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Abstract

The wireless environment of slow and lossy links presents a chal-
lenge for efficient data transport. We have performed an exper-
imental evaluation of TCP in an emulated wireless environment.
We consider a network model including a lossy wireless link and a
last-hop router with a limited-size buffer. We have explored how
well the state-of-art TCP perform, identified key reasons behind
the behavior, and measured the effect of different optimizations.
We experimented with TCP connections with different values of
the initial window, receiver window, with or without SACK and
New Reno over the emulated network with different error rates and
buffer sizes. The experimental data is obtained with a state-of-art
TCP implementation of the Linux operating system and a real-time
network emulator Seawind. Our main result is a comparative study
and analysis of different TCP optimizations.

1 Introduction

The number of nomadic users that access the Internet using wireless tech-
nology grows rapidly. Soon, in the upcoming era of mobile computing,
every portable device will have a wireless interface and an IP address.
With all advantages, mobile computing introduces an environment quite
different from the one found in fixed networks, with limitations that come



from physical properties of the wireless medium. The scarce radio band-
width allows for a rather low link speed; miscellaneous external factors
like fading of the radio signal may cause loss of data on the radio path.
We believe that in the future, wireless connections will be widely used,
but they will remain a different environment from wireline networks. In
this work we focus on Wireless Wide Are Networks (WWANSs). A typical
WWAN is a cellular phone systems also capable of data transmission.

Many popular Internet applications including World-Wide Web (WWW),
File Transfer Protocol (FTP) and email require reliable data delivery
over the network. The Transmission Control Protocol (TCP) is the most
widely used transport protocol for this purpose; traffic studies in the In-
ternet report that the dominant fraction of the traffic belongs to TCP [30].
TCP was designed and tuned to perform well in fixed networks, where the
key functionality is to utilize the available bandwidth and avoid overload-
ing the network. However, nomadic users want to run their favorite appli-
cations that are built on TCP over a wireless connection, as well. Packet
losses due to transmission errors, a long latency and sudden delays oc-
curring on the wireless link may confuse TCP and yield a throughput far
from the available line rate. Optimizing TCP for a wireless environment
has been an active research area for the last few years. An excellent state-
of-art classification of related work can be found in [16]. We are working
in the area of pure transport layer solutions based on on modifications of
TCP solely at the end points of a connection. This approach retains the
end-to-end TCP connection semantics, but enhances the TCP protocol
to make it perform better in the wireless environment. A description of
TCP optimizations that we use in this paper can be found in [14].

This paper presents an experimental evaluation of TCP in an emulated
wireless environment. We consider a network model including a lossy
wireless link and a last-hop router with a limited-size buffer. Our goal is
to explore how well the state-of-art TCP performs in this environment,
what are the key reasons behind the behavior, and what is the effect
of different TCP optimizations. We experiment with multiple error rates
and buffer sizes over TCP connections with different optimizations. In the
experiments the network is represented with a real-time network emulator
Seawind and the real data communication using TCP. We have used the
state-of-art TCP implementation of the Linux OS. Our main result is a
comparative study of performance of different TCP optimizations. We



also present a list of detected implementation faults, discuss anomalies in
performance and give a detailed analysis of interesting cases.

The rest of the paper is organized as follows: in Section 2 we describe
the Transmission Control Protocol, the assumed network architecture, the
properties of wireless links and review the related work. In Section 3 we
give specific performance problems we focus on. Section 4 specifies the
network and workload model. In Section 5 we present our measurement
setup and in Section 6 we illustrate and analyze the results of our exper-
iments.

2 TCP over wireless links

2.1 Transmission Control Protocol

The Transmission Control Protocol (TCP) [23, 9, 5] is the most used
transport protocol in the Internet. TCP provides applications with reli-
able byte-oriented delivery of data on the top of the Internet Protocol (IP).
TCP sends user data in segments not exceeding the Maximum Segment
Size (MSS) of the connection. Each byte of the data is assigned a unique
sequence number. The receiver sends an acknowledgment (ACK) upon re-
ception of a segment. TCP acknowledgments are cumulative; the sender
has no information whether some of the data beyond the acknowledged
byte has been received. TCP has an important property of self-clocking; in
the equilibrium condition each arriving ACK triggers a transmission of a
new segment. Data are not always delivered to TCP in a continuous way;
the network can lose, duplicate or re-order packets. Arrived bytes that
do not begin at the number of the next unacknowledged byte are called
out-of-order data. As a response to out-of-order segments, TCP sends
duplicate acknowledgments (DUPACK) that curry the same acknowledg-
ment number as the previous ACK. In combination with a retransmission
timeout (RTO) on the sender side, ACKs provide reliable data delivery [9].
The retransmission timer is set up based on the smoothed round trip time
(RTT) and its variation. RTO is backed off exponentially at each unsuc-
cessful retransmit of the segment [21]. When RTO expires, data transmis-
sion is controlled by the slow start algorithm described below. To prevent
a fast sender from overflowing a slow receiver, TCP implements the flow
control based on a sliding window [29]. When the total size of outstanding
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Figure 1: Congestion control in TCP [6].

segments, segments in flight (FlightSize), exceeds the window advertised
by the receiver, blocked until ACK that opens the window arrives.

Early in its evolution, TCP was enhanced by congestion control mech-
anisms to protect the network against the incoming traffic that exceeds its
capacity [15]. A TCP connection starts with a slow-start phase by sending
out the initial window number of segments. The current congestion con-
trol standard allows the initial window of one or two segments [5]. During
the slow start, the transmission rate is increased exponentially. The pur-
pose of the slow start algorithm is to get the “ACK clock” running and
to determine the available capacity in the network. A congestion window
(cwnd) is a current estimation of the available capacity in the network.
At any point of time, the sender is allowed to have no more segments
outstanding than the minimum of the advertised and congestion window.
Upon reception of an acknowledgment, the congestion window is increased
by one, thus the sender is allowed to transmit the number of acknowledged
segments plus one. This roughly doubles the congestion window per RTT.
The slow start ends when a segment loss is detected or when the conges-
tion window reaches the slow-start threshold (ssthresh). When the slow
start threshold is exceeded, the sender is in the congestion avoidance phase
and increases the congestion window roughly by one segment per RTT.
When a segment loss is detected, it is taken as a sign of congestion and
the load on the network is decreased. The slow start threshold is set to



the half of the current congestion window. After a retransmission time-
out, the congestion window is set to one segment and the sender proceeds
with the slow start. Figure 1 shows a possible behavior of the congestion
window for a TCP connection.

TCP recovery was enhanced by the fast retransmit and fast recovery
algorithms to avoid waiting for a retransmit timeout every time a segment
is lost [27]. Recall that DUPACKs are sent as a response to out-of-order
segments. Because the network may re-order or duplicate packets, recep-
tion of a single DUPACK is not sufficient to conclude a segment loss. A
threshold of three DUPACKSs was chosen as a compromise between the
danger of a spurious loss detection and a timely loss recovery. Upon the
reception of three DUPACKSs, the fast retransmit algorithm is triggered.
The DUPACKed segment is considered lost and is retransmitted. At the
same time congestion control measures are taken; the congestion window
is halved. The fast recovery algorithm controls the transmission of new
data until a non-duplicate ACK is received. The fast recovery algorithm
treats each additional arriving DUPACK as an indication that a segment
has left the network. This allows to inflate the congestion window tem-
porarily by one MSS per each DUPACK. When the congestion window
is inflated enough, each arriving DUPACK triggers a transmission of a
new segment, thus the ACK clock is preserved. When a non-duplicate
ACK arrives, the fast recovery is completed and the congestion window
is deflated.

New Reno [13] is a small but important modification to the TCP fast
recovery algorithm. “Normal” fast recovery suffers from timeouts when
multiple packets are lost from the same flight of segments [12]. New
Reno can recover from multiple losses at the rate of one packet per round
trip time. If during the fast recovery the first non-duplicate ACK does
not acknowledge all outstanding data prior to the fast retransmit, such
an ACK is called a partial acknowledgment. The New Reno algorithm
is based on an observation that a partial acknowledgment is a strong
indication that another segment was also lost. During the recovery phase
New Reno retransmits the presumably missing segment and transmits new
data if the congestion window allows it. The recovery phase ends when
all segments outstanding before the fast retransmit are acknowledged or
the retransmission timer expires.

RFCs describing the TCP protocol leave many issues unspecified and



TCP implementations differ in how they behave under similar conditions.
For a long time, the reference implementation has been Reno TCP found
in the Unix BSD4.3 operating system [31]. Modern TCP implementations
differ significantly from Reno. The current family of BSD OSes is derived
from Unix BSD4.4 with TCP-Lite implementation [17]. For the baseline
in our analysis we wanted to select a state-of-art TCP implementation
that is both widely used in the Internet and has the source code available
for analysis and modification. We chose Linux as a popular operating
system with the source code available. Due to a large amount of indepen-
dent developers interested in Linux, implementations of new features are
quick to appear for Linux. The TCP implementation in earlier versions
of Linux had problems with conforming to standards [20]. We have de-
tected, evaluated and corrected a number of misbehavior problems. We
believe that after these fixes we obtained a TCP that behaves reasonably
with regard to standards. A recent work gives the requirements for a
TCP implementation to be used for TCP research [4]. Our baseline TCP
(described in detail in [14]) satisfies these requirements.

2.2 Properties of Wireless Links

Many wireless links are slow, have high latency and may have high error
rates. These link characteristics adversely affect the TCP performance.
The line rate of a wireless link may not exceed some tens of kilobits per
second. The latency, the propagation delay, of wireless links is typically
high. The latency comes from the special transmission schemas and pro-
cessing delays the network equipment. The total one-way latency in GSM
sums up to 200-300 ms. Note, that we do not include the transmission
delay into the link latency. Thus the round-trip time is defined as the sum
of transmission and propagation delays in both directions. Some wireless
links impose a significant amount of data corruption due to transmission
errors. For example, in the transparent GSM data service the residual
bit error rate (BER) of the link can be as high as 10~ after the Forward
Error Correction (FEC) [19]. The delay-bandwidth product is an impor-
tant characteristic of a network [26]. It defines the minimum size of data
in flight to utilize the available network bandwidth, the pipe capacity.
Networks with a large delay-bandwidth product, for example including
satellite links, demand special attention from the transport protocol. For



example, the slow start phase of TCP can be time-consuming in such
networks [3]. In our environment, the delay-bandwidth product is small,
close to one kilobyte. In the slow start, the pipe capacity is filled already
after one-two RTTs .

2.3 Network Architecture

Rather than selecting one particular network architecture and develop-
ing a detailed model that would reflect the behavior of this network we
attempt to build a generic model that would be suitable for all wireless
networks with similar characteristics. We are interested in the issue how
a nomadic user can use Internet services via a wireless network. In a sce-
nario shown in Figure 2, the wireless network plays the role of an access
network from the Internet point of view. It is also possible for a nomadic
user to exchange data with another mobile user, so that two wireless links
are present on the data path. We do not consider such configuration is this
thesis, assuming that the access to a remote host in the Internet would
be the dominant case.

The wireless link is often the bottleneck in the path of a data flow,
because fixed networks are fast and reliable compared to the capabilities of
the wireless link. When data packets flow from the relatively fast Internet
to the slow wireless link they are buffered in the last-hop router which
connects the wireless link to the Internet. This router plays a significant
role in the end-to-end TCP performance because congestion data losses
are most likely to happen at the bottleneck queue. A limited number of
buffers can be allocated in the last-hop router per user. This buffer space
is shared among connections of the same user, but there is no interference
between the connections of different users. A similar network architecture
was considered, when three buffers are available per user [25].

The wireless link in our environment imposes corruption losses. We
assume that all data with transmission errors are detected and discarded
at the wireless link. We also assume no error recovery and no variable
delays on the link. Thus, different patterns of link errors is the only non-
deterministic element in our environment. The Global System for Mobile
Communication (GSM) is a widely successful effort to build a WWAN
system with millions of users in Europe and worldwide [19, 24]. It maps
well to our generic model shown in Figure 2.
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Figure 2: Network Architecture.

3 Problem Description

In this section we outline the specific problems of TCP over wireless links
we focus on in the rest of the thesis.

3.1 Congestion Losses

In this section we discuss the occurrence of congestion losses and their
effect on TCP. We use the term congestion for the time period when many
packet losses occur due to a buffer overflow, even in the case of a single
connection. We first look at a typical TCP connection over a limited-
size buffer, but in an error-free environment. Figure 3 shows a baseline
TCP connection when the buffer space is limited to seven packets. Two
phases of the connection are clearly visible. In the first phase, which
lasts approximately 20 s, the connection starts up aggressively, creates
congestion, loses a large number of packets and recovers them. We call
this phase the start-up buffer overflow hereinafter. In the second phase,
the connection proceeds smoothly with the periodic loss of a packet. This
is referred to as the steady state of the connection. During this phase the
connection goes through periodic congestion avoidance cycles following
the linear increase — multiplicative decrease policy [27].

Start-up buffer overflow. Let us look at the start-up buffer overflow
which is also known as the slow-start overshoot [18]. Figure 3(b) zooms
on the start-up buffer overflow. Ten segments are lost and retransmit-
ted. The important points to notice on the figure are: when congestion
occurs, when the first packet loss is detected, and how segment losses are
recovered. Questions about the start-up buffer overflow are “why does it
happen”, “what is the negative effect”, and “how can it be prevented”.

The optimal router buffer size. The maximum size of the queue
in the router has a significant effect on the connection. A router buffer,
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which is too small, can result in a smaller FlightSize than needed by TCP
to recover well from packet losses. The size, which is too large, leads to the
heavy start-up buffer overflow and overbuffering. One paper has estimated
1.5*RTT*bandwidth as the optimal value for the buffer size [17].

Overbuffering. The situation when significantly more packets are
in flight than is required to fill the available network capacity is called
overbuffering. Overbuffering does not necessarily cause congestion. If the
number of packets injected into the network equals the number of packets
leaving the network, no congestion take place. However, having a large
number of packets buffered in the network has several drawbacks [17]. If
buffers in the network are full, there is no capacity left to accommodate
traffic bursts. Some applications using TCP generate bursty traffic. In
addition, the TCP protocol itself can inject packets in bursts. Another
drawback is a poor service for interactive applications, because the end-
to-end delay on the overbuffered path can be huge. Finally, the data in
the network can become stale, when a user aborts the data transfer, for
example using a stop button in a web browser. Due to these reasons
overbuffering should be avoided.

Fair sharing of resources. Tail-drop routers are known to have
problems with sharing the bandwidth between connections in a fair way [8].
When two or more TCP connections share the same router buffer, one
connection can starve while other connections monopolize the resources.
This situation is referred to as lock-out and occurs due to timing effects.
We would like to avoid this problem in our environment.

3.2 Corruption Losses

Performance problems of TCP at the presence of error losses are well
known [7]. Upon a loss detection, TCP always reduces the transmission
rate, as the reason of the packet loss, congestion or corruption, is not
known. When the level of error losses is low, they do not have a no-
table effect on the performance. At the moderate level of error losses,
TCP underestimated the available network bandwidth. When the level
of error losses is high, most of time the connection is idle waiting for a
retransmission timeout to expire. In the worst case, the connection is ter-
minated, when the maximum number of retransmission is exceeded. Not
only the rate of the error losses is important, but also the burstiness [17].
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In general, TCP suffers more when errors are bursty rather when they are
uniformly distributed. Recommendations for using the TCP algorithms
and control parameters at the presence of error losses is given in [11]. We
have identified three patterns of error losses to be studied.

Single Errors. Normally, single-packet error drops do not have a
significant effect on the TCP behavior, except for a few special cases. We
will try to locate such interesting cases and analyze them.

Random errors. We will try to identify levels of the uniformly-
distributed packet error rate when error losses have no effect on perfor-
mance, when the link bandwidth is underestimated, when most time is
spent in RTOs and when the connection is terminated. We will study how
different TCP optimizations affect the performance for varying size of the
router buffer and the error loss rate.

Burst errors. It is interesting to study the effect of burst errors on
TCP. An error loss rate of one percent does not normally affect TCP
performance, if uniformly distributed. However, the same error rate when
errors occur in clusters can adversely impact performance. We expect
TCP to perform badly during an error burst; also performance after the
burst ends can be hampered.

3.3 OS-Related Problems

State-of-art TCP performance. Most of the related TCP research
concentrated on evaluation of TCP performance of the Reno TCP imple-
mentation or an abstract TCP model in the ns simulator [22]. However,
from the point of view of an end user, it is much more important how their
currently installed operating system performs under the given conditions.
The upcoming Linux version 2.4 differs from Reno in many ways. Thus, it
is actual to evaluate how the state-of-art TCP implementation performs
on wireless links.

Conformance of Linux. There is a stereotype among researchers
about the TCP implementation in Linux, that it does not conform to
standards. Indeed, earlier releases of the Linux kernel showed malicious
behavior and were even named as an incoming danger to the Internet [20].
The Linux networking code has undergone significant changes since ver-
sion 1.0, and a large number of independent developers have verified and
improved Linux. Today, when Linux is widely used on Internet servers, it

11



is actual to locate and fix the remaining inconsistencies with TCP stan-
dards produced by IETF.

4 Performance Model

In this section we describe the network model for the network architecture
depicted in Figure 2 on page 8. The network model is implemented in a
real-time emulator. The model of downlink and uplink channels is shown
in Figure 4. The last-hop router is modeled as a queue. The wireless
link is modeled as a combination of the transmission and propagation
delays; error losses are modeled as packet drops. The uplink and downlink
directions in our model are independent.

In the downlink direction, packets arriving to the emulator are placed
in the queue. The maximum queue length can be limited; when an over-
flow happens, packets are tail-dropped. The RED algorithm can be used
to actively control the queue length. Packets are taken from the head of
the queue one-by-one for “transmission” over the link. The length of the
transmission delay is computed according to the line rate and the packet
size. When the transmission delay for a packet is completed, the packet
is moved to the propagation delay node. The length of the propagation
delay is the same for all packets independently of packet size. Several
packets can be in the propagation delay node simultaneously. Error losses
are modeled by dropping packets after the propagation delay. If a packet
was not dropped, it is sent out from the emulator.

On the uplink direction, the transmission and propagation delay nodes
are used in the same way as for downlink. We assume no queueing in the
uplink direction. With our workload model the chance of two or more
packets (i.e. acknowledgments) to be queued in the uplink direction is
negligible. Error losses are modeled in the same way as for downlink.
We assume the link rate of 9600 bps and the propagation delay of 200
ms hereinafter. Our error model assumes that all corrupted packets are
detected and discarded on the wireless link, that is, no corrupted packets
are delivered to the IP layer. The packet drop probability is independent
of the packet size. This may be considered inaccurate because, for exam-
ple, the loss rate of small ACKs is the same as of large packets. However,
this is the case, for example, when acknowledgments are piggybacked to
large data packets. The type of workload used for evaluation of different

12
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Figure 4: The model of downlink and uplink data channels.

solutions has a significant effect on the results. In most of our tests we use
a single unidirectional bulk data transfer as the workload. In the limited
set of tests we use two such transfers.

Table 1: Features in the baseline TCP.

| Feature | Availability ||

Fast Retransmit, Fast Recovery ON
New Reno ON
Initial Window Size, segments 2

SACK OFF
MSS, bytes 256
Timestamps OFF
Delayed Acks ON
Advertised Window, kilobytes 32

PPP Compression OFF
Control Block Interdependence OFF

Recent studies of the Internet traffic indicate that both the New Reno
algorithm and the Selective Acknowledgment (SACK) option are widely
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used nowadays [2]. We have decided to include the New Reno algorithm
into the baseline, but leave SACK as one of optimizations. This corre-
sponds to the current practise and makes easier comparisons with the
related work. Table 1 presents a list of relevant parameters that we as-
sume in the baseline TCP if not mentioned otherwise. More details and
justification behind such a choice are give in [14].

5 Experimental Design

5.1 Test Environment

In this section we describe our test environment: how the network model
shown in Figure 4 on page 13 is realized in our emulator, and how the
workload generator (TTCP) is positioned. Figure 5 shows the protocol
layering in our setup. The workload source, the Seawind emulator [1] and
the workload sink are each located on a separate computer in Ethernet
LAN (802.3). The test TCP traffic is encapsulated into a regular TCP/IP
connection. Seawind runs on a normal Linux workstation, as it gets the
test TCP traffic from a standard socket interface.

workload source workload sink
Seawind emulator

IP| TCP|PPP|IP|TCP IP| TCP|PPP|IP| TCP

Figure 5: Seawind protocol stack. The modified TCP code is dashed.

The Seawind emulator implements the network model shown in Fig-
ure 4 by delaying and dropping TCP segments in real time. The down-
link and uplink channels are parameterized independently. The maximum
length of the queue in packets is controlled by a parameter; in the “un-
limited” mode the length is only bound by the available memory. For the
purpose of our experiments, it can be considered infinite. One packet is

14



considered currently “in transmission” and is not counted into the queue
limit. Through the rest of the thesis we assume that the “router buffer
size” does not include this packet. Link errors can be emulated as a fixed
pattern (e.g. 5th and 12th packets are dropped) or with a specified drop-
ping probability per each packet.

The workload source and sink computers use the TCP implementation
under study. The Point-to-Point (PPP) protocol is used as a link service
for a TCP connection under study. This corresponds to a real-world
situation, as most dial-up users employ PPP. We have disabled all kinds
of header and data compression, as well as escaping of control characters
in PPP. The PPP/IP/TCP traffic is forwarded by the Network Protocol
Adapter (NPA) via a TCP/IP connection to the Seawind emulator.

We use a modified TTCP tool for generating traffic for TCP connec-
tions. TTCP is a popular public domain tool for testing the end-to-end
throughput by sending a high volume of data over the network [28]. TTCP
is commonly used as a workload generator for bulk data transfers. We
have made several extensions to TTCP to make it more suitable to our
needs. In our tests we used 400 writes of 256-byte data blocks, which
results in a 100-kilobyte transfer.

6 Measurement Results and Analysis

In the first set of tests we have shown that an unlimited buffer size in the
router is not desirable. It creates the overbuffering problem and worsens
the recovery from sudden data losses. Figure 6(a) shows the behavior of
the baseline TCP when no congestion or error losses are present. The
achieved throughput of 1002 bytes per second (Bps) is close to the max-
imum taking into account TCP/IP/PPP header overhead and the line
rate of 1200 Bps. When the FlightSize equals the receiver window (32
kilobytes), 127 segments are queued in the network. In our environment,
where the FlightSize of a few segments is sufficient for utilizing the pipe
capacity, this is undesirable for reasons discussed in Section 3.1. We will
add here that the measured RTT also includes the queuing time and thus
is highly inflated with regard to the actual RTT of the link.

An adaptive link layer can change the strength of the radio channel
coding when the number of transmission errors on the link changes [17]. A
stronger coding schema allows to reduce the packet loss rate over the link
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at the expense of the reduced line rate. A complete lack of segment losses
creates the overbuffering problem and is not desirable in our environment,.
In order to keep the FlightSize at the optimal level, TCP needs a low rate
of segment losses. Losses due to congestion at the router buffer and losses
due to link errors are treated in the same way by TCP. Thus a link can
provide a low level of error losses with a beneficial effect on TCP. For an
adaptive link it means that the channel coding can be kept as weak as
possible to maximize the line rate, leaving a low level of packet losses to
be noticed and corrected by TCP.

Figure 7 shows that a range of the router buffer sizes of 3-12 pack-
ets gives the optimal performance on an error-free link. Variations in
throughput for the buffer size of 3-12 packets have a simple explanation.
If a congestion control cycle happens to occur at the end of a connection,
it causes a retransmission timeout. For example, the connection suffers
from the RTO for the six-packet router buffer, but does not for the five-
packet buffer. Whether RTO occurs or not for the given router buffer size
depends on the amount of data sent over the connection. Starting with
the buffer size of 15 packets, performance decreases. The start-up buffer
overflow for a 15-packet buffer already lasts for 40 seconds.

We have located and analyzed the cases where a loss of a single packet
significantly affects the performance of TCP. In case segment losses do
suddenly happen on an overbuffered link (with a large router buffer), the
recovery time is long, as shown in Figure 6(b). Four last segments in
a connection are lost (three original and the first retransmission). The
retransmission of a lost segment happens only after 40 seconds after its
loss. Another interesting example is a packet loss in the beginning of
a connection that may actually have a positive effect. The packet loss
triggers congestion avoidance measures; the start-up buffer overflow is
avoided, and the connection proceeds smoothly for its lifetime. More
examples can be found in [14].

Our largest group of tests is with random errors on the link. The error
rate was set to 2, 5, and 10 % with a queue limit of 3, 5, 7, 10, and 20
packets. Table 2 lists the optimizations we have experimented with. We
found that the optimal buffer size to be 7-10 packets. Throughput of the
baseline TCP is adequate at a 2 % error rate, but is only half of the line
rate for a 10 % loss rate. TCP with SACK performed significantly better
than other modifications under all conditions, especially at higher loss
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Table 2: TCP optimizations tested with random errors.

Label iw win sack | newreno | mss
segm. | bytes | on/off | on/off | bytes

baseline 2 32696 off on 256

iw3d 3

iwd 4

win2K 2048

windK 3840

sack on on

newreno _off off

mssH36 536

rates. The increased initial window gives slightly better throughput than
the baseline. A small receiver window (2 kilobytes) decreases throughput,
especially for smaller buffer sizes. A moderate window (4 kilobytes) is
beneficial for larger buffers. Disabling New Reno is helpful at a low error
rate and larger buffer sizes; in other cases it is worse. In general, our
results are coherent with a previous evaluation of Reno, New Reno, and
SACK TCP at the presence of error losses [12].

We have also studied what time it takes to transmit the first 15 kilo-
bytes of data in the bulk data connections. In this way we can estimate
the performance of a transaction-type traffic. The performance picture
is different than for whole connections. The optimal buffer size varies
with error rates and TCP optimizations. A limited receiver window and
disabled New Reno are quite helpful at the low error loss rate. SACK
performs better than other modifications in this case, as well.

We have studied the effect of an error burst on the TCP connection.
Typically, little or no data gets through during the burst already at a
20 % packet loss rate. After the bursts ends, the transmission is resumed
immediately, except when RTO was backed off several times during the
burst. In the later case the connection is idle approximately for half of
the burst length after the link quality returns to normal. The likelihood
of the RTO back off is increased with the buffer size. This is because most
packets sent during the burst are retransmissions, but not the new data.
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In such a case no valid RTT sample can be collected and RTO is more
likely backed off several times. Thus a smaller buffer size is preferable for
a link where error bursts are possible.

We found that RED worsens the performance when only a single TCP
connection is present. This is because the moving average of the queue
size does not react timely to the start-up buffer overflow, and late packet
drops only worsen the recovery. For two concurrent TCP connections,
RED improves the throughput and the fairness among the connections,
but only for large buffer sizes (20, 40 packets). We have provided the
detailed analysis of the start-up buffer overflow and have suggested using a
dual threshold drop policy to prevent it. However, its implementation and
evaluation is left for future work. A deployment of the Explicit Congestion
Notification (ECN) could make RED more attractive in our environment,
because ECN avoids congestion-related losses. The implementation of
ECN in our emulator and a performance evaluation is left for future work.

Here we present the detailed analysis of the start-up buffer overflow
shown in Figure 8. The segment marked 7, is the last segment transmitted
before the overflow is detected after the third DUPACK (2) for the lost
segment (3). The number of segments between 1 and 2 is the FlightSize
when a packet loss is detected, it is about twice as large as the router
buffer. Approximately, every second segment from this flight is lost due
to the buffer overflow. The time between points 2 and & shows the cur-
rent RTT of the link, it is about six seconds. The number of segments
between 3 and & is the FlightSize at the moment when the first loss oc-
curs. Thus, the segment marked 5 is the latest segment to be dropped by
an active queue management algorithm, so that a packet loss is detected
before point 8. When a loss of § would be detected, the FlightSize is
not grown anymore and additional losses are prevented. The number of
segments between points 6 and 7 is the minimum FlightSize to trigger the
fast retransmit, four segments. Thus, segment 8 is the earliest segment of
the connection, which loss would be recovered by the fast retransmit. The
segments before that can be recovered only by the retransmission timeout.
Thus, if we drop a segment between points 5 and 6 we avoid the buffer
overflow at the cost of a single packet drop. It is better to select a packet
closer to point 5 to avoid underutilization of the link. A practical imple-
mentation of such a policy could define a soft queue limit in the router,
for example ten packets. The hard limit can be two-three times larger
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than the soft limit. When the current queue size reaches the soft limit,
a single packet is dropped. When the TCP sender detects a packet loss,
it decreases the transmission rate and the buffer overflow is prevented.
If the hard queue limit is reached, the router drops all arriving packets.
Extending this algorithm to work well for a few concurrent connections
requires a counter or a timer-based mechanism to determine when to drop
another packet in case the load is not decreased, i.e. a previously dropped
packet was not from the most aggressive connection. Some heuristics that
favors connections with small packets can be implemented to protect in-
teractive flows. The suggested algorithm is similar to the Dual Threshold
Early Packet Discard [10].

We have collected some empirical evidence suggesting that the more
careful version of the “bug fix” for preventing multiple fast retransmits
should be implemented in all TCPs. In the first scenario, multiple fast
retransmits are caused by a long delay on the link and a spurious timeout
and in the second scenario, by a loss of a block of segments in the middle
of the flight. New Reno adversely affects the performance at the presence
of multiple fast retransmits.

7 Conclusion

We have performed an experimental evaluation of the state-of-art TCP
implementation in the emulated wireless environment. We have addressed
the problem of start-up buffer overflow, determined a range of optimal
buffer size in the last-hop router, demonstrated the negative effect of
overbuffering and the effect of different patterns of error losses on TCP
performance. We have also experimented with RED algorithm in the
last-hop router and did not find it useful in our environment.
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