
Evaluating the Eifel Algorithm for TCP in a GPRS Network

Andrei Gurtov
University of Helsinki – Finland

e-mail: Andrei.Gurtov@cs.Helsinki.FI

Reiner Ludwig
Ericsson Research – Germany

e-mail: Reiner.Ludwig@Ericsson.com

ABSTRACT
Large and sudden variations in packet transmission
delays are often unavoidable in GPRS. This may cause
spurious timeouts in TCP. Spurious timeouts affect TCP
performance in two ways: (1) the TCP sender
unnecessarily reduces its load, and (2) the TCP sender
is forced into a go-back-N retransmission mode. The
Eifel algorithm avoids these consequences. We evaluate
the performance of the Eifel algorithm for TCP Reno,
NewReno and SACK in a simulated GPRS network. We
use throughput and goodput as equally important
performance metrics. In all our simulations, we find
that the Eifel algorithm improves goodput; in some
cases by up to 20 percent. When complemented with an
efficient loss recovery scheme (SACK or NewReno), we
find that the Eifel algorithm also improves bulk data
download times in all our simulations; in some cases by
up to 12 percent.

1. INTRODUCTION
An increasing number of mobile users access the
Internet via data links provided by cellular wide area
wireless networks such as the General Packet Radio
Service (GPRS) [1]. GPRS is a packet-switched
extension of the Global System for Mobile
communications (GSM). While it is being actively
deployed globally at the time of writing, GPRS is
already operational in many countries. GPRS
incorporates many physical and link layer techniques
including different forward error correction schemes,
Automatic Repeat reQuest (ARQ), power control, and
frequency hopping that typically ensure a "smooth" data
transmission. Nevertheless, large and sudden variations
in packet transmission delays are often unavoidable.
This often creates a problem for end-to-end protocols.
In particular, the Transmission Control Protocol (TCP)
[11] is not sufficiently robust to cope with such delay
variations.
 Our previous work discusses possible sources of
delay spikes in the GPRS network [5]. Possible events
that may cause suspension of a TCP connection on the
order of seconds are link outages, handovers and radio
resource preemption. Link outages can result from a
transient loss of radio coverage, e.g., while driving
through a tunnel or when using an elevator. During a
handover the mobile terminal may have to perform
time-consuming operations before data can be
transmitted in the new cell. Blocking by high-priority
traffic may occur when an arriving voice call or higher

priority data user temporally preempts the radio
channel.
 Such events do not necessarily cause packet losses
since GPRS implements a rather persistent link layer
retransmission scheme. However, the sudden delay
spikes can cause TCP to timeout prematurely, and
perform unnecessary retransmissions. This paper
presents a quantitative evaluation of the Eifel algorithm
for TCP [4] within the context of GPRS. The Eifel
algorithm is a mechanism to detect and respond to
spurious timeouts and spurious fast retransmits in TCP.
We simulate bulk data connections of TCP Reno,
NewReno [8] and SACK [2] while generating delay
spikes that are typical for those caused by cell
reselections in a GPRS network. Although the study
could have been done in a live GPRS network, it would
have been difficult to reproduce exactly the same
sequences of cell reselections, and thus difficult to
estimate the effect of Eifel. Additionally, it is difficult
to find a flawless TCP implementation. We therefore
used the NS2 [3] simulator. For that, we implemented a
module that simulates a GPRS link and is able to replay
traces of delay variations based on measurements taken
in a live GPRS network.
 An important observation is that for mobile users
and operators the battery power consumption and radio
resource usage are often as important as the download
time over the wireless link. This suggests that the
amount of data sent over the wireless link should be
minimized. Thus, in our evaluating of the Eifel
algorithm in GPRS, we use the download time and the
goodput, i.e., the ratio of useful over total data
transmitted, as equally important performance metrics.
 The rest of the paper is organized as follows. In
Section 2, we describe the cell reselection mechanism in
GPRS. In Section 3, we explain the effect of delay
spikes on TCP, and how the Eifel algorithm makes the
TCP sender robust against the potentially resulting
spurious timeouts. In Section 4, we describe the
methodology and assumptions underlying our analysis.
Our results are presented in Section 5. Section 6
concludes the paper and outlines our plans for future
work.

2. CELL RESELECTION IN GPRS
In GPRS, the mobile terminal selects the serving cell.
This is different from the basic circuit-switched GSM
data service where the network controls the transfer of
on-going data calls between cells [6][7]. The cell
reselection process causes a delay, and sometimes
packet losses in active data flows. The total delay

consists of the radio channel access delay in the Base
Station Subsystem (BSS), and the delay caused by
mobility management procedures in the core network;
more precisely the Serving GPRS Support Node
(SGSN).
 Changing between cells that belong to the same
base station controller can be typically done within the
BSS without involving the SGSN, which reduces the
delay. Some events in the network may cause cell
reselection to be aborted and later restarted which
significantly increases the delay. According to the
GPRS specifications, a cell reselection should be
completed within a few seconds. However, in a live
GPRS network we observed that it can take any time
from a few to a few tens of seconds.
 The frequency of cell reselections is to a large
extent determined by the speed of a user’s movement
and the size of cells. For example, driving in an urban
area may cause frequent cell reselections. A typical
interval between cell reselections in such a case is
around a minute, but can be as small as few tens of
seconds in densely populated environment.
 To show that a delay spike caused by a cell
reselection can indeed trigger a spurious timeout in
TCP, we have performed a simple test. We took a
laptop running Linux (RedHat version 6.2) connected
via a Motorola Timeport GPRS phone to a live GPRS
network. By forcing cell reselections from the phone
and recording the TCP behavior using tcpdump [12],
we have obtained the TCP trace plot shown in Figure 1.
More details on reading TCP trace plots can be found in
[4]. The first cell reselection occurs at 510 s when the
TCP connection is in the slow start phase and takes 7
seconds. The second one occurs at 550 s during the
congestion avoidance phase and takes 8 seconds. In
both cases, TCP experiences a spurious timeout and
performs unnecessary retransmissions.

3. THE EIFEL ALGORITHM
The Eifel algorithm proposed in [4] makes the TCP
sender robust against spurious timeouts and packet
reordering. In this section, we only explain the Eifel
algorithm in the context of spurious timeouts. When a
delay spike exceeds the current value of TCP's
retransmission timer, a timeout occurs, and the TCP
sender retransmits the oldest outstanding segment. If
that segment or the corresponding ACK is only delayed
but not lost, that retransmission was unnecessary and
the timeout is said to be spurious. Figure 2 shows a
spurious timeout for Reno TCP produced using the NS2
simulator. The receiver trace is offset by 25 segments to
prevent an overlap with the sender trace. We enhanced
the hiccup tool [9] to generate the delays in this test.
The first retransmission is sent at second 6, and is also
delayed. The sender interprets the ACK generated by
the receiver in response to the original segment as
corresponding to the retransmission. This happens
because TCP ACKs bear no information that would
allow the TCP sender to distinguish an ACK for the
original segment from that for the retransmission.
Likewise the TCP sender misinterprets the following
original ACKs, and retransmits all outstanding
segments using the slow start algorithm. Also, a number
of new segments allowed by the congestion window are
transmitted in this phase.

 At second 8 the retransmitted segments arrive at the
TCP receiver and generate DUPACKs [13]. When the
threshold of three DUPACKs is reached at the sender, a
spurious fast retransmit is triggered since the TCP
sender does not implement the careful version of the
fast retransmit algorithm [8].

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

500 510 520 530 540 550 560 570 580
Time of Day (s)

Se
qu

en
ce

 N
um

be
r (

B)

Snd_Data
Snd_Ack

Figure 1. A TCP trace shows spurious
retransmissions caused by two cell reselections in a
live GPRS network.

 Figure 3 illustrates the operation of the Eifel
algorithm in the event of a spurious timeout. The Eifel
algorithm stores the timestamp of the first
retransmission occuring at second 6. The first ACK that
acknowledges the retransmission at second 8 carries a
timestamp of 3 s which is when the original
transmission of the corresponding segment took place.
By comparison with the timestamp stored for the
retransmission (6 s) the Eifel algorithm detects that the
timeout was spurious.
 The response to a spurious timeout in the original
study [4] resumes transmission with the next unsent
segment. How the congestion control state is reversed
depends on the number of subsequent spurious
timeouts. After the first timeout, the sender restores the
slow start threshold and the congestion window to the
values before the timeout. Figure 3 shows this situation
when a delay spike occurs in the beginning of the
connection in the slow start phase. After detecting the
spurious timeout at second 8, the slow start phase
continues. The behavior after two subsequent timeouts
is shown later in Figure 7. In this case, the slow start
threshold is set to the previous value of congestion
window, which itself is left halved. In that case, a TCP
sender ignores some of the original ACKs after a
spurious timeout until the congestion window has
sufficiently increased. After three and more subsequent
spurious timeouts the congestion control state is not
reversed at all.
 In this paper, we evaluate the Eifel algorithm as
proposed in [4] leaving the study of various
enchancments to the response part for future work.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14
Time of Day (s)

Se
gm

en
t N

um
be

r

16

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

Figure 2. Spurious timeout of TCP Reno due to a 5 s delay spike.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14
Time of Day (s)

Se
gm

en
t N

um
be

16

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

Figure 3. Spurious timeout of TCP Reno with Eifel due to a 5 s delay spike.

.

4. SETUP OF EXPERIMENTS
We evaluate the Eifel algorithm in three scenarios: easy,
mediocre, and difficult. For each scenario, we assume
different intervals between cell reselections where the
intervals are drawn from a uniform distribution between
a minimum and a maximum interval as shown in
Table 1. The interval times have been chosen in a way
that for a typical download time of 120 s on average
one, two and three delay spikes occur per connection
for the easy, mediocre and difficult scenario,
respectively. We further assume that the time to
complete a cell reselection is uniformly distributed
between 3 and 15 seconds.

Table 1. Interval between Cell Reselections for three

Scenarios.

 Min (s) Max (s)
Easy 80 140
Mediocre 40 80
Difficult 20 40

For our experiments, we used the one-way models of
Reno, NewReno and SACK TCP with delayed
acknowledgments in NS2, and a slightly adapted
version of the Eifel implementation from [9]. The test
configuration is shown in Figure 4. It contains two
nodes and a link with a drop-tail queue. The full-duplex
link has a rate of 30 kbps and a one-way latency of
300 ms. The hiccup tool generates delays on the link.
We have improved hiccup to suspend data flow in
both directions and after the queue.

t
r
e
t
i
t
a
“
[

5
F
f
T
d
r
n
T
w
t
t
s

 In an environment without congestion losses
(100 KB buffer), Eifel reduces the download time and
the number of unnecessarily retransmitted segments in
all scenarios and for all three TCP flavors. Interestingly,
NewReno without Eifel suffers from a large number of
unnecessary retransmissions and increased download
time compared to TCP Reno and SACK [5]. The
goodput for all three TCP flavors with Eifel is close to
100 percent in all scenarios. This is a significant
improvement compared to 87 percent of Reno and
SACK or 80 percent of NewReno in the difficult
scenario. The download time reduction ranges from 4
percent in the easy scenario to 12 percent in the difficult
scenario.
 In case of the small bottleneck buffer size (10 KB),
Eifel improves the goodput for all three TCP flavors in
all scenarios, and reduces the download time of
NewReno and SACK. The goodput of NewReno and
SACK with Eifel is close to 100 percent in all
scenarios, compared to about 90 percent without Eifel
in the difficult scenario. Eifel reduces the download
time for NewReno and SACK by up to 8 percent.
Although Reno with Eifel shows an improvement in
goodput of several percent compared to pure Reno, the
download time is notably increased in all scenarios. To
explain this unexpected result we have closely
examined packet traces of such connections.
Apparently, Reno with Eifel suffers from lengthy non-
spurious timeouts caused by packet losses.
 Figure 7 shows an example of the poor performance
of Reno with Eifel when packet losses occur. The first
timeout at second 30 is caused by a delay and is
spurious. The Eifel algorithm successfully detects the
spurious timeout, and resumes transmission with the
next unsent segment at second 36. In this case, some of
the original segments were lost due to a buffer
overflow. DUPACKs for the first lost segment start to
arrive at second 37 below the highest outstanding
segment. The “bug fix” [8] is disabled, and thus the fast
retransmit is triggered at second 38. However, due to

TCP
sender (Eifel)

TCP
sink

30 kbps, 300 ms
drop - tail buffer

Hiccup

Figure 4. Test configuration in NS2.
A single test is based on a TCP connection
ransferring 300 KB of bulk data. Each test has been
epeated a hundred times to ensure sound statistics. We
xperimented with a bottleneck buffer size of 10 KB
hat causes congestion losses, and a size of 100 KB that
s large enough to fit the receiver window of data, and
hus avoids any losses. We used the default settings for
ll parameters in the simulator, except for disabling the
bug fix” [8] and enabling the TCP Timestamps option
15].

. RESULTS OF EXPERIMENTS
igure 5 and Table 2 depict the average download times
or the various bulk data transfers, while Figure 6 and
able 3 show the goodput results. As goodput we
efined the ratio of the minimum number of segment
equired for completing the data transfer to the actual
umber of segments transmitted. Results are based on
CP Reno (R), NewReno (N), and SACK (S) with and
ithout the Eifel algorithm. As expected, the download

ime increases and goodput decreases from the easy to
he difficult scenario with growing frequency of delay
pikes.

multiple losses the sender experiences a second timeout
at second 61. That timeout is not spurious. However,
the RTO at that time is huge, as it is calculated from the
timestamps in the delayed segments. Additionally, the
RTO may still be backed-off after the first timeout (It is
not quite clear what the requirement level is in [10] for
resetting the back-off counter once a new RTT sample
is collected. We have instrumented TCP to reset the
counter). When the retransmit timer finally expires at
second 61 lost segments are recovered and normal
transmission resumes. Without Eifel, Reno often avoids
the second non-spurious timeout as it retransmits all
outstanding segments in go-back-N, including the lost
ones. Disabling the “bug fix” (as we have done in our
tests) helps to recover without a non-spurious timeout
when one, and sometimes two, segments are lost.
However, in order to provide good TCP performance in
environments with delay spikes and high loss rate, the
Eifel algorithm should be coupled with efficient loss
recovery schemes like SACK and Limited Transmit
[14].

R N S R N S
R N S

R N S
Easy

Mediocre
Difficult

80

100

120

140

160

180

200

D
ow

nl
oa

d
Ti

m
e

(s
)

10 KB

10 KB
100 KB

100 KBEifel
w/o Eifel

Figure 5. Download time of Reno (R), NewReno (N) and SACK (S).

R N S R N S
R N S

R N S
Difficult

Mediocre
Easy

0.75

0.80

0.85

0.90

0.95

1.00

G
oo

dp
ut

10 KB

10 KB
100 KB

100 KBEifel
w/o Eifel

Figure 6. Goodput of Reno (R), NewReno (N) and SACK (S).

Table 2. Download time (s) of Reno (R), NewReno (N) and SACK (S).

Eifel NO YES
Buffer 10KB 100KB 10KB 100KB
TCP R N S R N S R N S R N S

Easy 108 101 98 99 103 98 122 100 98 95 95 95
Mediocre 118 113 110 112 125 113 130 110 106 103 103 103
Difficult 145 145 142 142 157 143 184 136 131 125 125 125

Table 3. Goodput of Reno (R), NewReno (N) and SACK (S).

Eifel NO YES
Buffer 10KB 100KB 10KB 100KB
TCP R N S R N S R N S R N S

Easy 0.96 0.97 0.98 0.96 0.92 0.96 0.97 1.00 1.00 1.00 1.00 1.00
Mediocre 0.94 0.94 0.96 0.92 0.85 0.93 0.97 0.99 0.99 0.99 0.99 0.99
Difficult 0.90 0.87 0.90 0.87 0.80 0.87 0.96 0.99 0.99 0.99 0.99 0.99

60000

65000

70000

75000

80000

85000

90000

25 30 35 40 45 50 55 60 65 70
Time of Day (s)

Se
qu

en
ce

 N
um

be
r (

B)

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack

Figure 7. Performance problem of Reno with Eifel when packet losses are present.

6. CONCLUSIONS
We have studied the Eifel algorithm as defined in [4]
for TCP Reno, NewReno and SACK in a simulated
GPRS network. Large and sudden variations in packet
transmission delays are often unavoidable in GPRS
potentially causing spurious timeouts in TCP. For
example, cell reselections may cause such delay
variations. We simulated different scenarios with on
average between one and three cell reselections taking
place over the course of a two minutes bulk data
transfer.
 For mobile users and operators the battery power
consumption and radio resource usage are often as
important as the throughput across the wireless link. We
therefore used throughput (download times) and
goodput as equally important performance metrics. The
bottleneck queue was assumed to be within the GPRS
network. In bandwidth-dominated systems such as
GPRS, the size of the bottleneck queue can greatly
impact TCP's performance. We used two different sizes
of the simulated drop-tail queue to capture this impact.
 In case of a bottleneck queue that is sufficiently
large to accommodate the maximum receiver window of
a TCP connection, the Eifel algorithm improves the
performance for all TCP flavors in all three scenarios. It
reduces download times by up to 12 percent, and
increases goodput by up to 20 percent. Bottleneck
queues of such a size are often found in real GPRS
networks.
 In case of a smaller bottleneck queues, congestion
losses may occur, and hence the TCP connection
becomes network-limited. In that case, the Eifel
algorithm still improves goodput by up to 10 percent for
all TCP flavors in all three scenarios. For SACK and
NewReno it also improves download times by up to 8
percent in all three scenarios.
 Unexpectedly, TCP Reno yielded a considerable
increase in download times when the Eifel algorithm
was enabled and the bottleneck queue was small. We
found that the reason for that were non-spurious
timeouts with huge RTOs that typically follow a
spurious timeout when packets from the outstanding
flight were in fact lost due to congestion. From that we
conclude that the Eifel algorithm is ideally
complemented with an efficient SACK- or NewReno-
based loss recovery scheme.
 Our future work will focus on studying various
modifications to the response part of the Eifel algorithm
including how to reverse congestion control state, and
how to adapt the round-trip time estimators.

REFERENCES
[1] G. Brasche and B. Walke. Concepts, services and

protocols of the new GSM phase 2+ general packet radio
service. IEEE Communications Magazine, pages 94--
104, August 1997.

[2] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An
extension to the selective acknowledgment (SACK)
option for TCP. IETF RFC 2883, July 2000.

[3] ISI at University of South California. Network simulator
2. Available at: http://www.isi.edu/nsnam/ns/.

[4] R. Ludwig and R. H. Katz. The Eifel algorithm: Making
TCP robust against spurious retransmissions. ACM
Computer Communication Review, 30(1), January 2000.

[5] A. Gurtov, Effect of Delays on TCP Performance, In
Proceedings of IFIP Personal Wireless Communications,
2001.

[6] 3GPP TS 05.08 Radio subsystem link control, 2001.
[7] ETSI GSM 04.08, Mobile radio interface; Layer 3

specification.
[8] S. Floyd and T. Henderson. The NewReno modification

to TCP's fast recovery algorithm. RFC 2582, April 1999.
[9] M. Schläger, NS TCP Eifel Page, http://www-tkn.ee.tu-

berlin.de/~morten/eifel/ns-eifel.html
[10] V. Paxson, M. Allman, Computing TCP's

Retransmission Timer, RFC 2988, November 2000.
[11] J. Postel, Transmission Control Protocol, RFC 793,

September 1981.
[12] S. McCanne and V. Jacobson, The BSD Packet Filter: A

New Architecture for User-Level Packet Capture, In
Proceedings of the 1993 Winter USENIX Conference.

[13] W. R. Stevens, TCP/IP Illustrated, Volume 1 (The
Protocols), Addison Wesley, November 1994.

[14] M. Allman, H. Balakrishnan and S. Floyd, Enhancing
TCP's Loss Recovery Using Limited Transmit, RFC
3042, January 2001.

[15] V. Jacobson, R. Braden, D. Borman, TCP Extensions for
High Performance, RFC 1323, May 1992.

