
Secure Multipath Transport For
Legacy Internet Applications

Andrei Gurtov, Tatiana Polishchuk
Helsinki Institute for Information Technology HIIT

Helsinki University of Technology TKK

Abstract—Multi-interface mobile devices and multi-
homed residential Internet connections are becoming com-
monplace. However, standard transport protocols TCP and
SCTP are unable to take advantage of several available
paths so that the application using a single transport
connection would receive the aggregate bandwidth of all
paths. Multihoming and advanced security features make
the Host Identity Protocol a good candidate to provide
multipath data delivery. In this paper, we design and im-
plement a multipath scheduler that distributes the incoming
traffic among multiple available paths. Using Fastest Path
First scheduling, packets from a single TCP connection
could be spread to multiple paths with no reordering. Our
simulations confirm effectiveness and TCP-friendliness of
multipath transfer for a range of path bandwidths and in
the presence of cross-traffic.1

Keywords: Internet, HIP, multipath routing, goodput,
cross-traffic

I. I NTRODUCTION

Multipath routing is an active area of research. Despite
the fact that several techniques of utilizing path diversity
have been proposed, multipath routing is not yet widely
deployed in practice. Researchers study advantages of
its implementation on different layers of the TCP/IP
stack. In this paper we propose a design of a multipath
scheduler on HIP layer. HIP multihoming [18] provides
multiaddressing support in a functional layer between
IP and transport. Taking this approach we combine the
advantages of HIP advanced security with the obvious
benefits of multipath routing such as better resource
utilization, increased throughput and fault tolerance.

When data packets are sent over several paths inside
one connection they can experience different propaga-
tion delays and arrive out of order. In case of TCP
traffic, receiver sends duplicate acknowledgments to the
sender, which will falsely indicate packet loss. It can
lead to unnecessary retransmissions and a substantial
reduction of the congestion window thereby reducing

1Research supported by TEKES as part of the Future Internet
program of TIVIT (Finnish Strategic Centre for Science, Technology
and Innovation in the field of ICT).

total throughput. We implement a variation of Fastest
Path First scheduling algorithm which is known to be
robust against reordering.

Load balancing among several paths requires some
estimate of each path capacity. The HIP layer can
attempt to estimate and control variations of such path
parameters as delay, bandwidth and loss rate. We propose
a simple marking technique, storing the estimated
delivery time for a chosen packet, one per a TCP round-
trip time cycle, to compare estimated delivery time of
the marked packet to the actual time of its arrival.
This enables our network system to react quickly to
the change in the available bandwidth of the paths and
redirect the useful traffic accordingly.

Network links can experience external cross-traffic
which reduces available path bandwidth. To address
the problem we propose amultipath congestion
avoidance scheme. Novel feature of the scheme is that
it takes control of congestion situation in the overall end-
to-end multipath system unlike TCP which is restricted
to control congestion in one path only.

The rest of the paper is organized as follows. Section II
describes Host Identity Protocol and summarizes related
work in the field of multipath scheduling. the HIP mul-
tipath transport architecture is introduced in Section III.
Section IV presents the design and implementation of
the multipath scheduling algorithm. Section V presents
the experimental results. Conclusions and future work
are given in Section VI.

II. RELATED WORK

A. Host Identity Protocol

The Host Identity Protocol (HIP) [8], [16], [17] was
proposed to overcome the problem of using IP addresses
simultaneously for host identification and routing. The
idea behind HIP is based on decoupling the network
layer from the higher layers in the protocol stack archi-
tecture (see Figure 1). HIP defines a new global name
space, the Host Identity name space, thereby splitting
the double meaning of IP addresses. When HIP is used,

Fig. 1. Establishing HIP association with base exchange.

upper layers do not any more rely on IP addresses as
host names. Instead, Host Identities (HI) are used in the
transport protocol headers for establishing connections.
IP addresses at the same time act purely as locators
for routing packets towards the destination. For com-
patibility with IPv6 legacy applications, Host Identity
is represented by a 128-bit long hash, the Host Identity
Tag (HIT).

HIP offers several benefits including end-to-end secu-
rity, resistance to CPU and memory exhausting denial-
of-service (DoS) attacks, NAT traversal, mobility and
multihoming support.

To start communicating through HIP, two hosts must
establish a HIP association. This process is known as
the HIP Base Exchange (BEX) [17] and it consists of
four messages transferred between the initiator and the
responder. After BEX is successfully completed, both
hosts are confident that private keys corresponding to
Host Identifiers (public keys) are indeed possessed by
their peers. Another purpose of the HIP base exchange
is to create a pair of IPsec Encapsulated Security Payload
(ESP) Security Associations (SAs), one for each direc-
tion. All subsequent traffic between communicating parts
is protected by IPsec. A new IPsec ESP mode, Bound
End-to-end Tunnel (BEET) [20] is used in HIP. The main
advantage of BEET mode is low overhead in contrast to
the regular tunnel mode.

Figure 1 illustrates the overall HIP architecture includ-
ing the BEX. The initiator may retrieve the HI/HIT of
the responder from a DNS directory [19] by sending
a FQDN in a DNS query. Instead of resolving the
FQDN to an IP address, the DNS server replies with
a HI (FQDN→HI). Transport layer creates a packet
with the HI as the destination identifier. During the
next step HI is mapped to an IP address by the HIP
daemon on the Host Identity layer. Finally, the packet
is processed in the network layer and routed to the
responder. As a result, the conventional 5-tuple socket

becomes{protocol, source HI, source port, destination
HI, destination port}.

Since neither transport layer connections nor security
associations (SAs) created after the HIP base exchange
are bound to IP addresses, a mobile client can change
its IP address (i.e., upon moving, due to a DHCP lease
or IPv6 router advertisement) and continue transmitting
ESP-protected packets to its peer. HIP supports such
mobility events by implementing an end-to-end three-
way signaling mechanism [18] between communicating
nodes. HIP multihoming uses the same mechanisms as
mobility for updating the peer with the current set of IP
addresses of the host.

B. Multipath transport architectures

Researchers have approached the problem of utilizing
multiple network paths from various angles. Multipath
transmission can be implemented on physical, link, net-
work, transport or application layers [4], [9], [10], [11],
[12], [13], [23]. Placing the function on a lower layer
enables more efficient utilization of a particular link
type and presents a generic solution for all upper-layer
protocols and applications. On the other hand, solutions
on upper layers are more tuned for the need of a specific
application and could be implemented more easily (e.g.,
in the user space).

Transport layer applications can naturally obtain infor-
mation on the quality of different paths. For example,
SCTP [25] can perform measurements across several
paths simultaneously, and then map flows on one or
another path. TCP-MH [15] can detect when the current
path has stopped working well, for instance, if the
frequency of repetition becomes too high, and decide
to try another path.

The advantages of network layer solutions, such as
proposed in [4] for wireless network interfaces, are they
are easy to deploy, totally transparent to applications and
involve minimum modifications in the contrary to the
application and transport layer solutions which involve
many changes in the infrastructure.

Wedge-layer approaches implemented in HIP, LIN6
[6], MAST [5], MIM6 [14] conduct control exchange
on a separate logical channel. This approach has an
advantage of being able to maintain multiaddressing
information across transport associations. Transport ac-
tivity between two endpoints may well be able to use
multiaddressing immediately and with no further ad-
ministrative overhead. Moreover, wedge-based locator
exchange protocols can be incorporated without necessi-
tating modification to any host’s IP or transport modules.

A number of applications or transport connections can
be allocated independently to different paths [21]. As

2

an example, popular web browsers open several parallel
TCP connections to download a page. Such approach
avoids complications resulting from spreading packets
from a single transport connection over multiple paths.
However, it has an obvious drawback – if there are
fewer active bulk transport connections than links, it is
not possible to utilize all available paths. Simultaneous
Multiaccess (SIMA) [22] implements such approach
using flow binding extensions for HIP.

Several proposals in the related work assume the
presence of a proxy in the network that can serve as a
termination point of multipath TCP extensions [3]. Such
approach works only for plain-text TCP communication
and fails in the presence of IPsec encryption or authen-
tication mechanisms. When TCP packets are protected
with IPsec, the proxy is unable to observe or modify
the packets. Therefore, if HIP is used end-to-end, proxy-
based solutions are not applicable.

III. HIP MULTIPATH TRANSPORT ARCHITECTURE

Next we compare two approaches, implementing mul-
tipath on transport and network layers, in detail. The first
approach implements multipath capabilities on the trans-
port layers, as an extension of TCP or SCTP protocols.
Trilogy project [2] is taking this approach. We compare
it with our approach, where multipath scheduling occurs
at the wedge-layer, below HIP.

The SCTP protocol [25] supports a notion of multiple
paths for fault-tolerance. Therefore, extending it to sup-
port simultaneous transfer over multiple paths is possible
without significant changes to the protocol structure. On
the contrary, TCP is built to run over a single path only.
Connection-specific functions, such as flow control and
connection establishment are tightly coupled with path-
specific functions such as MTU discovery, congestion
avoidance and retransmissions. Hence, implementing
multipath transfer in TCP requires significant refactoring
of the code, separating connection and path-specific
components so that functions such as congestion control
could be implemented per each path.

Figure 2 illustrates this approach. Essentially it re-
quires turning TCP into SCTP with additional function-
ality. The only benefit compared to extending SCTP di-
rectly would be support for legacy applications. However,
compatibility of TCP-only applications with SCTP could
be provided at lower cost through a shim adaptation API.

The main task of the scheduler is to distribute packets
from one connection over available links. According to
the resource pooling principle specified in [26] ideally
the overall throughput is the sum of all link bandwidths.
Since TCP and SCTP cannot robustly differentiate be-
tween packet reordering and packet loss, the scheduler

IF1 IF2 IF3

IPv4/v6

Application

TCP
Connection and flow control

Path CC Path CC Path CC

Fig. 2. Multipath TCP.

must minimize reordering at the receiver. However, given
variable delays on the links, eventual out-of-order deliv-
ery is almost inevitable. Several improvements for TCP
and SCTP do exist that make the reordering tolerable
including the Eifel algorithm and DSACK [27]. Such
mechanisms can dynamically adjust the DUPACK thresh-
old to balance between packet loss recovery and avoiding
spurious retransmissions.

We take a different approach compared to extending
transport protocols such as TCP and SCTP. Since mul-
tipath functionality requires proper security mechanisms
to avoid accepting packets from spoofed IP addresses, it
is logical to implement it on the HIP layer. HIP shields
the presence of multiple paths from transport and appli-
cation layers, presenting only the identity of the peer
host, a Host Identity Tag (HIT). Therefore, all multipath
functionality must be located below the HIP layer as the
upper protocol layers only see a single path through HIT.
In fact, when an application performs a DNS query from
FQDN to an IP address, the HIP resolver removes all
IP addresses from the result returned to the application,
leaving only HIT (for IPv6 applications) or LSI (for IPv4
applications). The HIP layer is entirely responsible for
mapping between HITs and current IP addresses of the
peer host.

We propose a multipath transfer architecture as shown
in Figure 3. The scheduler located below the HIP pro-
tocol maintains an estimate of each path parameters,
including the congestion window, retransmission timer,
and MTU. It spreads packets from TCP connections
over available paths according to their capacity. The
scheduler is TCP-friendly when allocating TCP traffic,
competing fairly with other TCP connections. It can
also schedule traffic from other protocols that are not
necessarily TCP friendly, such as UDP, SCTP, DCCP
over the links according to their capacity.

3

IF1 IF2 IF3

HIP

Path CCPath CC Path CC

IPv4/v6

sees only HITTCP

Application sees only HIT

Fig. 3. Multipath HIP.

IV. M ULTIPATH SCHEDULER

We formulate the multipath scheduling problem as an
online optimization problem. A network traffic scheduler
assigns a path for each packet arriving from the TCP
sender to minimize its delivery time and packet reorder-
ing at the receiver. Paths characteristics such as capacity
and delay are analyzed and the path which provides the
earliest delivery for the given packet is chosen.

The goal is to maximize the throughput of our multi-
path network, the number of packets successfully deliv-
ered to the receiver. To achieve the goal we schedule
packets to arrive with minimal reordering, which in
case of TCP traffic provides increasing throughput by
reducing delays due to unnecessary retransmissions.

A. Assumptions and limitations

Our approach will correspond to the class of disjoint
multipath routing (DMPR) algorithms[24]. The paths are
restricted to have independent bottlenecks. We make the
following assumptions:

• Only TCP data traffic source is considered.
• The scheduler resides only on the sender, no infor-

mation from the receiver is available other than TCP
acknowledgments (ACKs) received by the sender.

• At least one available path should not be congested
at any given point of time.

B. Problem statement

Given an ordered sequence of TCP data packets each
of size S arriving from the sender,n available paths
connecting the sender and the receiver, each of which
could consist of a number of consecutively connected
links, with the following end-to-end path characteristics:
Di - delay in the pathi; Bi - bottleneck bandwidth of
the pathi.

The scheduler is not allowed to change the order
in which packets are sent even if multiple packets are

available at the same time. But several packets could
be scheduled to depart at the same time if assigned to
different parallel paths.

The scheduling problem is to assign the packets to the
paths to minimize reordering at the receiver subject to
keeping the throughput maximum.

C. Multipath scheduling algorithm

We use a variation of the the Fastest Path First
scheduling suggested in the paper [7], which is also
referred as the Earliest Delivery Path First in [4] and
has the property of eliminating reordering fully in case
if all the packets are of the same size.

For each arriving packetp the expected delivery time
tpi if sent to routei is to be estimated. Then the packet
is sent to the path with minimum value oftpi.

We calculate the expected delivery time for each
packet according to the following formula:

If tnow < tfree
i - route i is currently busy delivering

other packets, then
tpi = tfree

i + Di + S/Bi; set tfree
i = tfree

i + S/Bi;
otherwise (the route is free):

tpi = tnow + Di + S/Bi; set tfree
i = tnow + S/Bi,

where
tfree
i keeps the information about the availability of the

path i,
tnow - current wall-clock time.
If several paths share the value of the estimated

delivery time for a packet, we choose a path with the
earliest expected arrival time of the last packet sent on
this path. If the tie still exists, the path with the smallest
sequence number of the last packet sent on the path is
chosen.

D. Complexity considerations

The algorithm calculates estimated delivery times on
each of the paths for each packet and compares the
values to find the minimum. The number of operations
per packet depends only on the numbern of disjoint
paths available and is constant whenn is fixed.

Spacial complexity is linear in the flight size - the
number or packets which have been sent but not yet
acknowledged. One integer space per packet is used to
store packet-to-path assignment in the one-dimensional
array and is released after successful arrival of the
packet.

E. Multipath congestion avoidance

FPF algorithm is robust against packet reordering
when applied to a multipath system with stable band-
widths and delays of the links. But in practice network
links often experience external cross-traffic and packet

4

losses, which result in the variations of the available
end-to-end path bandwidths. Without additional modifi-
cations, our multipath system would have performance
problems. The scheduler would continue calculations
basing on the initial values of paths characteristics un-
aware of the recent changes. As a result, packets would
arrive out of order. Packet reordering leads to needless
retransmissions and confuses the TCP congestion control.
The application would experience delays and reduced
throughput. An example of this problem is analyzed in
Section V-C and is illustrated in Figure 9.

Obviously, we need to enable the scheduler to react
to path changes in timely manner. For that purpose
we design a simplemarking technique as a part of
the multipath congestion avoidance scheme. To detect
a congestion situation quickly, we are marking packets
on their departure to each path. The expected delivery
time of the marked packet is stored and then compared
to its actual arrival time value on the receipt of the cor-
responding ACK. After the path parameters are updated,
another departing packet is marked. Hence, change of
path characteristics should be detected in the period of
one TCP round-trip time. Then, the scheduler would
again fairly distribute packets to the paths according
to their capacity and delay with minimal reordering,
maximizing the total end-to-end throughput.

Next we propose amultipath congestion avoidance
technique which works effectively not only for a single
path, but also gives a performance enhancement to the
end-to-end multipath systems.

We consider two indicators of path congestion:
1. the standard TCP DUPACK action, when the sender

is retransmitting the packet after receipt of three dupli-
cate acknowledgments from the receiver;

2. the observed delivery time of the marked packet
exceeds its corresponding expected delivery time value.

If any of the two indicators suggest congestion, the
path is temporarily closed and the packets are redirected
to other available paths.

F. Path probing

To determine whether a path has already recovered
from congestion, we occasionally send probing packets
to the closed path. Currently we open the path for one
TCP packet and marking it to compare its expected and
observed delays values on the receipt of the correspond-
ing ACK. In the future we plan to use HIP heartbeat
packets for this purpose.

If the path is still congested, the TCP probing packet
would cause some reordering on the receiver. There is
a trade-off between the unnecessary reordering and the
idleness of the unused path. A reasonable time between

probes needs to be chosen. For the simulations described
in Section V, we set the time between probing packets
to 1 second. Further research is needed to determine the
best way of choosing such a value.

There is a constraint on which packet could be chosen
for probing purposes. It should not be a duplicate packet
to ensure it would come in regular order when path is
not congested anymore.

G. ACK processing

On receipt of an ACK, the scheduler determines
whether it comes in the regular order (sequence number
surpasses its predecessor by one), is a duplicate (is equal
to the sequence number of its predecessor) or cumulative
(surpasses the previous ACK sequence number by more
than one).

If ACK for a marked packet is received in the regular
order, we compare the actual delivery time and expected
delivery time values for this packet. Based on the result
of this comparison we determine congestion situation in
the corresponding path as described earlier. The receipt
of a cumulative ACK covering marked packet sequence
number, means congestion in one of the paths. However,
this information is not sufficient to define the congested
path number. The marking is reset and the following
departing packet is to be examined.

V. EXPERIMENTAL EVALUATION

We choose goodput of the multipath system to be
a metric for evaluation of our first simulation results.
Goodput is the application level throughput, the amount
of data per unit of time (in Mbps) delivered by the
network from source to destination, excluding protocol
overhead and retransmitted data packets.

The simulations were performed using publicly avail-
able ns-2 simulator [1]. We evaluate performance of our
algorithm implemented on two simple network topolo-
gies with two and three available paths between one
source-destination pair.

A. Ideal system with two paths

Systems with stable path characteristics we callideal.
The paths are not experiencing any packet losses or cross-
traffic interruptions. Taking these unrealistic assumptions
we aim to place a limit on the best performance which
is possible to achieve by using multiple paths simultane-
ously.

First we construct a network topology with two avail-
able paths. Two nodesn0 andn1 are connected by two
parallel paths through two additional nodesn2 and n3

as shown in Figure 4.

5

n2

n3

n1n0

 SinkSource
Path 1

Path 2

Fig. 4. Simple simulation topology with 2 paths.

The topology could present several disjoint paths and
several nodes on each path. For the sake of clarity we
consider in this paper only two- and three-path scenarios.
And since we are measuring end-to-end propagation
delays in the paths, they can consist of any number of
connected links.

A TCP sender (source) is attached to the noden0

and TCP sink to the noden1. The traffic is produced
by a FTP source. The sender and the sink are con-
nected by four bi-directional duplex links having variable
bandwidth and delay characteristics. To analyze how
bandwidth variations can influence the resulting goodput
of the multipath system, we fixed the delays in all four
links to 10 ms and tried different combinations of two
paths bandwidths.

TCP packets are of the same size equal to 1250 bytes.
Maximum receiving window size is 100 packets to allow
the system achieve its maximum goodput value. The
simulated run time was set to 10 seconds, which is
sufficient to ensure an adequate sample.

The resulting goodput of the two-path system with
variable link bandwidths is illustrated in Figure 5. The
increase of the goodput is almost linear provided by
the increase of the total bandwidth of two paths. The
maximum is achieved at 19.32 Mbps when bandwidths
of both paths are at their maximal values equal to
10 Mbps.

We compare resulting goodput values to the sum of the
goodput of two corresponding unipath systems. For these
unipath systems bandwidths of their single paths are set
to the values of ourPath1 andPath2 respectively. The
result of the comparison shows that the two-path system
produces about 99% of the sum of two path bandwidths.

The resulting goodput depends not only on the band-
width of the paths in the system but also on the packet
sizes and the link delays. As an example, the observed
goodput of the two-path system with the path bandwidths
of 10 Mbps and 0 Mbps is not exactly 10 Mbps as one
could have expected, but equals to 9.6 Mbps because of
the delay in the path.

In the ideal system no reordering occurs at the receiver
during the simulation period. This observation confirms

 0 2 4 6 8 10 0
 2

 4
 6

 8
 10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Total goodput (Mbps)
19.32

9.68

path 1 bandwidth (Mbps)

path 2 bandwidth (Mbps)

Fig. 5. Total goodput of ideal two-path system.

applicability of FPF algorithm.

B. Ideal system with three paths

In the next experiment, we addPath3 connecting the
same TCP sender and the sink through an additional
noden4 as shown in Figure 6. This time we fixPath1

and Path2 bandwidth characteristics to 4 Mbps and 5
Mbps respectively and change the bandwidth ofPath3,
keeping the rest of the system parameters unchanged.

n0

n2

n3

n4

Source Sink

 n1

Path 1

Path 2

Path 3

Fig. 6. Simple simulation topology with 3 paths.

Figure 7 shows the observed linear increase of the
resulting goodput of the three-path system compared
against the initial two-path system. Obviously adding
one more path to the system noticeably improves its
performance. Adding a path with the bandwidth of 10
Mbps more than doubles the goodput of the two-path
system with 4 and 5 Mbps links.

Next, we set bandwidths of the paths to 2, 4 and
5 Mbps. Again, we compare our multipath system to
three corresponding unipath systems. The results are
summarized in Table I. The comparison confirms the
result obtained earlier for the ideal two-path system.
The multipath system produces goodput which exceeds
goodput of any of the unipath systems and is about 99%
of their sum.

6

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10

G
oo

dp
ut

 (
M

bp
s)

Path 3 bandwidth (Mbps)

3 paths
2 paths

Fig. 7. AddingPath3 with variable bandwidth to the ideal two-path
system.

TABLE I
IDEAL THREE-PATH SYSTEM SIMULATION RESULTS.

Topology Bandwidth (Mbps) Goodput(Mbps)

single path - path 0 2 1.91

single path - path 1 4 3.75

single path - path 2 5 4.68

Sum 2, 4 and 5 10.34

multipath (3 paths) 2, 4 and 5 10.27

C. Experiments with cross-traffic and losses

For experiments with cross-traffic we attach three
UDP source agents to the noden0 and three sinks
(used for simulation purposes only) to the nodesn2,
n3 and n4 respectively (Figure 8). As in the previous
example, bandwidths of three paths are set to 2, 4 and
5 Mbps. Cross-traffic patterns are chosen to start and
end at different time points in different links and have
variable intensity as shown in Table II. Each cross-traffic
flow occupies at least 80 percent of the bandwidth in the
corresponding link.

TABLE II
CROSS-TRAFFIC FLOWS PARAMETERS.

Link Start time (s) End time (s) Rate (Mbps)

n0 − n2 1.0 2.0 4.0
n0 − n3 3.0 5.0 3.0
n0 − n4 3.5 6.0 2.0

Now we study the effect of applying our multipath
congestion avoidance scheme described in Section IV-E
to the three-path system with the cross-traffic sched-
uled as shown in Table II. We compare total goodput
produced by the multipath system without any special
congestion control actions taken with goodput of the
same system with our multipath congestion avoidance

n0 n3

n4

Source

n2

 n1

Sink 0

Sink 2

Sink 1UDP flo
w 1

UDP flow 2

UDP flow 3

Fig. 8. Cross-traffic flows simulation.

scheme. To get more complete picture of the perfor-
mance, we plotted the sending rates of the system
without congestion control measures against the system
with our multipath congestion control on.

Figure 9 illustrates noticeable degradation of the send-
ing rate due to the existence of cross-traffic flows. Such a
decrease in the sending rate is naturally accompanied by
the goodput reduction. In particular, we observed about
43% reduction from the goodput of the ideal multipath
system. Because of the cross-traffic, we obtain about 5.9
Mbps of goodput instead of 10.4 Mbps from the ideal
system without cross-traffic. Most of the sending rate
reduction is caused by unnecessary retransmissions and
packet losses in the useful TCP traffic.

 0

 2000

 4000

 6000

 8000

 10000

 0 2 4 6 8 10

P
ak

et
 n

um
be

rs

Time, s

Source sending rate

Packet losses

w/o control of the scheduler
with control of the scheduler

no cross-traffic

Fig. 9. Sending rate of the three-path system with cross-traffic.

We improve the situation by applying our multipath
congestion avoidance technique in combination with the
congested path probing. As a result, the goodput of our
system achieves the value of 7.6 Mbps which is by 28%
better than without the technique . As we can clearly see
from the picture, less retransmissions and losses occur
conforming an increase of the sending rate.

7

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a design of an online multipath
scheduling algorithm for HIP which effectively dis-
tributes packets from a TCP connection over available
links. It requires modifications only in the HIP daemon at
the sender. Legacy IPv4 and IPv6 applications unaware
of multiple paths can benefit from it transparently.

The initial experimental investigation has demon-
strated robustness of the scheduling algorithm applied.
In the ideal system with no cross-traffic, overall goodput
of the simple multipath system is nearly the sum of link
bandwidths.

When cross-traffic was introduced to the system, we
were able to effectively decrease the number or retrans-
missions and packet losses. The result was achieved
by applying a multipath congestion avoidance scheme,
which includes redirection of the traffic to the less
congested paths and consequent path probing.

Since HIP is using the IPSec encapsulation, we need to
study the influence of its anti-replay sliding window [28]
on the reordering of the resulting flow at the receiver.

The proposed traffic splitting algorithm does not
explicitly change neither the TCP congestion window
growing rate nor its recovery speed. We do not expect our
multipath scheduler to behave more aggressively than
any of the TCP variants; on the contrary, we believe it
should demonstrate fairness and friendliness to the TCP
flows. We follow up with careful experimental study on
the subject to support our assumptions.

We are currently implementing HIP multipath sched-
uler on Linux. When it is completed, we will be able
to measure the benefits of multipath routing in real
networks, including WLAN and 3G links.

REFERENCES

[1] The network simulator ns-2. http://www.isi.edu/nsnam/ns/
ns-documentation, last checked 23/02/2009.

[2] Trilogy project. http://www.trilogy-project.org/, last checked
23/02/2009.

[3] R. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby.
Performance enhancing proxies intended to mitigate link-related
degradations. RFC 3135, 2001.

[4] K. Chebrolu, B. Raman, and R. R. Rao. A network layer approach
to enable tcp over multiple interfaces.Wirel. Netw., 11(5):637–
650, 2005.

[5] D. Cocker. Multiple address service for transport (MAST). In
Proc. of Symposium on Applications and the Internet (SAINT’04),
Tokyo, Japan, January 2004.

[6] C. de Launois, B. Quoitin, and O. Bonaventure. Leveraging net-
work performance with IPv6 multihoming and multiple provider-
dependent aggregatable prefixes.Comput. Netw., 50(8):1145–
1157, 2006.

[7] R. Greco and G. Galante. Load balancing over multipaths using
bandwidth-aware source scheduling. InProc. of International
Symposium on Wireless Personal Multimedia Communications
(WPMC’04), December 2005.

[8] A. Gurtov. Host Identity Protocol (HIP): Towards the Secure
Mobile Internet. Wiley and Sons, 2008.

[9] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley.
Multi-path TCP: a joint congestion control and routing scheme
to exploit path diversity in the internet.IEEE/ACM Trans. Netw.,
14(6):1260–1271, 2006.

[10] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi, and
T. Murase. Deployable multipath communication scheme with
sufficient performance data distribution method.Comput. Com-
mun., 30(17):3285–3292, 2007.

[11] X. Hesselbach, R. Fabregat, B. Baran, Y. Donoso, F. Solano,
and M. Huerta. Hashing based traffic partitioning in a multicast-
multipath MPLS network model. InLANC ’05: Proceedings of
the 3rd international IFIP/ACM Latin American conference on
Networking, pages 65–71, 2005.

[12] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and D. Katabi.Fat-
VAP: aggregating AP backhaul capacity to maximize throughput.
In NSDI’08: Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, pages 89–104,
2008.

[13] F. Kelly and T. Voice. Stability of end-to-end algorithms for
joint routing and rate control.SIGCOMM Comput. Commun.
Rev., 35(2):5–12, 2005.

[14] J. Kempf, J. Arkko, and P. Nikander. Mobile IPv6 security. Wirel.
Pers. Commun., 29(3-4):389–414, 2004.

[15] K.-H. Kim and K. G. Shin. Improving TCP performance over
wireless networks with collaborative multi-homed mobile hosts.
In Proc. of the 3rd Int. conf. on Mobile systems, applications,
and services (MobiSys’05), pages 107–120, June 2005.

[16] R. Moskowitz and P. Nikander. Host Identity Protocol architec-
ture. IETF RFC 4423, May 2006.

[17] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson.Ex-
perimental Host Identity Protocol (HIP). IETF RFC 5201, Apr.
2008.

[18] P. Nikander, T. Henderson, C. Vogt, and J. Arkko. End-host
mobility and multihoming with the Host Identity Protocol (HIP).
IETF RFC 5206, Apr. 2008.

[19] P. Nikander and J. Laganier. Host Identity Protocol (HIP) domain
name system (DNS) extension. IETF RFC 5205, Mar. 2008.

[20] P. Nikander and J. Melen. A bound end-to-end tunnel (BEET)
mode for ESP: draft-nikander-esp-beet-mode-09, Aug. 2008.
Work in progress.

[21] R. Penno, S. Raghunath, and J. Iyengar. LEDBAT practices and
recommendations. RFC, IETF, 2009.

[22] S. Pierrel, P. Jokela, and J. M. Melen. Simultaneous Multi-Access
extension to the Host Identity Protocol: draft-pierrel-hip-sima-00,
June 2006.

[23] S. Ramabhadran and J. Pasquale. Stratified Round Robin:a
low complexity packet scheduler with bandwidth fairness and
bounded delay. InProc. of ACM SIGCOMM’03, pages 239–249,
Aug. 2003.

[24] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz. Dis-
joint multipath routing using colored trees.Comput. Netw.,
51(8):2163–2180, 2007.

[25] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream
Control Transmission Protocol. RFC 2960, IETF, Oct. 2000.

[26] D. Wischik, M. Handley, and M. B. Braun. The resource
pooling principle.SIGCOMM Comput. Commun. Rev., 38(5):47–
52, 2008.

[27] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A
Reordering-Robust TCP with DSACK. InIEEE ICNP, pages
95–106, 2003.

[28] F. Zhao and S. Wu. Analysis and improvement on IPSec anti-
replay window protocol. InICCCN 2003: Proceedings of the
12th International Conference on Computer Communicationsand
Networks, pages 553–558, 2003.

8

