
Demand-Aware Flow Allocation in Data Center Networks

Dmitriy Kuptsov
Aalto University/HIIT

Espoo, Finland
dmitriy.kuptsov@hiit.fi

Boris Nechaev
Aalto University/HIIT

Espoo, Finland
boris.nechaev@hiit.fi

Andrei Gurtov
University of Oulu/CWC

Oulu, Finland
gurtov@ee.oulu.fi

ABSTRACT
In this work we consider a relatively large and highly dynamic data
center network in which flows have small interarrival times and dif-
ferent demands for the network resources. Taking into account the
properties and specifics of such networks we consider the problem
of flow placement, i.e. assignment of an outgoing port for flows
at each hop from source to destination. Using the characteristics
of modern data centers from previous measurement studies, in this
work we first simulate the flow allocation using several algorithms
with and without global knowledge. We find that in all settings
local forwarding decisions are almost as good as decisions made
with global information at hand. This finding enables us to propose
a fully distributed mechanism that relies only on local knowledge
and allows to achieve fair and demand aware flow allocation in the
data center network. The mechanism has low complexity and per-
forms better than naive random flow allocation.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Design, Performance

Keywords
Data center, Flow Allocation, Fairness, Rate control

1. INTRODUCTION
Modern data centers comprise tens of thousands computers in-

terconnected between each other with commodity switches. These
networks are dynamic in nature, with new flows arriving and de-
parting on sub-millisecond intervals. As several measurement stud-
ies indicate [2,5,9] there are two major types of flows in data center
networks: those for which meeting deadlines is crucial, and those
for which delays can be tolerated. Deadline sensitive flows (we call
them deadline flows) are commonly produced by real time web ap-
plications such as web search and retail, that aggregate data from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

many locations in the data center. Such flows are typically small,
unlike bulky delay tolerant flows (we call them elastic flows), which
are caused for instance by virtual machine migration. For deadline
flows meeting the deadlines is important because many commercial
applications and services have user experience SLAs.

Typically, network operators use Equal Cost Multipath (ECMP)
to statically stripe flows across available paths. This static flow
mapping to outgoing ports does not take into account the current
network utilization and requirements of a particular flow (such as
desired rate). Some researchers suggest making this allocation in a
centralized controller [1, 4] which can be infeasible to accomplish
for every newly arrived flow.

Another problem associated with data center networks is conges-
tion control. Recent studies [2, 10] indicate that TCP rate control,
designed initially for the Internet, has poor performance in data
center networks causing severe congestion situations. Therefore,
more accurate rate control mechanisms are needed.

Thus, in this work we first compare several algorithms with and
without global knowledge that are aware of flow demands and re-
quirements. We report system performance as the average utility
obtained by each flow. We do so to understand whether one can
design a fully distributed flow allocation mechanism in such net-
works. We find that for many settings used in our simulations, al-
gorithms with local knowledge perform not much worse than algo-
rithms with global knowledge. Note, that we come to slightly dif-
ferent conclusions than authors of [1] because unlike that study we
not only consider long lasting bulky flows, but also include dead-
line flows. We leverage our findings to propose a fully distributed
mechanism that allows to allocate the flows and maintain fair net-
work resource sharing. The mechanism has low complexity and
requires little interaction with centralized controller.

The rest of the paper is organized as follows. In Section 2 we
give background information and define the problem. In Section 3
we describe the simulation settings and our results. Further, in Sec-
tion 4 we describe main aspects of the architecture for demand
aware flow allocation and evaluate it using commodity hardware.
We conclude the paper in Section 5.

2. PROBLEM SETTING
First, we ask a question of how should network performance of

a particular application be measured? Undoubtedly, there is no sin-
gle answer to this question which covers all possible applications.
However, as defined in [8], the notion of network performance is
best characterized in terms of utility, i.e. the amount of "happiness"
of a particular user or satisfaction of application’s needs.

In the referred paper the author formalizes utility functions as
follows. Let the vector si describe the service delivered to ith user

or application, such that si includes all relative measures, e.g. de-
sired bandwidth and delay, of the delivered service. One then can
define a function Ui that maps the service delivered into perfor-
mance of the application or satisfaction of the user. Obviously,
increase in Ui reflects improved performance.

The goal of the network design is then to find such allocations
of resources that will maximize the sum of all utilities, i.e. V =
max(

∑
∀i Ui(si)). The quantity V , as defined in [8], is the total

efficiency of the architecture. For large scale and dynamic networks
the computation of allocations which guarantee optimal V is chal-
lenging and perhaps infeasible given the high interarrival rate of
new flows in the system. Instead, in this work we consider a slightly
different problem: can we design a fully distributed flow allocation
algorithm which is almost as good as algorithm with global infor-
mation available?

2.1 Utility functions
We do not aim to cover all related classes of traffic in this paper,

but only two that correspond to elastic applications and deadline
applications. Indeed, these two classes of traffic are prevailing in
the networks such as modern data centers: elastic applications are
represented with the backup services (or in general any bulk data
transfer) and deadline applications can be characterized by scatter-
gather type of applications, e.g. MapReduce. In this work, the only
metric that contributes to utility is bandwidth, i.e. si is bandwidth
perceived by the flow.

DEFINITION 1. Utility function is a mapping U : [0, C] →
R+, where C is total amount of resources available to a particu-
lar network element (router, switch, network card, link, etc.), s.t.
∀i 0 ≤ U(si) ≤ umax and U(si) ≤ U(s′i), s.t. si < s′i. In this
work umax = 1.

Figure 1: Elastic flow utility function

In this study we consider two distinct classes of utility functions:
for elastic and deadline flows. For elastic flows we consider a
strictly concave monotonically increasing function [6, 8] U(si) =
α − exp(−si · Cshape), s.t. 0 < Cshape < 1 and α ∈ R. For
the purpose of our studies we define two subtypes: Sharp func-
tion (α = 1 and Cshape = 5/Capacity) in which the utility
that application gets is not very sensitive to perceived bandwidth
when the rate is high, but drops very fast when the rate gets smaller
than 1/2 of link capacity; and Smooth function in which the util-
ity drops almost proportional to the decrease in application sending
rate (α = 1.1 and Cshape = 1.5/Capacity). Note, that unlike
sharp utility function, with smooth one every elastic flow (i) gets

some utility even if its sending rate is zero, i.e. elastic flows al-
ways wait for the channel to become available and are satisfied by
that, and (ii) never gets utility 1 even when entire capacity is allo-
cated to the flow, i.e. elastic applications always remain greedy for
bandwidth. The shapes of the two functions are shown in Figure 1.

To illustrate intuition behind the shapes of these two utility func-
tions, we can consider flows with different saturation. For instance,
flow sending rate may be limited by computational capabilities of
the machine, leading to saturation of e.g. 0.5 Gbps on a 1 Gbps
link. For such flows the bottleneck is not the network but rather
own processing capabilities and increase in sending rate over cer-
tain limit is unlikely to produce much benefit, which is modeled
with the sharp utility function. Flows that are able to fully saturate
the link capacity are best modeled with smooth utility function (the
bottleneck is always network), which is flatter and has more uni-
form increase of utility in respect to increase in bandwidth over the
whole interval of possible bandwidths.

For deadline flows we consider a step function which in its sim-
ple form can be defined as

U(si) =

{
umax if si was allocated
0 otherwise

Note, that the function defined above can be generalized to accom-
modate multiple rates, if the application supports this. In this work
we define a deadline flow as a flow which must complete within a
specified time. To fulfill this requirement, we assign a fixed bit rate
to each deadline flow.

DEFINITION 2. Flow admission: A flow fi is said to be admit-
ted into the network if its demand is satisfied (i.e. it receives non-
zero utility) across the entire path from source to destination and its
placement does not lead to blocking of a previously admitted flow
j, ∀j 6= i. The flow fi is said to be blocked otherwise.

This definition implies that a deadline flow is admitted only if the
network is able to provide the required bandwidth, while an elastic
flow gets admitted if its perceived utility is greater than 0 (note
this can be true even if allocated bandwidth is 0). If a flow fi
was admitted into the network it is guaranteed to complete, i.e. it
never gets removed from the system before completion. Also, in
our simulations we do not move already allocated flows from one
port to another.

2.2 Algorithms
In this paper we consider the following demand aware algorithms

for flow scheduling:

• Random (RND), or Oblivious: A simple algorithm that ran-
domly chooses the outgoing port for a flow. Essentially, this
simple algorithm is similar to ECMP flow scheduling (with
a distinction that our algorithm differentiates between flow
classes and is aware of flow demands).

• Greedy with local knowledge (GLK): A greedy algorithm
which seeks the best assignment of the flow to an outgoing
port based on the available local knowledge of other flows
served by the device. Essentially, with this algorithm, for-
warding element chooses such allocation of a newly arrived
flow that maximizes its own local utility and not utility of the
entire network.

• Greedy with global knowledge (GGK): A greedy flow alloca-
tion algorithm which has the global knowledge of the system.

This simulates the centralized controller capable of fully op-
timal flow allocation (note that this optimization problem is
solvable in polynomial time since the allocated flows cannot
be reallocated upon arrival of a new flow).

3. SIMULATION
In this section we describe the metrics we use to assess perfor-

mance of the three algorithms (introduced in the previous section),
describe the implementation of the simulator and the simulation
parameters, and finally report the results and draw conclusions.

3.1 Metrics
To assess the performance of algorithms we choose two met-

rics. The first metric we report is the average utility for all flows
(blocked and non-blocked). This metric is a good indicator of the
average system performance. Formally, we define the metric as
follows

Uavg =
V

Ntotal
,

whereNtotal is the total amount of flows (blocked and non-blocked),
and V is the sum of utilities of all flows currently present in the
network. Although Uavg metric indirectly reflects the effect of
blocked flows, i.e. blocked flows receive 0 utility and thus push the
average utility towards 0, we report the number of blocked flows
using average blocking probability metric. In a formal way it can
be represented as follows

p =
Nblocked

Ntotal

3.2 Parameters
We could have used off-the-shelf simulating tools such as Om-

net++ or NS-3, however it appeared not feasible to complete sim-
ulations within reasonable time frames using these general-purpose
simulators, given our desired values of network size (> 2000 nodes),
flow arrival and departure rates, and duration of the simulation. We
therefore implemented a custom simulator comprising almost 4000
lines of code. Though even in our custom simulator simulating 1
minute operation of a data center with almost 2500 network ele-
ments and mean flow arrival rate of < 1msec, took several days.

In our simulations we use fat tree topology and use terms ’edge’
and ’pod’ as defined in [7]. Following [1], all links in our sim-
ulations have capacity of 1Gbps. We based our parameters se-
lection on available measurement studies of production data cen-
ters [2, 3, 5]. The main parameters used in our simulations are flow
arrival rate, flow duration and size, flow type probability (elastic or
deadline) and distribution of flow source-destination pair (within
the edge flow, inter-pod flow, etc). We combined various combina-
tions of these parameters into four simulation configurations. We
use the same parameters for simulating all three algorithms.

Configuration 1. In this configuration the mean arrival rate was
on the sub-millisecond scale. In particular, in this configuration
we model the arrival rate with Weibull distribution with parame-
ters λ = 1200, k = 2, which gives median inter-arrival time of
roughly 1ms. We also used Weibull distribution to simulate the
duration of elastic flows. In this case the parameters were λ =
1 · 106, k = 2, which corresponds to median duration of 850ms.
For deadline flows we were using uniform distribution to draw the
amount of bits transmitted within the flowB ∼ U [7.5·105, 8·105],
i.e. the minimum number of bytes was around 91kB. Furthermore,
we used exponential distribution with parameter λ = 0.0005 to
draw the required completion time of a deadline flow. We made
sure that no deadline flow lasts less than 1ms (which also guaran-

tees than no deadline flow will require rate greater than link ca-
pacity, i.e. 1Gbps). In this configuration we also set the proba-
bility of flow being elastic to pelastic = 0.7. By letting elastic
flows prevail, we study how the algorithms are different in terms
of delivered average utility. Finally, we set the probability that the
source-destination pair was within the same edge pedge = 0.02,
the same pod pintrapod = 0.3, and otherwise within different pods
pdifferent pods = 0.68. In this configuration we model the perfor-
mance of elastic flows with the sharp utility function.

Configuration 2. In this configuration we keep all parameters
identical to those in Configuration 1, but only increase the flow
arrival rate and model it with Weibull distribution with parameters
λ = 800, k = 2, which decreases median inter-arrival time to
about 0.665ms and duration of elastic flows λ = 2 · 106, k = 2
(median 1.7s). This experiment lets us understand whether arrival
rate influences behavior of the algorithms (in terms of delivered
average utility). In this configuration we model the performance of
elastic flows with the sharp utility function.

Configuration 3. In this configuration we further increase flow
arrival rate by setting λ = 600, k = 2, which yields median
inter-arrival time of 0.5ms. We also increased the duration of elas-
tic flows which we modeled now with Weibull distribution with
λ = 5 · 106, k = 0.5. But most importantly, we now set the prob-
ability of flow being elastic to just pelastic = 0.25. This allows
us to understand how well can the algorithms reduce the overall
blocking probability in network with prevailing deadline flows. In
this configuration we model the performance of elastic flows with
the sharp utility function.

Configuration 4. Our final configuration resembles Configura-
tion 2 but now we model the performance of elastic flows with the
smooth utility function. This experiment allows to understand the
performance of the algorithms when elastic flows have full satura-
tion of capacity and therefore require flatter utility function.

3.3 Results
First, we discuss the results of the configuration with prevail-

ing elastic traffic (Configuration 1). We expect that this simulation
will unveil potential (in terms of average utility) of the three algo-
rithms that we study. All three show similar results (Figure 2(a)).
For a network comprising switches with as much as 20 ports (2000
nodes) the algorithm with global knowledge performs just ∼ 2.5%
better than random flow scheduling algorithm and just 1% bet-
ter than algorithm that relies on local knowledge only. And al-
though the relative difference between the blocking probability for
all three algorithms is big – algorithm with global knowledge has
> 100% and ∼ 80% smaller blocking probability comparing to
random algorithm and algorithm with local knowledge only – the
absolute difference is marginal. However, we think that the trend
will remain for networks with higher loads giving all the advantage
of global and even local information over the random forwarding
strategy. To confirm this hypothesis, in Figure 2(b) we plot the
average utility for Configuration 2 in which number of flows was
increased by almost 60% in comparison to Configuration 1. There
is clear evidence that although in many settings algorithm with lo-
cal knowledge is worse than algorithm with global knowledge it
still performs better than random flow scheduling algorithm.

In our next experiment (Configuration 3) we let the deadline
flows prevail over elastic flows. With this experiment we test how
well each algorithm can avoid flow blocking. As expected, the
blocking probability of the algorithm with global knowledge is lower
than for the two other algorithms. Specifically, the blocking prob-
ability for the algorithm with global knowledge is > 100% and
around 40% smaller than for random algorithm and algorithm with

(a) Configuration 1 (b) Configuration 2 (c) Configuration 4

Figure 2: Average utility. Subplot shows improvement in percent of algorithm with global knowledge over random algorithm (dotted black curve)
and over algorithm with local knowledge (solid red curve).

(a) Configuration 1 (b) Configuration 3

Figure 3: Flow blocking probability

local knowledge correspondingly. We demonstrate these differ-
ences in blocking probability in Figure 3(b).

Finally, we have measured the average utility for all algorithms
using smooth utility function, i.e. the results for the Configuration
4. We present the results in Figure 2(c). There are two important
observations that we can make directly from the plot. First, if the
utility function is flatter, then the difference between algorithm with
local knowledge and oblivious or random strategy becomes more
prominent. Second, this difference tends to increase as the network
size increases (this is expected as more paths are available and local
information can aid in making better forwarding decisions). For in-
stance, for the network with just 686 and 2000 hosts the difference
between algorithms is 1.6% and 4.5% respectively, and should in-
crease for larger network size (#hosts > 2000).

Even though improvements of algorithm with local knowledge
over random algorithm shown in Figure 2 may not seem to be big,
we must note that exact values of average utility strongly depend on
the choice of type and shape of utility function. It would possible
for us to choose a utility function that would make the improve-
ment more pronounced. We refrained from doing so, because we
believe that since there is no reliable criterion of choosing the true
utility function, it suffices to show relative performance of the three
algorithms.

We must also point out that even if under the chosen utility func-
tion algorithm with local knowledge doesn’t offer big improvement

in average utility over random algorithm, it nevertheless signifi-
cantly lowers flow blocking probability. This feature is very impor-
tant for ensuring SLA in data centers.

4. DESIGN
Our simulation findings indicate that data center networks would

benefit from a fully distributed mechanism that can fairly distribute
resources. In this section we elaborate on the design principles of
demand aware fixed (deadline) and limited rate (elastic) TCP vari-
ants and a switch forwarding logic. The first mechanism allows
to allocate flows to proper outgoing ports and converge the rate
of each flow to its max-min share in a fully distributed manner.
The second mechanism (implemented on the end points) allows to
achieve fair resource sharing among all the communicating peers
without requiring additional support from the forwarding elements
(i.e., we do not require the forwarding elements to implement pri-
ority queues or similar mechanisms). And although the ideas we
present here are similar in spirit to those presented in [9], the key
difference is that we differentiate between flow types and take into
account multiple paths available for the same destination.

4.1 Demand aware forwarding fabric
We begin with the description of the demand aware forwarding

logic which is implemented at each switch in the network. There
are two main design goals that we bear in mind. First, we want

Algorithm 1 Forwarding logic
function ONUPDATEROUTINGTABLE

FetchRoutingTableFromCentalController()
end function
function FORWARDFLOW(flowj)

if Is new flowj then
if flowj .Rate > 0 then

if AllocateF low(flowj) == success then
RecalculateRates()

else
flowj .Rate = 0
if flowj is elastic then

Send to destination using port with
least number of elastic flows

else
The flow was blocked
Send to destination using any port

end if
end if

else
if flowj is elastic then

Send to destination using port with
least number of elastic flows

else
The flow was blocked
Send to destination using any port

end if
end if

else if IsF lagSet(flowj .RateChanged) then
if flowj .T ype == elastic then

RecalculateRates()
end if

end if
if AFlowComplete() then

RecalculateRates()
end if

end function
function RECALCULATERATES

SortDescendingByRate(ElasticF lows)
ElasticF lowsCount← Length(ElasticF lows)
AvailableCapacity ← Capacity −∑

∀iDeadlineF lowi.Rate

FairShare← AvailableCapacity
ElasticF lowsCount

for all flowj ∈ ElasticF lows do
if flowj .Rate < FairShare then

AvailableCapacity ← AvailableCapacity +
(FairShare− flowj .Rate)

ElasticF lowsCount← ElasticF lowsCount−1
FairShare← AvailableCapacity

ElasticF lowsCount
else

flowj .Rate← FairShare
SetF lag(flowj .RateChanged)

end if
end for

end function

the system to be full distributed. In particular, such functionality
as flow allocation to an outgoing port and update of the maximum
possible sending rate for each flow are local responsibility of each
forwarding element. Second, we try to minimize the amount of per-
packet processing tasks performed by each forwarding element, to
avoid our mechanisms becoming a bottleneck. In our architecture
a centralized controller only computes the directed acyclic graph

(DAG) on longer time intervals (e.g., on order of several minutes)
and populates the routing table of each switch in the network.

Formally, the forwarding logic can be described with the pseudo-
code of Algorithm 1. Initially, whenever a new flow arrives at the
forwarder, the flow’s desired rate which we assume to be a field in
the packet header, is checked. If it is zero and flow is deadline then
the flow was blocked on one of the previous hops. In such case,
nothing has to be done and the packet is forwarded towards the
receiver using any port through which the destination is reachable.
If the flow was elastic it is sent to a port with least number of elastic
flows to avoid future congestion. Otherwise, the forwarder attempts
to allocate the flow to a port which maximizes the local utility of the
switch. This is achieved with AllocateF low(). If the allocation is
successful all elastic flows are assigned a new sending rate, which
is the fair share of link capacity excluding the amount of bandwidth
allocated to hard deadline flows. Note that if the rate of the flow on
a prior link is less than a new fair share, the rate of the flow remains
unchanged. Otherwise, the flow gets assigned with the new fair
share and the packets are marked with a bit flag indicating that any
upstream forwarder should recalculate the rates for its flows as well.

In practice, AllocateF low(flowj) can be either random algo-
rithm or greedy algorithm with local knowledge only. However, as
our simulation results suggest, algorithm with local knowledge is
better and therefore preferable flow allocation mechanism. More-
over, as we have demonstrated, the improvement of algorithm with
local knowledge over random strategy tends to increase as the net-
work utilization increases.

4.2 Rate control mechanisms
In this section we sketch the design of the two modifications to

TCP (which we denote as TCP?) that allow the nodes to use the
sending rates assigned to the flows by the forwarding elements (as-
suming nodes in data centers are not selfish). But before we present
these changes, we give several useful and more formal definitions.

DEFINITION 3. Ri Fixed rate TCP?: A TCP? flow is said to
have fixed rate if the hosts transmit packets with constant rate Ri

which is not changed during the connection lifetime.

DEFINITION 4. Ri Limited TCP?: A TCP? flow is said to be
limited if its sending rate cannot surpass requested rate Ri.

We present the modifications in the Algorithm 2. Note that we
assume that such parameters as flow type and requested rate are
passed from higher layer applications through socket options, e.g.:

setsockopt(socket, SOL_SOCKET, SO_FLOW_TYPE, type)
setsockopt(socket, SOL_SOCKET, SO_FLOW_RATE, rate)

Similarly to normal TCP a handshake is performed initially. This
is where the forwarders assign the maximum allowed sending rate
for the flow (this information is conveyed back from the receiver
inside a TCP option). If the rate is greater than 0 and flow is of
deadline type, the flow was admitted and can start its normal op-
eration. Otherwise, the connection must be closed. Elastic flows
can tolerate 0 sending rates and wait until rate is reallocated. The
update procedure is similar.

The key idea behind this simple changes, is to not allow the flows
to exceed their allocated sending rate. For the elastic flows (limited
TCP?) this is achieved by not increasing the congestion window
if the number of bytes sent was larger than the number of bytes
allowed to be sent during some unit of time. For deadline flows
(fixed rate TCP’) the hosts simply must queue the packet if the
number of bytes sent within some time unit surpasses the maxi-
mum allowed. These two simple modifications allow to maintain
the network-wide fair resource share in a distributed way.

Algorithm 2 Sending rate adaptation mechanisms
OpenConnection(flowi)
if flowi.Rate == 0 and flowi.T ype == deadline then

CloseConnection(flowi)
end if
while IsOpenConnection(flowj) do

if flowi.T ype == elastic then
if Need to increase TCP CWND then

if Bytes sent within T < flowi.Rate
T

then
CWND ++

end if
end if

else
if Bytes sent within T ≥ flowi.Rate

T
then

Queue packet
else

Send Packet
end if

end if
end while

4.3 Evaluation
In reality, given the high network loads and as a result the num-

ber of flows each forwarder must handle per unit time, flow allo-
cation must be efficiently computed. Therefore, we have evaluated
the performance (duration in microseconds) of Algorithm 1 (for
a single switch) on an old 700MHz computer. We present the re-
sults in Figure 4. Note that even when there are 100 flows per port
which sums up to 4800 flows per 48-ports switch (a realistic load)
it takes on average 123µsec and 14µsec to allocate a new flow or
update existing flows correspondingly. Assuming that there are at
most 6 hops from any source to any destination, 700µs is the max-
imum time required to allocate the flow throughout the entire path.
This is comparable with the typical deadline flow duration (1.5ms)
in our simulations. For this reason we suggest that flow allocation
time should be included in SLAs.

Figure 4: Computational overhead for allocating new or updating ex-
isting flows on 48-port switch

5. CONCLUSIONS
In this paper we considered the problem of demand aware flow

allocation in a data center network. Although there were several
studies that consider similar problem, we unlike other researchers
differentiate between several classes of traffic and measure the good-
ness of flow allocation using the perceived utilities. We find that
although there is difference between algorithms with and without

global knowledge, it is rather insignificant for all simulation set-
tings we try. This together with the fact that algorithm with local
knowledge performs better than naive random algorithm, enables
us to propose demand aware algorithms for per-hop load balanc-
ing and several modifications to transport protocol that undoubtedly
can improve the network performance. For the future, we plan to
extend this to other topologies and introduce more complex utility
functions taking into account additional indicators of link conges-
tion such as packet loss.

Acknowledgments
We would like to thank Scott Shenker, Dmitry Korzun, Barath Ragha-
van and Ilya Nikolaevskiy for their feedback. This work was sup-
ported in part by Academy of Finland project SEMOHealth.

6. REFERENCES
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat. Hedera: dynamic flow scheduling for data center
networks. In Proceedings of the 7th USENIX conference on
Networked systems design and implementation, NSDI’10,
Berkeley, CA, USA, 2010. USENIX Association.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010
conference, SIGCOMM ’10, pages 63–74, 2010.

[3] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In Proceedings of
the 10th annual conference on Internet measurement, IMC
’10, pages 267–280, New York, NY, USA, 2010. ACM.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE:
fine grained traffic engineering for data centers. In
Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies, CoNEXT ’11,
pages 8:1–8:12, New York, NY, USA, 2011. ACM.

[5] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The nature of data center traffic: measurements
& analysis. In Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, IMC ’09,
pages 202–208, 2009.

[6] W.-H. Kuo and W. Liao. Utility-based resource allocation in
wireless networks. IEEE Transactions on Wireless
Communications, 6:3600–3606, 2007.

[7] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
Portland: a scalable fault-tolerant layer 2 data center network
fabric. In Proceedings of the ACM SIGCOMM 2009
conference on Data communication, SIGCOMM ’09, pages
39–50, 2009.

[8] S. Shenker. Fundamental Design Issues for the Future
Internet. IEEE journal on selected areas in communications,
13:1176–1188, 1995.

[9] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron.
Better never than late: meeting deadlines in datacenter
networks. In Proceedings of the ACM SIGCOMM 2011
conference, SIGCOMM ’11, pages 50–61, New York, NY,
USA, 2011. ACM.

[10] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast
congestion control for TCP in data center networks. In
Proceedings of the 6th International COnference, Co-NEXT
’10, pages 13:1–13:12. ACM, 2010.

