
DISPUTE: Distributed Puzzle Tussle
A. Lukyanenko†, A. Gurtov‡, A. Ylä-Jääski†

† Department of Computer-Science and Engineering, Aalto University, Finland
‡ Helsinki Institute for Information Technology HIIT, Aalto University, Finland

Abstract—Distributed Denial of Service (DDoS) attack contin-
ues to be one of the main vulnerabilities of today’s Internet.
Client’s puzzle mechanism is a well-known solution against such
threat, however with badly tuned puzzle sizes it may harm
the clients in the peaceful time, as well as produce additional
difficulties during an attack.

Here, we introduce a novel algorithm — DISPUTE — auto-
tunable distributed puzzle mechanism with variable puzzle sizes.
Main feature of it is that the server does not need to adjust
any puzzle sizes, instead the clients during the “fight for” server
resources find some form of equilibrium situation on the server
side.

We describe the algorithm and show the DISPUTE’s perfor-
mance using a simulation tool. The results suggest that regular
(laptop) users, as well as light (sensor) users can successfully
access a server even during a heavy DDoS attack.

I. INTRODUCTION

Recent decade showed the Internet’s vulnerabilities towards
distributed denial-of-service (DDoS) attacks [1]. This is espe-
cially true for some protocols, which have design weaknesses,
such as memory limitation (TCP SYN) or CPU limitations
for enormous request coming during a short period of time.
The threat is strengthened by the fact that a lot of machines
connected to the Internet are infected with Trojans and viruses,
and therefore unconsciously become a part of the mass DDoS
attacks on different servers. In the News we see a lot of reveled
events concerning huge botnets of sizes even 13M stations [2].

Recent decade also produced a set of solutions against
DDoS attacks [1], including (but not limited to) overlay
mechanism (e.g., i3 [3]), new Internet architectures (e.g.,
DONA [4]) and client’s puzzle mechanisms [5], [6]. The latter
is probably best applicable for today’s Internet and does not
require new Internet architecture

The client’s puzzle mechanism is basically very simple. A
client asks a server for some service. The server before starting
processing the client, generates some random number X and
based on it using hash-function (for example, MD5), produces
hash operation on it Y =MD5(X). After that it defines on the
difficulty of the puzzle (K) and produce modified X value:
X ′ = X >> K, where >> is right bit shift operation. The
server replies to the client with (X ′, Y,K) packet. The client
has to find original X and inform the server the solution. As
it can be noticed server side operations are generally very
cheap, while the client side operation is to reverse the hash-
function, by the hash functions design it is not a chip operation
and produced by brute-force search. Thus, in average, with
assumption of no other collisions happen, it will take 2K−1

MD5 computations, which result in corresponding time.

The client’s puzzle mechanism may be applied in trans-
parent way and one of such transparent solutions is Host
Identity Protocol(HIP) [7], [8], which has puzzle algorithm
implemented inside. The HIP’s puzzle mechanism produces
one per connection solution in the base exchange (BEX)
packet I2, it precedes to another BEX packet — R1, which
request for the puzzle with given K.

The puzzle mechanism is mainly implemented with support
of adjustable difficulty value (K), indeed it is not worth to
ask huge puzzle sizes with almost empty server, and it is
worth to increase K whenever the attack on the server is being
strengthened. However, in practice, the puzzle sizes are often
fixed to some predefined values. The connection between the
volume of current server load and the puzzle size is also often
lost. All the above result in inefficient usage of clients CPU
and battery.

With such prefixed K values, optimized for the “normal
users”, i.e., home PCs, the puzzle mechanism produce harm
for the limited-CPU (and/or battery) devices, for example,
mobile phones or sensor devices. The work [9] moreover
concludes that the use of puzzle on sensor is not feasible at
all.

Finally, recent news has revealed a scenario when an at-
tacker my start to produce a DDoS attack using new “cheap”
technologies, such as cloud infrastructure [10].

In order to deal with more powerful attacks the server
needs to increase K, as was said it may harm the hand-held
devices if the increase is rapid using some prefixed values.
The equilibrium for the puzzle sizes is needed.

In this work we introduce a novel protocol — DIStribute
PUzzle TusslE (DISPUTE), which has the following natural
properties:

1) No need for the server to explicitly set the K value.
2) Natural equilibrium between clients and the server is

formed.
3) Clients can easily parallelize the load among the helping

nodes.
4) The puzzle computation task requires less signaling

traffic, and thus, less battery exhaustion.

II. ALGORITHM AND IMPLEMENTATION

In this section we are going to explain the DISPUTE
algorithm, with its properties.We will talk a little about the
implementation issues and the features which it has.

A. Basic Algorithm
The DISPUTE algorithm is an extended version of MKFS

algorithm [11], where we may assume that K always equals

to 0. The MKFS was producing the fight for the resources
by the principle of Defense-through-Offense [12], sending
a lot of “basic entrance” packets. We extend the idea with
utilizing puzzle computation inside these “entrance” packets.
Here the puzzle size K is variable. Server may decide on the
minimal/maximal value available for K, however only client
should decide what size of the puzzle it wants to solve. The
client also is allowed to compute additional puzzles if it is not
enough yet. The total amount of the resources the client spent
to solve the puzzles are accumulated on the server side.

Having variable K value, we achieve the situation that
different clients spent different CPU time for the solutions, and
thus a priority is needed to give the resources to the clients
which used CPU most in total up-to-the-moment. It is fair
to serve the one who spent the most and this is the main
idea of the DISPUTE algorithm. Such usage of the DISPUTE
algorithm is novel to our knowledge, and latter we will explain
what beneficial properties does it carry.

The DISPUTE algorithm consists of two parts — one on the
Server’s side, another one is on the Client’s side. The server
side is basically a work of a special structure main part of
which is a simple heap-structure [13]. The server has to be able
to produce two procedures: add puzzle solution information
to the structure, and pop the top element from the structure.
Both of them are based on priority queue structure (heap
based) – queue, and a small database of the communicated
clients – id database. Priority queue provides access to the
maximum value with complexity O(1), and update operation
with complexity O(log n), while id database provides fast
access to the queue elements by client’s IDs with complexity
O(1). However, the id database should update its pos field
every time the queue is being updated.

Algorithm 1 Adding puzzle computation to the DISPUTE
queue algorithm.
Input: queue – is a priority queue organized as a heap;
id database – is a map id → pos; pos – position in the
queue; id – is the user ID to add, and K– puzzle size
computed.
if id ∈ id database then
pos← id database[id].pos
queue[pos]← queue[pos] + 2K

Update heap and database(queue, id database, pos)
else
queue.push back(id, 2K)
pos← queue.size
id database← {id, pos}
Update heap and database(queue, id database, pos)

end if

The first algorithm is depicted as Algorithm 1. The server re-
ceives computed and verified puzzle of size K from the client
id. Based on this event the server calls function add(id,K).
First of all, the function checks whether the id value is present
in id database. If not, it creates new queue elements and
appends it to the queue, at the same time it adds information

on the new client to a new id database element. After that the
function starts the procedures to put the element into correct
place of the heap (queue), with correctly updated database
(id database). If the id is the client which we already were
communicated with, then using id database element of the
id we find its position in the queue and updating the queue
element by the computation efforts produced by client id.

Algorithm 2 Taking maximum from the DISPUTE queue
algorithm.
Input: queue – is a priority queue organized as a

heap;id database – is a map id → pos; pos – position
in the queue;

Output: id – client ID to be served
if queue is not empty then
pos← 1
id← queue[1].id
queue[pos]← queue[queue.size]

id database[id].clear()
id database[queue[1].id].pos← 1
queue.remove last()
Update heap and database(queue, id database, pos)
return id

end if

The second algorithm is depicted as Algorithm 2. It is called
every time the server is able to start serving a new client. The
server simply calls function pop() for the structure and should
receive id of the element in the top of the queue or −1 if there
is no element, i.e., the queue is empty. In case the queue is
not empty the function produces basic heap algorithm: takes
the top of the queue, erases it, places the last element of the
queue on the top place, reduces the queue, and updates it
starting from the top element. We additionally in the function
erasing the database element connected to the returning id.

Finally, notice that the algorithms uses the priority computed
based on the puzzle sizes K. It is equal to 2K . We have already
mentioned in the Introduction how this value is connected
to puzzle size. More on why we decided to use this weight
function for given K will be explain in the Simulation section
of the paper.

B. Client’s Strategies

The server-side algorithm is fixed and does not allow devia-
tions. The client part of the DISPUTE algorithm is undefined.
A client may ask to solve any puzzle size from the start,
however, probably the best is to ask for the minimal one. The
probability the given server is under the DDoS attack is not
so high generally. It is worth to send testing message which
reveals whether the server is loaded or not. This part of the
protocol may even be enhanced further (see the next Section).
After that some increasing procedure for the requested K value
may be used.

In the work we are not going to study all possible strategies
or even any sophisticated once. During the Simulations, we are

going to use the idea that the client id simply decides what Kid

to employ during the whole communication round. However,
we will have different clients with different K values and thus
we will get which is better to use under which conditions.

Furthermore, we want to note that the whole communi-
cation scheme resembles a first-price repeating auction or a
multiple-object first-price auction [14]. We have non-classical
incremental bid scheme, however, the theory on the first-
price auctions says that the identical bidders will form same
valuation of an object, which may be less than the “true-value”
of the object. In our case, however we do not aim to “sell”
the service as high as possible (i.e., we do not want all the
clients to use as much CPU as possible). Thus, the equilibrium
which is formed based on first-price auction is fully desirable
for us. On the other hand the equilibrium is minimal bid the
clients have to pay for the service. In such case the first bid
equal to the minimal K is reasonable if the probability that
the fixed server is under attack at a given moment of time is
small enough.

The DISPUTE algorithm also has a legacy property from
MKFS algorithm, even with minimal puzzle computation the
client will at some time enter the system. The time required
for the client to enter the system for a scheme without puzzles
is studied in [11].

C. Alternative solutions

The DISPUTE algorithm that was suggested is not an only
solution to the problem of dynamic server load control with the
use of puzzles. There is always exist solutions without usage
of any queue, i.e., send out a puzzle of size K to the client,
where K is chosen by the server depending on the current
observed load.

Let us take a closer look on these kinds of solutions. As the
server does not maintain any queuethen it has an obligation
to serve a client if it solves the previously given puzzle. Thus
the based on the load, and the trend the server has to predict
own load at the moment when it will receive the solution.

There are possible two cases:
1. The server simply gives the puzzles according to the current
own load without certain prediction based on requests, then
zombies may come in a “crowd” way ask for puzzles. The
server will give them simple one, without prediction, and after
solution zombie machines will send a lot of solutions at once.
The latter will make the server (a) start serving a lot of zombie
machines unexpectedly, and (b) make high puzzle solution for
new-coming benign clients.
2. The server starts to predict the new future load based on
number of puzzle requests. It means that it will give to every
next client higher value for the puzzle to solve (if there is no
leaving clients). In that case the zombie stations may ask for
the new puzzles, but do not even try to solve it, the increasing
strength of the puzzle will harm the benign clients.

Considering to the above mentioned cases the DISPUTE
algorithm is free from these problems, as there is no need
for prediction for the load, nor obligation to serve the clients
based on the first puzzle solution.

III. SIMULATION

In this section we are going to discuss the implementation
setup and what tests were used, after that we will present our
experimental result.

A. Implementation

In order to make the testing work faster we implemented
our own network simulator in C++ (1500 lines of code +
scripts). It has all the standard logic of a discrete-event network
simulator. The main entities for the simulator are client bundles
and the server. The client bundles consist of some number
of homogeneous stations attempting to help the main client
to enter the server in an individual manner. All the stations
receive their power value explicitly from the input file and
requesting puzzles from the server, producing solutions in
response. If the number of stations in the bundle is fixed to
one, then it corresponds to one individual station attempt to
get into the server.

The server, in turn, provides all necessary DISPUTE func-
tionality, it has the data structure, and maintains the priority
queue in it, answering only to the elements which are in the
head of the queue.

In order to test DISPUTE we modelled a network, where
the server connected to the bundles of clients by a network
with 100ms link delay with 10% fluctuation. The bandwidth
was not considered as a problem. Every station in every bundle
follows a simple strategy: it chooses the size of the puzzle K
at the start of the run, after that during the run of simulation
it sends a request message for a puzzle of size K, solves
using own capacity and sends the answer to the server. Every
station from the same bundle says the id of main station from
the same bundle. After receiving an answer from the server,
stations of a bundle starts a new attempt to enter the server
(this delay-synchronized strategy and in next section we will
explain why we still use it).

Using the network simulator we created a number of topolo-
gies and tests. In result some of the tests were done for fixed
topology in order to show how different stations behave and
receive attempting to connect to the server in parallel. From
now on we will use the following notations for the stations
and strategies: I , L, S stand for Imote2 sensor, laptop PC and
hand-held smart device (our interpolation with p = 40). The
underline number goes for the chosen strategy, for example I5
that Imote2 sensor requests puzzles of size 5, and L20 for the
laptop requesting puzzle of size 20. The multiplier goes for
the number of devices in a bundle. For example, 3xS5 is for
three smart devices which use strategy 5.

B. Results

For all the tests we fix the zombie stations to be laptops-
capable PCs with strategy 10. This suits perfectly to our test
purposes, as the number of zombies variable and having 1000
zombies with strategy 10 is equivalent to having 500 zombies
with strategy 20 (ignoring the latency issues).

For the first test, we decided to fix the zombie size
Z = 1000 and make the variable the size of the bundle for

 1000

 10000

 1 10 100 1000

T
im

e
to

 g
et

 a
n

an
sw

er
 (

m
s)

Independent attacking groups

I3
3 x I2

I10

10 x I10
L10
L5

L20
3 x L10

S10

2 x S5
S20

Fig. 1. Puzzle computation time for fixed topology with variable distribution
of attackers onto subgroups.

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
to

 g
et

 a
n

an
sw

er
 (

m
s)

Number of zombies

I3
3 x I2

I10

10 x I10
L10
L5

L20
3 x L10

S10

2 x S5
S20

Fig. 2. Puzzle computation time for fixed topology with variable number of
attacking zombies.

zombies, the zombie stations may be divided to two bundles
of size 500 each, or may be four bundles of size 250. As we
have simplistic strategy here for zombies, the division is very
important in order to maximize the attack power on the server.
The Fig. 1 depicts our simulation results for this situation, on
the X axis is the number of groups or bundles on which the
attacking stations are divided, on Y axis is the time needed
for benign clients of fixed topology to get an answer from the
server.

As we can see independently of the clients strategies the
server produce higher attack if separates attacking nodes as
much as possible. From now on, we will assume that the
attacker will always use this kind of strategy.

Secondly, in Fig. 2 again for the fixed topology we produce
an attack, but now we variate the actual number of zombies.
Starting from 0 up until 1000 and again produce delay to
get an answer. As we can see, at the start (when the number
of zombies is small) for the benign clients it is good to
chose strategy with small puzzle sizes K, however as the
attack strengthen the decision to chose higher puzzle size
becomes dominant. Additionally, it reduces the number of
communication and, hence, battery usage, and beneficial for
sensor devices. The devices S20 and L20 has almost constant
time to get served all the time. This is because they chose
the puzzle size which is higher than average top of DISPUTE
queue and one attempt (and one solution) is enough to get a
reply. The different between these devices is only because S20

is less powerful than L20. Additionally, 10 I10 devices spend
almost the same time to get a reply as S20 device. This shows
how cooperation of small devices can help them get an answer
during DDoS

IV. CONCLUSION

In this work we introduced a novel dynamic puzzle size
algorithm — DISPUTE, which is auto-tunable due to the fact
that clients play the role of a puzzle size selector rather than
the server. This leads by usage of first-price auction scheme
close to the “true price” computation efforts needed for every
station. Finally, DISPUTE protocol is analyzed with the help
of a custom constructed simulator.

For the future work on the DISPUTE protocol we leave
the detailed analyses of CPU time influence by the K value,
and construction on it basis a more correct simulator, with
enhanced set of strategies for the end clients. Then the clients
can find the optimal value for K instead of fixing one value for
the whole period of time. Additionally, real-world experiments
would help to justify this protocol benefits.

ACKNOWLEDGMENT

This work was supported by the Academy of Finland, grant
number 135230.

REFERENCES

[1] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” SIGCOMM Comput. Commun. Rev., vol. 34,
no. 2, pp. 39–53, 2004.

[2] A. P. Jordan Robertson, “Authorities bust 3 in infection of
13m computers.” http://www.usatoday.com/tech/news/computersecurity/
2010-03-02-botnet-arrest N.htm.

[3] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” in SIGCOMM ’02: Proceedings of the 2002
conference on Applications, technologies, architectures, and protocols
for computer communications, (New York, NY, USA), pp. 73–86, ACM,
2002.

[4] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communications,
SIGCOMM ’07, (New York, NY, USA), pp. 181–192, ACM, 2007.

[5] A. Juels and J. Brainard, “Client puzzles: A cryptographic countermea-
sure against connection depletion attacks,” in NDSS ’99: Proceedings of
1999 Network and Distributed Systems Security Symposium, (San Diego,
CA, USA), pp. 151–165, Internet Society, 1999.

[6] T. Aura, P. Nikander, and J. Leiwo, “DOS-Resistant Authentication with
Client Puzzles,” in Security Protocols (B. Christianson, J. Malcolm,
B. Crispo, and M. Roe, eds.), vol. 2133 of Lecture Notes in Computer
Science, pp. 170–177, Springer Berlin / Heidelberg, 2001.

[7] A. Gurtov, Host Identity Protocol (HIP): Towards the Secure Mobile
Internet. Wiley Publishing, 2008.

[8] “Host Identity Protocol (HIP) IETF working group.” http://www.ietf.org/
dyn/wg/charter/hip-charter.html.

[9] A. Khurri, E. Vorobyeva, and A. Gurtov, “Performance of host identity
protocol on lightweight hardware,” in Proceedings of 2nd ACM/IEEE
international workshop on Mobility in the evolving internet architecture,
MobiArch ’07, (New York, NY, USA), pp. 4:1–4:8, ACM, 2007.

[10] I. Ted Samson, “Amazon EC2 enables brute-force at-
tacks on the cheap.” http://infoworld.com/t/data-security/
amazon-ec2-enables-brute-force-attacks-the-cheap-447.

[11] A. Lukyanenko, V. Mazalov, A. Gurtov, and I. Falko, “Playing Defense
by Offense: Equilibrium in the DoS-attack Problem,” in Proc. of IEEE
ISCC’10, (Piscataway, NJ, USA), IEEE Press, 2010.

[12] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
“DDoS defense by offense,” in SIGCOMM ’06: Proceedings of the 2006
conference on Applications, technologies, architectures, and protocols
for computer communications, (New York, NY, USA), pp. 303–314,
ACM, 2006.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.

[14] V. Krishna, Auction Theory. Academic Press, March 2002.

http://www.usatoday.com/tech/news/computersecurity/2010-03-02-botnet-arrest_N.htm
http://www.usatoday.com/tech/news/computersecurity/2010-03-02-botnet-arrest_N.htm
http://www.ietf.org/dyn/wg/charter/hip-charter.html
http://www.ietf.org/dyn/wg/charter/hip-charter.html
http://infoworld.com/t/data-security/amazon-ec2-enables-brute-force-attacks-the-cheap-447
http://infoworld.com/t/data-security/amazon-ec2-enables-brute-force-attacks-the-cheap-447

	Introduction
	Algorithm and Implementation
	Basic Algorithm
	Client's Strategies
	Alternative solutions

	Simulation
	Implementation
	Results

	Conclusion
	Acknowledgment
	References

