paper we discuss technical issues of real�time network simula�
tion on a Linux operating system run on a PC�� A problem of accurate
event scheduling in a simulation process without disturbing other pro�
cesses is the most important and is considered in detail� Most related
work is concentrated only on achieving the highest possible accuracy� but
ignoring practical factors that are sometimes decisive for the usage of
a method� In this paper� we take into consideration such issues as the
amount of modi�cations needed in the Linux kernel� and transparency of
a method for applications�

Several solutions to the problem of accurate delay are evaluated by
measurements� The results show that no single solution �ts all criteria�
but the most appropriate method can be selected according to the goals
of a simulation study� Other problems are outlined and possible solutions
to them are suggested� but an extensive evaluation is the subject of future
work� Details not present in this paper due to the lack of space can be
found in ����

� Seawind real�time simulator

A Software Emulator for Analyzing Wireless Network Data transfers �Sea�
wind
 is developed as a tool for exploring the behavior of real Internet
protocols �mostly TCP
 over wireless datalink services provided by GSM�
GPRS� and HSCSD ���� It may be classi�ed as a real�time distributed
functional simulator ���� The simulation system consists of several simu�

�We use the term PC to refer to any personal computer based on i��� and its
successors



�� Andrei V� Gurtov

lation processes connected in a pipeline� so that every simulation process
corresponds to some subsystem of the modeled network� Simulation pro�
cesses can be distributed on several computers and exchange messages
using unmodi�ed TCP or UDP protocols�

The simulation process is designed based on the Mowser library ����
that among other tools includes a generic event dispatcher �mev
� A
Mowser client can register event handlers for a number of speci�c events
�a descriptor is ready for writing or reading� an alarm goes o�� a process
receives a signal� etc�
� Unfortunately� mev was not initially designed to
be a real�time scheduler and was never used in this way� Experience with
Seawind will show the existing problems� and appropriate enhancements
could be made to mev in the future�

Several simulation processes are managed with a control tool via a
graphical user interface� The client and the server are normal Internet
hosts that run a networking application over the Seawind system that
tunnels packets possibly delaying� modifying or dropping them� The back�
ground load can be emulated either arti�cially or explicitly with external
load generators� The con�guration of the simulation process is read before
starting a test and is not a problem� but logging may happen during an
experiment run and can cause undesired delays�

Two factors imply that it is not wise to demand the usage of a modi�ed
Linux kernel for all experiments� First� as a rule� every simulation process
should be run on a separate PC� Second� the Seawind simulator is used
in several organizations and they may not have resources to install a
modi�ed Linux system� In this paper we outline the cases in which the
kernel modi�cation is a must� and cases where the required accuracy can
be achieved by suggested methods in the user software�

� The problem of an accurate sleep time

��� De�nition of the problem

The standard Linux kernel on PC provides a process sleep time resolution
of �� ms with a minimum of approximately �� ms� As a rule� the actual
sleep time is �� ms more than requested� In the later sections we will see
reasons for such coarse behavior� but �rst we consider the implications of
these facts to our real�time network simulator�



Real�Time Network Simulation in Linux ��

Figure � shows the
delay per packet to
emulate a slow link of a
given line rate� The de�
lay value is determined
by the line rate and
by the packet size� To
demonstrate limitations
of the standard Linux
sleep method� let us
consider modeling a
GPRS data link� Con�
ceptually� three main
levels of model granu�
larity can be identi�ed�
the IP packet layer
�typical packet size of

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Line rate (kbps)

S
lo

w
 d

ow
n 

de
la

y 
pe

r 
pa

ck
et

 (
m

s)

25−byte packets 
200−byte packets
1000−byte packet

Figure �� The computed delay per packet

versus requested line rate

���� bytes
� LLC �typical packet size of ��� bytes
� and RLC �typical
packet size of �� bytes
�

Taking into account the accuracy of sleeps� and observing Figure �� we
see that in standard Linux modeling of RLC is out of question� LLC can
be modeled with meaningful results up to �� kbps�� and only the IP�level
seems to be manageable for higher line rates� In practice� even IP�level
modeling would give inaccurate results� because sleeps are always greater
than requested and the accumulated delay would result in the line rate of
the emulated link to be lower than requested�

In modeling a data link some amount of variation of delay per packet is
acceptable� and sometimes even natural� because it is also present on the
real link� However� the errors in individual sleeps should not accumulate�
or otherwise the results would be biased�

Events for downlink and uplink channels of the Seawind simulation
process are scheduled concurrently� Because of this an average sleep re�
quest would be half of that is given in Figure �� Note also� that it only
accounts for slow down sleeps� so if a process is interrupted during the
sleep to process some event� for example background load packet arrival�
and then goes to sleep again� the error may be much larger�

�We assume � kbps is ���� bps� but �	Kbyte is ��
� bytes�



�� Andrei V� Gurtov

��� Formalization of the problem

In this section we give a number of numerical parameters� that can be used
in the comparison of di�erent methods of accurate sleep� All sleep requests
can be roughly divided into two groups� The �rst group consists of one�
occurrence sleeps that are not dependent on each other� An example is a
random delay modeling the e�ect of some rare event� for instance� a cell
change� The accuracy of such sleeps is more di�cult to improve� but on
the other hand such sleeps tend to be rare and large in value� thus the
relative error for such requests is small�

The second group consists of sleeps belonging to a single sleep thread
or� in other words� a series of sleep requests� An example is emulation
of a slow link� when a delay is done per packet of a data �ow� Some
di�erence between the requested and actual sleep time per one sleep in a
thread is acceptable� as long as� on the average� the actual sleeps are the
same as requested� This is sometimes called error dumping ���� The value
of individual requests and the length of the series is often not known in
advance�

Let xi be the requested sleep times belonging to the same series and
let yi be the actual times elapsed for the ith request� i � �� � � � � n for
some n � N � We de�ne the absolute sleep error as

ai � yi � xi

and the relative sleep error as

ri �
yi � xi

xi
�

ai

xi
�

If Zi� i � �� � � � � n are random variables� we denote the sample mean as

�Z �
nX

i��

Zi

n

and sample variance as
nX

i��

�Zi �
�Z
�

n� �
�

Naturally� we wish ai and ri to be constantly zero� that is equivalent
to having zero sample sample mean and variance� We will use the sample



Real�Time Network Simulation in Linux �	

mean and variance of the absolute and relative error as a rough estimate
of how good the suggested methods are� It is acceptable to have the small
non�zero variances because they only re�ect the deviation of individual
sleep requests that are often present in the real system as well� However�
the means should be kept as close to zero as possible because the indicated
bias directly a�ects the �nal results�

The relative error shows how well a method approximates an area of
the smaller sleep request values� because even a small absolute error there
would result in a large relative error� On the other hand� the absolute error
gives the way the method behaves �on average� and allows to estimate
how large an error is introduced in the �nal results�

Table � gives a summary of error statistics for sleep using a select��

system call on a standard PC Linux�

Table �� Statistics for di�erent sleep techniques� Results are measured

based on ���� sleep requests are uniformly distributed in � � � � ��� ms

method

absolute
error
sample
mean

absolute
error
sample
variance

relative
error
sample
mean

relative
error
sample
variance

standard select�� ���� ���� ���� �	�
interrupts RTC ���� ���� ���� ����
interrupts HZ ��� ���� ��� ����
slack variable ���� 	���� ����� ����
busy waiting ���� ���� ���� ����

��� Background of the problem

The standard Linux kernel sets the frequency of the timer interrupt
to ��� Hz at boot time that corresponds to �� ms interval between inter�
rupts� When a process requests to be temporarily suspended and woken
after some speci�ed time� a timer structure is created and added to a list
maintained by the kernel�



� Andrei V� Gurtov

At each interrupt� the kernel increments a number of ticks by one� The
interval length between timer interrupts is called a ji�y� Since the kernel
checks for expired timers only when a timer interrupt occurs� the smallest
meaningful sleep request time is one ji�y� In fact� the POSIX standard
for select system call states that the process must sleep at least the time
requested� To guarantee this� a kernel adds one ji�y to the requested
sleep time in ji�es� That means the smallest sleep time in practice is two
ji�es��

Fortunately in the modern Linux kernel gettimeofday provides nearly
microsecond accuracy employing a time�stamp register �TSR
 available on
Pentium processors that is incremented on each clock cycle� Earlier kernel
versions returned the time�of�day value updated only at a timer interrupt�

��� Possible solutions

Methods of solving the problem of accurate sleeps can be divided into
three groups�

�� Using some mechanism to get �ner clock resolution�

�� Compensating the di�erence in the next sleep request�

	� Busy waiting�

In the �rst group� the frequency of timer interrupts is increased ei�
ther permanently or temporarily� and interrupts are handled either by
the kernel or by the user process� In the second group� the requested
sleep time is changed to re�ect the error made in previous sleeps or to
match the expected actual sleep time� In the third group� the accurate
gettimeofday�� call is used to actively wait until the requested time has
elapsed�

Methods are then compared using the following evaluation criteria�

� high accuracy �small absolute and relative error
�

� transparency for applications�

� load on the CPU�

� amount of modi�cations needed to the kernel�

�In kernel versions 
�
 and later the smallest sleep time is reduced to one ji�y�



Real�Time Network Simulation in Linux ��

��� Measurement speci�cations

����� Measurement model

Initially the following parameters were identi�ed as possibly a�ecting the
results�

� the pattern of sleep requests by the application�

� the overall system load�

� the amount of computation in the application�

� the length of the sleep series�

After consideration� a decision was made to use a long series of uni�
formly distributed in � ms to ��� ms requests on unloaded system� The
pattern of requests is di�erent for each application and thus di�cult to
generalize� The overall system load may have di�erent e�ect depending
on the priority of the real�time application� Computation time between
sleep requests can be withdrawn from the sleep time requested and thus
should not a�ect the results� The length of the sleep series was chosen
of ���� requests� This is longer than most sleep series in practice� but
allows for better statistics�

The sleep request series was generated by a C�program using standard
Linux random�� call� The series was the same for all tested methods� A
number of shell scripts and short programs in C�language were written
to compute the relative and absolute error� sample mean and variance
and to plot �gures� All ���� samples were used for statistics� but only
the ��� �rst samples are shown in �gures to keep the size of graphics �les
manageable�

����� Test environment

Performing tests required three di�erent Linux kernels to be installed on a
single machine� In Linux it is possible to keep multiple kernel boot image
�les and switch between then on a system boot� A convenient interface is
achieved using �Linux Loader
 LILO tools�

Software� Linux kernel ����	�� Computer Science Linux distribution
�modi�ed Slackware
� gcc ������	� libc� library� ELF executables�

Hardware� Pentium II �� MHz CPU� ��� MB RAM� � FUJITSU
	�� MB HDDs�



�� Andrei V� Gurtov

��� Methods of accurate sleep with kernel support

����� Counting RTC interrupts

Linux provides a driver to control the RTC chip� so the interrupt rate of
the RTC can be set with a ioctl�� calls and the process is informed of
the interrupt occurrence using read�� or select�� system calls on the
�dev�rtc device�

The support for RTC in the kernel is optional and can be activated
when the kernel is compiled� At our department installation this option
is disabled� and a sample kernel had to be compiled with RTC support
enabled to perform tests�

Figure 	�b
 shows that this method produces fairly accurate results� In
fact� as can be seen from Table �� all actual sleeps are exactly as requested
when rounded to milliseconds� System tools indicated �� CPU utilization
when running the test process�

A negative side of this method is that it requires a replacement of the
sleep routine in the applications� The Mowser library would need a major
change to be able to use the RTC interface�

����� Increasing the interrupt frequency of the kernel

The frequency of timer interrupts� and thus accuracy of select call is af�
fected by the value of the HZ constant in kernel sources� It is de�ned in
the include�asm�i��	�param�h �le� The default value is ���� but it is
possible to change within the range of the clock chip capabilities� Increas�
ing the frequency of clock ticks has a negative impact in CPU overhead�
As the Seawind system aims at approximately � ms resolution� the value
of HZ of ��� can be considered appropriate�

A sample kernel was compiled with this feature and measurements
were run� Figure 	�c
 and Table � show the results� The main advantage
of this method is the complete transparency for applications�

����� UTIME patch

UTIME is an extensive modi�cation of the kernel that aims at providing
accurate timing without putting an excess load on the system� It is done
by increasing the frequency of the timer only temporarily� only when this
is actually needed� because even if events are scheduled with microsecond



Real�Time Network Simulation in Linux ��

0
20

40
60

80
10

0
02040608010
0

12
0

R
eq

ue
st

ed
 s

le
ep

 ti
m

e 
(m

s)

Actual sleep time(ms)

a
�
B
a
si
c
ca
se

0
20

40
60

80
10

0
02040608010
0

R
eq

ue
st

ed
 s

le
ep

 ti
m

e 
(m

s)

Actual sleep time(ms)

b
�
C
o
u
n
ti
n
g
R
T
C
in
te
rr
u
p
ts

0
20

40
60

80
10

0
02040608010
0

R
eq

ue
st

ed
 s

le
ep

 ti
m

e 
(m

s)

Actual sleep time(ms)

c
�
F
re
q
u
en
t
k
er
n
el
in
te
rr
u
p
ts

F
ig
u
re
�
�
P
er
fo
rm
a
n
ce
o
f
d
i�
er
en
t
sl
ee
p
te
ch
n
iq
u
es
�
A
d
a
sh
ed
li
n
e
sh
o
w
s
th
e
o
p
ti
m
a
l
b
eh
a
v
io
r�
G
ra
p
h
s

co
n
ta
in
d
es
ir
ed
v
s�
re
q
u
es
te
d
sl
ee
p
ti
m
e
fo
r
th
e
�
rs
t
�
�
�
re
q
u
es
ts



�� Andrei V� Gurtov

0
20

40
60

80
10

0
02040608010
0

R
eq

ue
st

ed
 s

le
ep

 ti
m

e 
(m

s)

Actual sleep time(ms)

d
�
S
le
ep
w
it
h
sl
a
ck

0
20

40
60

80
10

0
02040608010
0

R
eq

ue
st

ed
 s

le
ep

 ti
m

e 
(m

s)

Actual sleep time(ms)

e
�
B
u
sy
w
a
it
in
g

F
ig
u
re
�
�
�C
o
n
ti
n
u
e
�
P
er
fo
rm
a
n
ce
o
f
d
i�
er
en
t
sl
ee
p
te
ch
n
iq
u
es
�
A
d
a
sh
ed
li
n
e
sh
o
w
s
th
e
o
p
ti
m
a
l

b
eh
a
v
io
r�
G
ra
p
h
s
co
n
ta
in
d
es
ir
ed
v
s�
re
q
u
es
te
d
sl
ee
p
ti
m
e
fo
r
th
e
�
rs
t
�
�
�
re
q
u
es
ts



Real�Time Network Simulation in Linux ��

resolution they are rarely scheduled every microsecond� Rather than in�
terrupt CPU at the �xed rate� the timer chip is programmed to interrupt
CPU at the time of the earliest scheduled event� This approach yields
good results� and the achieved accuracy is up to �� �s �	��

However� UTIME does a large modi�cation of the kernel� and it can
possibly have some negative side e�ects� It is not a part of the o�cial ker�
nel that was veri�ed by hundreds of independent people� Another problem
is practical usability� the required patch only installs on the certain ker�
nel version �����	
 and is aimed at RedHat distribution� It might also be
considered somewhat an overshot� because currently Seawind needs only
� ms resolution� For these reasons UTIME was not tested� but perhaps it
will be checked more closely in future�

��	 Methods of accurate sleep without kernel support

����� Sleep with slack

The average accuracy of a sleep thread can be improved by measuring the
actual sleep time of the current request and compensating the di�erence
later with the next sleep request� The interface to the sleep routine is
modi�ed to pass two parameters to the function� the time requested for
a sleep and a pointer to a variable containing slack from the previous
sleep request� The programmer is responsible for separating sleep threads
in the application� and assigning the slack variables to them� The sleep
routine in C�code is given below� The slack variable can contain the
positive or negative value� depending on whether the previous sleeps were
shorter or longer than requested� The slack variable is updated to the
value compensated in the sleep�

int sleep�with�slack�int sleep�ms� int �slack� �

int slept�

if �sleep�ms��slack	
�� �

�slack�
sleep�ms�

return ��

�

slept
ms�sleep�sleep�ms��slack��

�slack�
�sleep�ms�slept��

return slept�

�



�� Andrei V� Gurtov

This method does not increase the accuracy of a single sleep call� of
course� However� as can be seen from Figure 	�d
� actual sleep times are
evenly distributed around the requested time� Table � shows that the
absolute error is very low� thus on average the actual sleeps are same as
requested�

The best side of this method is that it can be used on unmodi�ed
kernels� It can be successfully combined with other methods that require
kernel support to further increase the accuracy accounting for deviations
in individual sleep requests�

����� Sleep with pre�compensation

It is easy to note that the sleep time provided by the unmodi�ed select��

tends to be larger than requested approximately by the constant compo�
nent of �� ms plus a variable part that varies from � to � ms depending
on the least important digit�

In the method we call sleep with pre�compensation a requested sleep
time is decreased by the value of the expected oversleep� This can be done
inside the application or by modifying the sleep routine� For standard
sleep with select�� it decreased the errors� but not enough to make this
method useful by itself�

It was interesting to check if pre�compensation would improve the
performance of sleep with slack� In fact� the experiment has shown that
there is no signi�cant di�erence when pre�compensation is used� At �rst
it was surprising� but later it was observed that the slack variable tends
to stabilize at the value typically requested by pre�compensation�

����� Busy waiting

We mentioned in Section 	�	 that the gettimeofday�� call provides nearly
microsecond resolution in time� It is possible to wait for an exact time
period by repeatedly calling gettimeofday until the requested time has
elapsed�

However� this approach would not work for an event�driven applica�
tion� as Seawind is� All event handlers must be kept short not to block
the processing of other pending events� and busy waiting inside a handler
is certainly unacceptable� A better solution is busy waiting through the
Mowser dispatcher itself� This is possible because Mowser supports event



Real�Time Network Simulation in Linux ��

handlers of di�erent priorities� In this way a handler mev later is regis�
tered with a zero timeout and minimal priority� If there are any pending
events� they will be processed �rst� and then a function for timer event
is called� This function checks if the time of request has already elapsed�
and if not� re�register the handler in the same way�

This method can be used when there is a single process per CPU�
For a multi�process system only very short sleeps can be done in such a
way� otherwise the sleeping process will use up all its CPU quota only for
busy waiting and will be preempted� An advantage of the method is high
accuracy�

Figure 	�e
 and Table � show the results� For all but one request the
error is zero� This single request well illustrates the shortcoming of this
method� as the probable reason for it is a preemption of the process that
has used up its CPU quota�

� Other problems

In this section we outline miscellaneous issues that a�ect the accuracy of
simulation results� All of them need closer consideration� which in turn
requires benchmarking� Some of the problems were already experimented
with� so possible solutions are also given�

��� Disk I
O

Seawind processes access the disk for reading con�guration and writing
log� All con�guration related information is read before starting the ex�
periment and thus should not be a problem�

In Seawind� an experiment consists of repetitions of basic tests �for
example one TCP connection
� so the log writing should not cause addi�
tional problems for short basic tests� because the log can be stored entirely
in the main memory during each basic test and written to disk between
basic tests�

For more intensive logging �when� for example� whole packets are
logged
 and longer tests the problem remains� A good method of real�
time logging is to keep a number of bu�ers each of the size of a disk sector
in the main memory� and asynchronously write a full bu�er to disk while
�lling the other bu�ers ���� The appropriate number of bu�ers should



�� Andrei V� Gurtov

be determined experimentally� Performance of asynchronous I�O under
Linux needs closer consideration� because it is currently done without
kernel support� but with a separate user thread per each request�

In general� providing a lightweight and predictable I�O is a fairly dif�
�cult task that requires close consideration and possibly replacement of
some Linux kernel components ���

��� CPU and memory performance

Even if on average occurring events require a small amount of time to
process� situations are possible when several events are scheduled close to
each other� For example� a bunch of background load users have arrived
and need to be processed almost instantly� Some delay in dispatching
events is inevitable in this case� but it is important to �nd out how large
it is and how it can be accounted for�

The overall system performance can be of concern when the simulation
model involves much computing� The Seawind code would need to be
pro�led and analyzed to remove the bottlenecks� In particular� data inside
the simulation process often need to be copied without actually modifying
them� In some cases this can be avoided by more careful programming�

��� Clock synchronization

The PC clock chip is accurate to �	 min per year at normal temperature
and a fresh battery ���� In smaller units� it is approximately �� ms per
hour� This is large enough to impose problems with the analysis of logging
data� as logging is distributed� Some mechanism should be used to either
�nd out the o�set of each computer�s clock or to synchronize them� A
timesync script is available on all CS department Linux machines� It uses
Network Time Protocol �NTP
 to synchronize the clock on a computer
with the clock of the time server�

��� Process scheduling

Standard Linux processes use SCHED OTHER default universal schedul�
ing policy� which aims at optimizing throughput rather than ful�lling
requirements of real�time processes� If besides a simulation process� other
active processes are present on the same computer� it is important that the



Real�Time Network Simulation in Linux �	

simulation process is given highest priority so that it cannot be preempted
by other processes� Fortunately� Linux ful�lls the POSIX requirements for
soft�real time systems and provides two other scheduling policies for spe�
cial time�critical applications that need precise control over the way in
which runnable processes are selected for execution ���� In order to deter�
mine the process that runs next� the Linux scheduler looks for the non�
empty list with the highest static priority and takes the process at the
head of this list� All non�real time processes run under the static priority
of �� In opposite� a real�time process can assign itself a static priority in
the range � to ��� All scheduling is preemptive� if a process with a higher
static priority gets ready to run� the current process will be preempted
and returned into its wait list�

For real�time processes two scheduling policies are available� First In
First Out �SCHED FIFO
 and Round Robin �SCHED RR
� SCHED RR
is a simple enhancement of SCHED FIFO� the only di�erence is that in
SCHED RR each process is only allowed to run for a maximum time
quantum� If a SCHED RR process has been running for a time period
equal to or longer than the time quantum� it will be put at the end
of the list for its priority� Assigning scheduling policies and priorities
for processes of a given system can be done only based on the exact
functionality of each process�

A computer system used as a platform for running experiments should
be as bare�boned� as possible� In particular� the X server should not be
used� but rather a single textual shell� Care should be taken to remove
miscellaneous system processes and daemons that are not needed for the
real�time processes� but are present on the normal Linux system� because
any such process is a potential source for scheduling distortions for a real�
time application�

��� Virtual memory paging

Virtual memory paging can cause unexpected delays in the execution of
real�time processes� In the �rst place� paging should not happen at all
during the run of an experiment� but in some cases �for example when
log �le is kept in the main memory
 is possible� To prevent this problem
from occurring� a mlockall system call should be used� It disables paging
for all pages mapped into the address space of the calling process� This



� Andrei V� Gurtov

includes the pages of the code� data and stack segment� as well as shared
libraries� user space kernel data� shared memory and memory mapped
�les� All mapped pages are guaranteed to be resident in RAM when the
mlockall system call returns successfully and they are guaranteed to stay
in RAM until the pages are unlocked again by munlockall or until the
process terminates�

� Conclusion

Miscellaneous technical issues are shown to be crucial for a sound imple�
mentation of a real�time network simulator� The most important problem
is to provide a simulation process with an accurate delay mechanism that
does not interfere with other processes� Several methods were evaluated
and their usability was discussed�

The excellent accuracy in sleeps can be achieved by counting RTC
interrupts at the expense of modi�cations to applications and possibly
to the kernel� Busy waiting provides the high accuracy as well� however�
periodic distortions are possible due to intensive CPU utilization� This
method requires a modi�cation to applications� but not to the kernel�
Increasing frequency of kernel interrupts �HZ� gives high accuracy with
complete transparency for applications� but does require a modi�ed kernel�
Finally� sleep with slack allows for good accuracy on average for longer
sequences of sleep requests on standard kernel with no overhead� However
the programmer has to identify sleep threads in the application�

While no method was found to satisfy all the criteria� strong and weak
sides of each method were identi�ed to make an appropriate choice for
particular purpose of a simulation study� The other important problems
were brie�y discussed� but more elaborate research is a subject to further
work�

Acknowledgments

I express my deep gratitude to prof� Timo Alanko for reviewing the paper�
for invaluable help and support� and to Dr� Iouri A� Bogoiavlenski for
advice and encouragement� I thank Aki Laukkanen for useful comments
on the paper�



Real�Time Network Simulation in Linux ��

References

��� H� Helin� A� Gurtov� Mowgli Communication Services� Mowser li�
brary� Technical report� University of Helsinki� December �����

��� A� Law� D� Kelton� Simulation modeling 	 analysis� McGraw�Hill
series in industrial engineering and management science� second edi�
tion� �����

�	� B� Srinivasan� A Firm Real�Time System Implementation Using
Commercial O��The�Shelf Hardware and Free Software� Master of
Science thesis� University of Kansas� �����

�� R� Hill� Improving Linux Real�Time Support� Scheduling� I
O Sub�
system� and Network Quality of Service Integration� Master of Science
thesis� University of Kansas� �����

��� K� Atkinson� An Introduction to Numerical Analysis� John Wiley �
Sons� �����

��� B� Gallmeister� POSIX��� Programming for the real world� O�Reilly
� Associates� �����

��� H� Messmer� The Indispensable PC Hardware Book� Addison�Wesley�
third edition� �����

��� A� Gurtov� Technical Issues of Real�Time Simulation in Linux� Bach�
elor Thesis� University of Petrozavodsk� �����

��� M� Kojo� K� Raatikainen� M� Liljeberg� J� Kiiskinen� and T� Alanko�
An E�cient Transport Service for Slow Wireless Telephone Links�
IEEE Journal on Selected Areas in Communications� vol� �� no ���
pp� �		���	�� �����


