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Abstract—We compare computational resources required for
handling control plane of the Host Identity Protocol (HIP) using
Rivest-Shamir-Adleman (RSA) versus Elliptic Curve Cryptog-
raphy (ECC) encryption algorithms with keys of equivalent
strength. We show that servers would establish almost three
times more HIP connections per second when ECC is used for
generating the session key. For devices with low computational
power such as Nokia N810 Internet Tablet, the use of ECC would
notably reduce the delay to establish a HIP association.

Unless compatibility with legacy RSA/DSA-only systems is
needed, the Host Identity may be an ECC key as well, but such a
modification would bring only 50 percent additional performance
with the current default keys. However the situation becomes
different under higher security requirements when employing
ECC for the host identification boosts the performance more
than four times, and we consider ECC Host Identities desirable
in that case.

I. INTRODUCTION

Currently IP addresses serve in the Internet as both end

host identifiers and routing locators. This principle worked

well before the wide adoption of portable devices frequently

changing their IP addresses. There are various efforts to

split the locator and identifier roles of IP addresses [15],

[20]. One of the approaches known as Host Identity Protocol

(HIP) was introduced in 1999 by Robert Moskowitz [9]. The

architecture [10] and details of the protocol [11] were adopted

as Request-for-Comments (RFCs). Currently, there are three

active implementations [5], [16], [3] for various operating

systems.

The Host Identity Protocol [4] uses cryptographic algo-

rithms to authenticate communicating hosts to each other

and establish a secure channel between them. So far only

Rivest-Shamir-Adleman (RSA) [21] and Digital Signature

Algorithm (DSA) [13] along with Diffie-Hellman (DH) [2]

exchange are allowed in the HIP specifications. In this article,

we investigate how the introduction of Elliptic Curve Cryp-

tography (ECC) [6], [8] methods would affect performance of

servers using HIP and the delay to establish a HIP association

by a lightweight client. We give a short overview of the

protocol, RSA and ECC in Section II, present the results of our

measurements in Section III, estimate protocol performance

with various key combinations in Section IV, and conclude

the article in the last section.

Figure 1. HIP architecture.

II. BACKGROUND

A. HIP architecture

The idea behind HIP is based on decoupling the network

layer from the higher layers in the protocol stack architecture

(see Figure 1). HIP defines a new global namespace, the Host

Identity namespace, thereby splitting the double meaning of IP

addresses. When HIP is used, above layers do not any more

rely on IP addresses as host names. Instead, Host Identities

are used in the transport protocol headers for establishing

connections. IP addresses at the same time act purely as

locators and are responsible for routing packets towards the

destination. For compatibility with IPv6 legacy applications, a

Host Identity is represented by a 128-bit long hash, the Host

Identity Tag (HIT).

Figure 1 illustrates the overall HIP architecture including

the process of establishing a HIP association called base

exchange (BEX) [10]. HIP offers several benefits including

end-to-end security, resistance to CPU and memory exhausting

denial-of-service (DoS) attacks, NAT traversal, mobility and

multihoming support.

B. HIP base exchange

To start communicating through HIP, two entities must

perform BEX, which consist of four messages transferred

between the initiator and the responder (see Figure 2). The

messages are named by letters and numbers. The letters denote

the sender of the packet, I for initiator and R for responder.

The numbers are simply sequential. Hence, the four messages

are named as I1, R1, I2, and R2.



Initiator Responder

I1: HITI, HITR

R1: HITR, H
ITI, pu

zzle, {DHR, H
IR, p

arameters}SIG

I2: HITI, HITR, {solution, DHI, HII, parameters, authenticator}SIG

R2: HITR, H
ITI, {a

uthenticator}SIG

data traffic (in both directions)

Figure 2. HIP base exchange.

An I1 message is a mere trigger. It is used by the initiator

to request an R1 message from the responder.

An R1 message contains a public Diffie-Hellman key and a

public Host Identity key of the responder. The Diffie-Hellman

key in the R1 message allows the initiator to compute the

Diffie-Hellman session key. Hence, when constructing an I2
message, the initiator already has a session key and can use

the keys derived from it.

The I2 message is the main message of the protocol. It

contains the initiator’s public Diffie-Hellman key, the initia-

tor’s public Host Identity key, optionally encrypted with the

Diffie-Hellman key, and an authenticator showing that the I2
message has been recently constructed by the initiator.

Once the responder has received the I2 message, it can

continue to construct the Diffie-Hellman session key, to de-

crypt the initiator’s Host Identity public key (if encrypted),

and to verify the authenticator. If the verification succeeds,

the responder is assured that there is a host that has access

to the private key corresponding to the initiators Host Identity

public key. In addition, both hosts are confident that they share

a common Diffie-Hellman session key, which is not known to

other hosts. The responder then computes an authenticator and

sends it in an R2 packet to the initiator.

Another purpose of BEX is to create a pair of IPsec

Encapsulated Security Payload (ESP) Security Associations

(SAs), one for each direction. All subsequent traffic between

communicating parties is protected by IPsec.

The communication channel may be terminated with

HIP CLOSE and HIP CLOSE ACK messages, each contain-

ing a signature. A summary of the time-consuming operations

in HIP control plane is shown in Table I, where Total row

contains formulae to estimate resources for the complete

connection cycle and BEX Only row may be used for the delay

to establish the connection by a client.

C. RSA and ECC

Since RSA is the default algorithm for HIP [11], it was used

as the base for the estimations. RSA was invented by Rivest,

Shamir and Adleman in 1977 [21]. Its fundamental operation

is modular exponentiation and security of RSA is based on

the difficulty of factoring large integers.

MIT was granted a U.S. Patent for ”Cryptographic commu-

nications system and method” [22] in 1983, but it was released

to the public domain by RSA Security on 21 September 2000.

ECC operates on groups of points over elliptic curves. The

strength of ECC relies on the complexity of the elliptic curve

discrete logarithm problem (ECDLP), which is much harder

to solve computationally than with ECC’s counterparts. The

fundamentals of ECC were published independently by Neal

Koblitz [6] and Victor Miller [8] in 1985.

There are sub-exponential algorithms for the integer fac-

torization problem, but only exponential algorithms for the

ECDLP [7]. Hence, ECC achieves the same level of security

with smaller key sizes as shown in Table II. Although with

present requirements to security levels ECC does not bring

much efficiency comparing with the “mainstream” algorithms

such as DH or RSA, significant benefits are expected from

ECC in the future when the threats in communication systems

will multiply from their current level [8].

One issue, which substantially differentiates ECC from the

rest of cryptographymethods and at the same time complicates

its wide adoption, comes from numerous ECC patents. A

notable patenter is the Canadian company Certicom1 that holds

over 100 patents on ECC and public-key cryptography in

general [14]. Since the introduction of ECC, the company

has been continuously seeking to develop an efficient im-

plementation of ECC, which resulted in a commercial ECC

toolkit that can be used with various applications. Since 1997,

Certicom organizes the Certicom ECC Challenge2 that gives

anyone an opportunity to solve the ECDLP at its current level.

Participants of the challenge are supposed to derive the ECC

private keys based on the list of the public keys and other

known parameters. To date, the highest solved challenges are

109-bit. The 131-bit challenge requires much more resources

to be solved whereas higher challenges (starting from 163-bit)

are treated as computationally infeasible.

Despite complex IPR issues, several countries around the

world are adopting parts of ECC via licensing. For instance,

the National Security Agency (NSA) has purchased from

Certicom the rights to use a set of ECC techniques under

patents. The goal is to ensure that future communication

1http://www.certicom.com/index.php/ecc
2http://www.certicom.com/index.php/the-certicom-ecc-challenge

Table I
CRYPTOGRAPHIC OPERATIONS DURING BEX.

Message Initiator Responder

I1 - -

R1 verify, DH compute key sign

I2 sign verify, DH compute key

R2 verify sign

CLOSE sign verify

CLOSE ACK verify sign

Total 2× Ts + 3× Tv + Tdh 3× Ts + 2× Tv + Tdh

BEX Only Ts + 2× Tv + Tdh 2× Ts + Tv + Tdh



Table II
COMPARABLE KEY SIZES (BITS) WITH DIFFERENT CRYPTOSYSTEMS [1].

Security level ECC DSA/RSA

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

systems will be capable of protecting sensitive information

for the US government and country [14].

III. TIMING OF CRYPTOGRAPHIC OPERATIONS

When HIP is used, most of the CPU resources are con-

sumed by several cryptographic operations during BEX. In this

section we present our measurement results of the operations

listed in Table I. First, we describe our measuring methodology

and validate it by comparing the results with our previous

study. Next, we introduce the results obtained on a Linux

server and a Nokia N810 Internet Tablet.

A. Methodology

To measure the processor time spent by different crypto-

graphic operations, we used the OpenSSL library [17] and ran

several benchmarks. The OpenSSL speed measurement utility

openssl speed was used for timing RSA sign, RSA verify,

ECDSA sign and ECDSA verify functions. The utility exe-

cutes an operation in a cycle for about 10 seconds and then

uses the function getrusage to account the processor time.

Our own utility was used to execute DH compute key and

ECDH compute key for about 90 seconds.

B. Validation

We started with benchmarking OpenSSL version 0.9.8g

used for stress-testing of HIP implementations [19] at the

same HP ProLiant DL360 G5 server with two quad-core

Intel Xeon E5440 2.83-GHz processors running Linux x86 64

kernel version 2.6.29.6. The measurement results obtained

using only one CPU core are shown in Table III. The table

presents the average time needed by the server to compute

a 1536-bit DH key and to perform sign and verify operations

with a 1024-bit RSA key. These key sizes are default now and

were used in the stress-test.

The number of BEX per second for the responder (i.e., a

HIP server in our case) can be estimated using the Total Time

formula from Table I. Although the calculation 1000000/(3 ∗

Table III
RESULTS FOR OPENSSL VERSION 0.9.8G.

Operation Time

DH compute key using 1536-bit group 6624 µs

RSA sign using 1024-bit key 778 µs

RSA verify using 1024-bit key 37 µs

Table IV
SIGNATURE OPERATIONS AT LINUX SERVER.

Key size Sign Verify

RSA using 1024-bit key 571 µs 28 µs

RSA using 2048-bit key 3447 µs 100 µs

ECDSA using 160-bit key 91 µs 355 µs

ECDSA using 192-bit key 134 µs 583 µs

ECDSA using 224-bit key 168 µs 769 µs

ECDSA using 256-bit key 224 µs 1080 µs

Table V
DIFFIE-HELLMAN EXCHANGE AT LINUX SERVER.

Operation Time

DH compute key using 768-bit group 0.750 ms

DH compute key using 1536-bit group 5.147 ms

DH compute key using 2048-bit group 11.836 ms

DH compute key using 3072-bit group 38.449 ms

ECDH compute key using 160-bit key 0.296 ms

ECDH compute key using 192-bit key 0.384 ms

ECDH compute key using 224-bit key 0.634 ms

ECDH compute key using 256-bit key 0.646 ms

778+2∗37+6624) (performed using the values from Table III)

gives us about 111 BEX per second, it corresponds well to the

maximum of 112 BEX per second achieved in our previous

work [19]. This validates our methodology and allows us

using the Total Time formula with the separately measured

operations’ durations to calculate the total BEX time and the

maximum number of BEX per second.

Naturally there is always a processing overhead caused by

handling network traffic, processing connection parameters

and other operations, but profiling and stress-testing results

confirm that with the usual key sizes it was not significant.

The overhead fraction would grow with very small keys or

an extensive control packet retransmission due to bad network

connection, but we did not take it into account for the sake of

simplicity.

C. Linux server

We used the same ProLiant DL360 G5 server with two

quad-core Intel Xeon E5440 2.83-GHz processors running

Linux x86 64 kernel version 2.6.29.6 to measure the du-

ration of cryptographic operations with a newer OpenSSL

version 1.0.0-beta2. The results with various key sizes are

shown in Table IV and Table V.

D. Nokia Internet Tablet

The same benchmarks were executed on a Linux-based

Nokia N810 Internet Tablet, powered by a 400-MHz ARM

CPU and running the Linux kernel version 2.6.21. The bench-

marks on the N810 used the OpenSSL version 1.0.0-beta3.

The results of the experiments are presented in Table VI and

Table VII.



Table VI
SIGNATURE OPERATIONS AT N810.

Key size Sign Verify

RSA using 1024-bit key 24.038 ms 1.373 ms

RSA using 2048-bit key 160.794 ms 5.008 ms

ECDSA using 160-bit key 2.569 ms 9.407 ms

ECDSA using 192-bit key 4.177 ms 18.710 ms

ECDSA using 224-bit key 5.509 ms 26.981 ms

ECDSA using 256-bit key 6.720 ms 33.322 ms

Table VII
DIFFIE-HELLMAN EXCHANGE AT N810.

Operation Time

DH compute key using 768-bit group 33.854 ms

DH compute key using 1536-bit group 248.372 ms

DH compute key using 2048-bit group 576.563 ms

ECDH compute key using 160-bit key 7.670 ms

ECDH compute key using 192-bit key 11.833 ms

ECDH compute key using 224-bit key 16.252 ms

IV. ESTIMATED BEX PERFORMANCE AND ANALYSIS

The results presented in the previous section allow us to

estimate the number of connections that can be established by

a server with various key sizes. This section presents such

estimations for our Linux server and Nokia N810 Internet

Tablet.

The current default combination of a 1024-bit RSA Host

Identity for authentication and a 1536-bit group for the DH

exchange was the starting point in our estimations. The next

step was to replace the DH operation with the Elliptic Curve

Diffie-Hellman (ECDH) of equivalent strength (see Table II)

that will allow us to keep an RSA Host Identity for compat-

ibility but spend less time to generate a session key if both

parties support ECC. Finally, the RSA Host Identity may be

replaced with an Elliptic Curve DSA (ECDSA) key, unless

compatibility with legacy RSA/DSA-only systems is needed.

Table VIII contains the estimated number of HIP connec-

tions per second that our Linux server is able to process in the

aforementioned scenarios. We present the estimations for the

key lengths that according to NIST guidelines [12] will ensure

a sufficient security level in the coming years. In particular, a

minimum of 112 bits of security shall be provided from year

2011 onwards that corresponds to 2048 bits for RSA/DSA

keys and to 224 bits for ECDH and ECDSA.

As Table VIII shows, the number of new connections

processed by the server increases from the current 145 to 425

per second, i.e. almost three times. Using an ECC key as the

Host Identity causes further growth to 639 connections per

second, but breaks compatibility with RSA/DSA-only systems.

While for the server’s performance evaluation we focused

on the number of incoming HIP connections, it is less common

characteristic for a resource-constrained device that is usually

Table VIII
ESTIMATED NUMBER OF BEX PER SECOND BY ONE CORE OF A LINUX

SERVER.

Authentication Session key BEX per second

RSA1024 DH1536 145

RSA1024 ECDH192 425

ECDSA160 ECDH192 639

RSA2048 DH2048 45

RSA2048 ECDH224 89

ECDSA224 ECDH224 374

acting as a client. For this reason, for the Nokia N810

Internet Tablet we estimated the duration of BEX, which is an

important metric for interactive applications using HIP on such

a client. The estimated delays to establish a HIP association

by the N810 are presented in Table IX. In this case, the results

indicate that the duration of a HIP association establishment

is reduced from 275 ms to 39 ms and 33 ms by applying

ECDH and ECDSA respectively. The numbers do not include

operations to close the HIP connection.

Table IX
ESTIMATED BEX DURATION AT N810.

Authentication Session key BEX duration

RSA1024 DH1536 275 ms

RSA1024 ECDH192 39 ms

ECDSA160 ECDH192 33 ms

RSA2048 DH2048 747 ms

RSA2048 ECDH224 187 ms

ECDSA224 ECDH224 129 ms

The effect of utilizing ECC for the Host Identity is much

greater with longer keys. The use of a 224-bit ECDSA identity

allows the server to accept some 374 instead of 89 connections

achieved with a 2048-bit RSA identity, i.e. the estimated

growth is more than four times (see Table VIII).

With the Nokia N810 Internet Tablet, the delay to establish

a HIP association is reduced from 187 to 129 ms, i.e. by 30

percent (see Table IX).

V. CONCLUSIONS

In this paper we measured the processor resources required

by the cryptographic operations during the Host Identity

Protocol base exchange. Our estimations show that by adopt-

ing ECC for the Diffie-Hellman exchange, the number of

new connections handled by a server increases by two-three

times. The protocol allows the responder to offer the initiator

both DH and ECDH, thus compatibility with RSA/DSA-only

systems is not broken.

An enhancement in HIP performance is also observed with

a lightweight mobile client such as a Nokia N810 Internet

Tablet that performs cryptographic operations more efficiently

with ECC, thus reducing the total BEX time by 75-85 percent.



ECC allows to improve the performance even more, when

we replace not only the DH by the ECDH, but also the RSA

by the ECDSA, i.e. when we use ECC keys for the host

authentication as well. However it would break compatibility

with systems not supporting ECC.

Because it would give only 50 percent more connections

per second with the current default key sizes, we consider it

reasonable only for private overlays without non-ECC systems.

Under higher security requirements meaning greater key

lengths, ECC Host Identity allows four times more connections

per second and notably less time to perform base exchange by

a low computational power client. We take it as a significant

benefit and suggest for a consideration by the community [18].

The results presented in this work are based on measure-

ments of separate cryptographic operations on real devices and

subsequent performance estimations of the protocol running

these operations. Our main contribution is a practical illus-

tration of the potential behind Elliptic Curve Cryptography

used in a concrete application (i.e., the Host Identity Protocol),

which is important to both HIP and ECC communities.
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