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ABSTRACT 
Large and sudden variations in packet transmission 
delays are often unavoidable in GPRS. This may cause 
spurious timeouts in TCP. Spurious timeouts affect TCP 
performance in two ways: (1) the TCP sender 
unnecessarily reduces its load, and (2) the TCP sender 
is forced into a go-back-N retransmission mode. The 
Eifel algorithm avoids these consequences. We evaluate 
the performance of the Eifel algorithm for TCP Reno, 
NewReno and SACK in a simulated GPRS network. We 
use throughput and goodput as equally important 
performance metrics. In all our simulations, we find 
that the Eifel algorithm improves goodput; in some 
cases by up to 20 percent. When complemented with an 
efficient loss recovery scheme (SACK or NewReno), we 
find that the Eifel algorithm also improves bulk data 
download times in all our simulations; in some cases by 
up to 12 percent.  

 
1. INTRODUCTION 
An increasing number of mobile users access the 
Internet via data links provided by cellular wide area 
wireless networks such as the General Packet Radio 
Service (GPRS) [1]. GPRS is a packet-switched 
extension of the Global System for Mobile 
communications (GSM). While it is being actively 
deployed globally at the time of writing, GPRS is 
already operational in many countries. GPRS 
incorporates many physical and link layer techniques 
including different forward error correction schemes, 
Automatic Repeat reQuest (ARQ), power control, and 
frequency hopping that typically ensure a "smooth" data 
transmission. Nevertheless, large and sudden variations 
in packet transmission delays are often unavoidable. 
This often creates a problem for end-to-end protocols. 
In particular, the Transmission Control Protocol (TCP) 
[11] is not sufficiently robust to cope with such delay 
variations. 
 Our previous work discusses possible sources of 
delay spikes in the GPRS network [5]. Possible events 
that may cause suspension of a TCP connection on the 
order of seconds are link outages, handovers and radio 
resource preemption. Link outages can result from a 
transient loss of radio coverage, e.g., while driving 
through a tunnel or when using an elevator. During a 
handover the mobile terminal may have to perform 
time-consuming operations before data can be 
transmitted in the new cell. Blocking by high-priority 
traffic may occur when an arriving voice call or higher 

priority data user temporally preempts the radio 
channel. 
 Such events do not necessarily cause packet losses 
since GPRS implements a rather persistent link layer 
retransmission scheme. However, the sudden delay 
spikes can cause TCP to timeout prematurely, and 
perform unnecessary retransmissions. This paper 
presents a quantitative evaluation of the Eifel algorithm 
for TCP [4] within the context of GPRS. The Eifel 
algorithm is a mechanism to detect and respond to 
spurious timeouts and spurious fast retransmits in TCP. 
We simulate bulk data connections of TCP Reno, 
NewReno [8] and SACK [2] while generating delay 
spikes that are typical for those caused by cell 
reselections in a GPRS network. Although the study 
could have been done in a live GPRS network, it would 
have been difficult to reproduce exactly the same 
sequences of cell reselections, and thus difficult to 
estimate the effect of Eifel. Additionally, it is difficult 
to find a flawless TCP implementation. We therefore 
used the NS2 [3] simulator. For that, we implemented a 
module that simulates a GPRS link and is able to replay 
traces of delay variations based on measurements taken 
in a live GPRS network. 
 An important observation is that for mobile users 
and operators the battery power consumption and radio 
resource usage are often as important as the download 
time over the wireless link. This suggests that the 
amount of data sent over the wireless link should be 
minimized. Thus, in our evaluating of the Eifel 
algorithm in GPRS, we use the download time and the 
goodput, i.e., the ratio of useful over total data 
transmitted, as equally important performance metrics.  
 The rest of the paper is organized as follows. In 
Section 2, we describe the cell reselection mechanism in 
GPRS. In Section 3, we explain the effect of delay 
spikes on TCP, and how the Eifel algorithm makes the 
TCP sender robust against the potentially resulting 
spurious timeouts. In Section 4, we describe the 
methodology and assumptions underlying our analysis. 
Our results are presented in Section 5. Section 6 
concludes the paper and outlines our plans for future 
work. 
 
2. CELL RESELECTION IN GPRS 
In GPRS, the mobile terminal selects the serving cell. 
This is different from the basic circuit-switched GSM 
data service where the network controls the transfer of 
on-going data calls between cells [6][7]. The cell 
reselection process causes a delay, and sometimes 
packet losses in active data flows. The total delay 



consists of the radio channel access delay in the Base 
Station Subsystem (BSS), and the delay caused by 
mobility management procedures in the core network; 
more precisely the Serving GPRS Support Node 
(SGSN).  
 Changing between cells that belong to the same 
base station controller can be typically done within the 
BSS without involving the SGSN, which reduces the 
delay. Some events in the network may cause cell 
reselection to be aborted and later restarted which 
significantly increases the delay. According to the 
GPRS specifications, a cell reselection should be 
completed within a few seconds. However, in a live 
GPRS network we observed that it can take any time 
from a few to a few tens of seconds. 
 The frequency of cell reselections is to a large 
extent determined by the speed of a user’s movement 
and the size of cells. For example, driving in an urban 
area may cause frequent cell reselections. A typical 
interval between cell reselections in such a case is 
around a minute, but can be as small as few tens of 
seconds in densely populated environment. 
 To show that a delay spike caused by a cell 
reselection can indeed trigger a spurious timeout in 
TCP, we have performed a simple test. We took a 
laptop running Linux (RedHat version 6.2) connected 
via a Motorola Timeport GPRS phone to a live GPRS 
network. By forcing cell reselections from the phone 
and recording the TCP behavior using tcpdump [12], 
we have obtained the TCP trace plot shown in Figure 1. 
More details on reading TCP trace plots can be found in 
[4]. The first cell reselection occurs at 510 s when the 
TCP connection is in the slow start phase and takes 7 
seconds. The second one occurs at 550 s during the 
congestion avoidance phase and takes 8 seconds. In 
both cases, TCP experiences a spurious timeout and 
performs unnecessary retransmissions. 
 
3. THE EIFEL ALGORITHM 
The Eifel algorithm proposed in [4] makes the TCP 
sender robust against spurious timeouts and packet 
reordering. In this section, we only explain the Eifel 
algorithm in the context of spurious timeouts. When a 
delay spike exceeds the current value of TCP's 
retransmission timer, a timeout occurs, and the TCP 
sender retransmits the oldest outstanding segment. If 
that segment or the corresponding ACK is only delayed 
but not lost, that retransmission was unnecessary and 
the timeout is said to be spurious. Figure 2 shows a 
spurious timeout for Reno TCP produced using the NS2 
simulator. The receiver trace is offset by 25 segments to 
prevent an overlap with the sender trace. We enhanced 
the hiccup tool [9] to generate the delays in this test. 
The first retransmission is sent at second 6, and is also 
delayed. The sender interprets the ACK generated by 
the receiver in response to the original segment as 
corresponding to the retransmission. This happens 
because TCP ACKs bear no information that would 
allow the TCP sender to distinguish an ACK for the 
original segment from that for the retransmission. 
Likewise the TCP sender misinterprets the following 
original ACKs, and retransmits all outstanding 
segments using the slow start algorithm. Also, a number 
of new segments allowed by the congestion window are 
transmitted in this phase.  

 At second 8 the retransmitted segments arrive at the 
TCP receiver and generate DUPACKs [13]. When the 
threshold of three DUPACKs is reached at the sender, a 
spurious fast retransmit is triggered since the TCP 
sender does not implement the careful version of the 
fast retransmit algorithm [8].  
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Figure 1. A TCP trace shows spurious 
retransmissions caused by two cell reselections in a 
live GPRS network. 

 Figure 3 illustrates the operation of the Eifel 
algorithm in the event of a spurious timeout. The Eifel 
algorithm stores the timestamp of the first 
retransmission occuring at second 6. The first ACK that 
acknowledges the retransmission at second 8 carries a 
timestamp of 3 s which is when the original 
transmission of the corresponding segment took place. 
By comparison with the timestamp stored for the 
retransmission (6 s) the Eifel algorithm detects that the 
timeout was spurious. 
 The response to a spurious timeout in the original 
study [4] resumes transmission with the next unsent 
segment. How the congestion control state is reversed 
depends on the number of subsequent spurious 
timeouts. After the first timeout, the sender restores the 
slow start threshold and the congestion window to the 
values before the timeout. Figure 3 shows this situation 
when a delay spike occurs in the beginning of the 
connection in the slow start phase. After detecting the 
spurious timeout at second 8, the slow start phase 
continues. The behavior after two subsequent timeouts 
is shown later in Figure 7. In this case, the slow start 
threshold is set to the previous value of congestion 
window, which itself is left halved. In that case, a TCP 
sender ignores some of the original ACKs after a 
spurious timeout until the congestion window has 
sufficiently increased. After three and more subsequent 
spurious timeouts the congestion control state is not 
reversed at all. 
 In this paper, we evaluate the Eifel algorithm as 
proposed in [4] leaving the study of various 
enchancments to the response part for future work. 
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Figure 2. Spurious timeout of TCP Reno due to a 5 s delay spike. 
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Figure 3. Spurious timeout of TCP Reno with Eifel due to a 5 s delay spike. 
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4. SETUP OF EXPERIMENTS 
We evaluate the Eifel algorithm in three scenarios: easy, 
mediocre, and difficult. For each scenario, we assume 
different intervals between cell reselections where the 
intervals are drawn from a uniform distribution between 
a minimum and a maximum interval as shown in 
Table 1. The interval times have been chosen in a way 
that for a typical download time of 120 s on average 
one, two and three delay spikes occur per connection 
for the easy, mediocre and difficult scenario, 
respectively. We further assume that the time to 
complete a cell reselection is uniformly distributed 
between 3 and 15 seconds. 
 
Table 1. Interval between Cell Reselections for three 

Scenarios. 
 

 Min (s) Max (s) 
Easy  80 140 
Mediocre 40 80 
Difficult 20 40 

 
For our experiments, we used the one-way models of 
Reno, NewReno and SACK TCP with delayed 
acknowledgments in NS2, and a slightly adapted 
version of the Eifel implementation from [9]. The test 
configuration is shown in Figure 4. It contains two 
nodes and a link with a drop-tail queue. The full-duplex 
link has a rate of 30  kbps and a one-way latency of 
300 ms. The hiccup tool generates delays on the link. 
We have improved hiccup to suspend data flow in 
both directions and after the queue. 
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 In an environment without congestion losses 
(100 KB buffer), Eifel reduces the download time and 
the number of unnecessarily retransmitted segments in 
all scenarios and for all three TCP flavors. Interestingly, 
NewReno without Eifel suffers from a large number of 
unnecessary retransmissions and increased download 
time compared to TCP Reno and SACK [5]. The 
goodput for all three TCP flavors with Eifel is close to 
100 percent in all scenarios. This is a significant 
improvement compared to 87 percent of Reno and 
SACK or 80 percent of NewReno in the difficult 
scenario. The download time reduction ranges from 4 
percent in the easy scenario to 12 percent in the difficult 
scenario. 
 In case of the small bottleneck buffer size (10 KB), 
Eifel improves the goodput for all three TCP flavors in 
all scenarios, and reduces the download time of 
NewReno and SACK. The goodput of NewReno and 
SACK with Eifel is close to 100 percent in all 
scenarios, compared to about 90 percent without Eifel 
in the difficult scenario. Eifel reduces the download 
time for NewReno and SACK by up to 8 percent. 
Although Reno with Eifel shows an improvement in 
goodput of several percent compared to pure Reno, the 
download time is notably increased in all scenarios. To 
explain this unexpected result we have closely 
examined packet traces of such connections. 
Apparently, Reno with Eifel suffers from lengthy non-
spurious timeouts caused by packet losses. 
 Figure 7 shows an example of the poor performance 
of Reno with Eifel when packet losses occur. The first 
timeout at second 30 is caused by a delay and is 
spurious. The Eifel algorithm successfully detects the 
spurious timeout, and resumes transmission with the 
next unsent segment at second 36. In this case, some of 
the original segments were lost due to a buffer 
overflow. DUPACKs for the first lost segment start to 
arrive at second 37 below the highest outstanding 
segment. The “bug fix” [8] is disabled, and thus the fast 
retransmit is triggered at second 38. However, due to 
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Figure 4. Test configuration in NS2. 
A single test is based on a TCP connection 
ransferring 300 KB of bulk data. Each test has been 
epeated a hundred times to ensure sound statistics. We 
xperimented with a bottleneck buffer size of 10 KB 
hat causes congestion losses, and a size of 100 KB that 
s large enough to fit the receiver window of data, and 
hus avoids any losses. We used the default settings for 
ll parameters in the simulator, except for disabling the 
bug fix” [8] and enabling the TCP Timestamps option 
15]. 

. RESULTS OF EXPERIMENTS 
igure 5 and Table 2 depict the average download times 
or the various bulk data transfers, while Figure 6 and 
able 3 show the goodput results. As goodput we 
efined the ratio of the minimum number of segment 
equired for completing the data transfer to the actual 
umber of segments transmitted. Results are based on 
CP Reno (R), NewReno (N), and SACK (S) with and 
ithout the Eifel algorithm. As expected, the download 

ime increases and goodput decreases from the easy to 
he difficult scenario with growing frequency of delay 
pikes. 

multiple losses the sender experiences a second timeout 
at second 61. That timeout is not spurious. However, 
the RTO at that time is huge, as it is calculated from the 
timestamps in the delayed segments. Additionally, the 
RTO may still be backed-off after the first timeout (It is 
not quite clear what the requirement level is in [10] for 
resetting the back-off counter once a new RTT sample 
is collected. We have instrumented TCP to reset the 
counter). When the retransmit timer finally expires at 
second 61 lost segments are recovered and normal 
transmission resumes. Without Eifel, Reno often avoids 
the second non-spurious timeout as it retransmits all 
outstanding segments in go-back-N, including the lost 
ones. Disabling the “bug fix” (as we have done in our 
tests) helps to recover without a non-spurious timeout 
when one, and sometimes two, segments are lost. 
However, in order to provide good TCP performance in 
environments with delay spikes and high loss rate, the 
Eifel algorithm should be coupled with efficient loss 
recovery schemes like SACK and Limited Transmit 
[14]. 
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Figure 5. Download time of Reno (R), NewReno (N) and SACK (S). 
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Figure 6. Goodput of Reno (R), NewReno (N) and SACK (S). 

 
 
 



  

Table 2. Download time (s) of Reno (R), NewReno (N) and SACK (S). 
 

Eifel     NO               YES         
Buffer   10KB      100KB      10KB      100KB   
TCP R N S  R N S  R N S  R N S 

Easy 108 101 98  99 103 98  122 100 98  95 95 95 
Mediocre 118 113 110  112 125 113  130 110 106  103 103 103 
Difficult 145 145 142   142 157 143   184 136 131   125 125 125 

 
 
 
 

Table 3. Goodput of Reno (R), NewReno (N) and SACK (S). 
 

Eifel     NO               YES         
Buffer   10KB      100KB      10KB      100KB   
TCP R N S  R N S  R N S  R N S 

Easy 0.96 0.97 0.98  0.96 0.92 0.96  0.97 1.00 1.00  1.00 1.00 1.00 
Mediocre 0.94 0.94 0.96  0.92 0.85 0.93  0.97 0.99 0.99  0.99 0.99 0.99 
Difficult 0.90 0.87 0.90   0.87 0.80 0.87   0.96 0.99 0.99   0.99 0.99 0.99 
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Figure 7. Performance problem of Reno with Eifel when packet losses are present. 



 
6. CONCLUSIONS 
We have studied the Eifel algorithm as defined in [4] 
for TCP Reno, NewReno and SACK in a simulated 
GPRS network. Large and sudden variations in packet 
transmission delays are often unavoidable in GPRS 
potentially causing spurious timeouts in TCP. For 
example, cell reselections may cause such delay 
variations. We simulated different scenarios with on 
average between one and three cell reselections taking 
place over the course of a two minutes bulk data 
transfer.  
 For mobile users and operators the battery power 
consumption and radio resource usage are often as 
important as the throughput across the wireless link. We 
therefore used throughput (download times) and 
goodput as equally important performance metrics. The 
bottleneck queue was assumed to be within the GPRS 
network. In bandwidth-dominated systems such as 
GPRS, the size of the bottleneck queue can greatly 
impact TCP's performance. We used two different sizes 
of the simulated drop-tail queue to capture this impact. 
 In case of a bottleneck queue that is sufficiently 
large to accommodate the maximum receiver window of 
a TCP connection, the Eifel algorithm improves the 
performance for all TCP flavors in all three scenarios. It 
reduces download times by up to 12 percent, and 
increases goodput by up to 20 percent. Bottleneck 
queues of such a size are often found in real GPRS 
networks. 
 In case of a smaller bottleneck queues, congestion 
losses may occur, and hence the TCP connection 
becomes network-limited. In that case, the Eifel 
algorithm still improves goodput by up to 10 percent for 
all TCP flavors in all three scenarios. For SACK and 
NewReno it also improves download times by up to 8 
percent in all three scenarios. 
 Unexpectedly, TCP Reno yielded a considerable 
increase in download times when the Eifel algorithm 
was enabled and the bottleneck queue was small. We 
found that the reason for that were non-spurious 
timeouts with huge RTOs that typically follow a 
spurious timeout when packets from the outstanding 
flight were in fact lost due to congestion. From that we 
conclude that the Eifel algorithm is ideally 
complemented with an efficient SACK- or NewReno-
based loss recovery scheme. 
 Our future work will focus on studying various 
modifications to the response part of the Eifel algorithm 
including how to reverse congestion control state, and 
how to adapt the round-trip time estimators. 
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