
1

Performance analysis of general
backoff protocols

Andrey Lukyanenko and Andrei Gurtov

Abstract—In this paper, we analyze backoff protocols, such as
the one used in Ethernet. We examine a general backoff function
(GBF) rather than just the binary exponential backoff (BEB) used
by Ethernet. Under some mild assumptions we find stability and
optimality conditions for a wide class of backoff protocols with
GBF. In particular, it is proved that the maximal throughput
rate over the class of backoff protocols is a fixed function of the
number of stations (N) and the optimal average service time is
about Ne for large N . The reasons of the instability of the BEB
protocol (for a big enough input rate) are explained.

Additionally, the paper introduces novel procedure for ana-
lyzing bounded backoff protocols, which is useful for creating
new protocols or improving existing, as no protocol can use
unbounded counters.

Index Terms—Ethernet, backoff protocol, contention resolu-
tion, stability, optimality, queuing theory.

I. INTRODUCTION

ETHERNET was developed in 1973 by Bob Metcalf and
David Boggs at the Xerox Palo Alto Research Center.

Nowadays, it is the most popular local area network due to
the ease in maintenance and the low cost. The principle of
Ethernet is that all stations are connected to the same shared
medium through transceivers. Whenever a single station wants
to send a message, it simply broadcasts it to the medium. When
at some moment of time there are two or more messages
in the medium, they interfere, and none of them can be
received by any station. To deal with unnecessary collisions,
a resolution protocol was developed (see [7]). It has the
following mechanisms:

1) Carrier detection. This mechanism lets stations know
when the network has a message. If any station senses
that there is a phased encoded signal (continuous) in
the network, then it will defer the time of its own
transmission until the channel becomes empty.

2) Interference detection. Each station listens to the chan-
nel. When it sends a message it is continuously compar-
ing the signal that has just been sent and the signal in
the network at the same moment of time. If these signals
have different values, the message is considered to be
corrupted. Here we introduce the round trip time: this

Manuscript received December, 2007 and revised February, 2008.
This Paper was presented as part at the Next Generation Teletraffic and

Wired/Wireless Advanced Networking (NEW2AN) 2007.
The paper was written in part while A. Lukyanenko was with University

of Kuopio, P.O.Box 1627, FI-70211 Kuopio FINLAND and supported in part
by CIMO Fellowship, 2006, Finland.

A. Lukyanenko and A. Gurtov are with Helsinki Institute for Information
Technology, Helsinki, P.O. Box 9800, FIN-02015 TKK, Finland e-mail: (see
http://hiit.fi/people).

is the time during which the signal propagates from one
end of the network to the other and back.

3) Packet error detection. This mechanism uses checksums
to detect corrupted messages. Every message with a
wrong checksum is discarded.

4) Truncated packet filtering. This mechanism lets us re-
duce the load on the system if the message is already
corrupted (detection during round trip time), and filter
them out on the hardware level.

5) Collision consensus enforcement. When a station sees
that its message is corrupted, it jams the whole network
by sending special “jammed” information. This mecha-
nism ensures that no station will consider the corrupted
message in the network to be a good one.

Due to these mechanisms, a message is not sent when it
is known that there is information in the medium, and if a
collision happens, it can be clearly sensed. But there is still a
possibility that one station decides that the medium is empty,
while another has already started a transmission. There will
be interference at some point of the network. A probabilistic
protocol will help us to avoid this problem. Our work examines
a general type of the probabilistic protocol.

A. Protocol

Let there be N stations and every station have a queue of
messages to send. These stations are connected to a shared
medium, where collisions may happen time to time. To deal
with such collisions, the backoff protocol from the Aloha
network was adopted (see [2], [3]). If a collision occurs in
the backoff protocol, the next retransmission will be done in
one of the next W moments, where W is a time window of
certain size and the retransmission in the window is chosen
uniformly. A time slot (or just a slot) is a time equal to the
round trip time. We can vary this time in our model in order
to get model closer to the real protocol, where is no time
synchronization. If a collision does not happen during the first
time slot (for a message that requires more than one time
slot to be transmitted), it will not happen at all, due to the
carrier detection mechanism. Therefore, we can consider that
the transmission of one message takes only one time slot in
our model. The segment of time slots [1 . . .W] is called a
contention window. The idea behind the contention window
is that we select a time slot for transmission uniformly in the
contention window. The main goal of this principle is to reduce
the load on the network, and hence to increase the probability
of successful resending of a message during one of the next
time slots, within the contention window.

Backoff protocols are acknowledgment-based protocols.
This means that they store information about their own trans-
missions. This information is the number of uninterrupted
unsuccessful transmissions up to this moment. It is called a
backoff counter, and denoted by bi for station i. At first, the
counter is equal to 0, and it increases after every unsuccessful
attempt. The counter returns back to 0 after a successful
transmission, and the message is removed from the top of the
corresponding queue. The counter is not increased endlessly;
at some moment of time it is stopped, and we decide that we
cannot successfully send the current message, and discard it.
In Ethernet the upper bound for the backoff counter is 16.

In general, in any backoff protocol, the contention window
changes with the change of the backoff counter. The probabil-
ity of sending at a time slot of the contention window (Wbi

for
station i) is a function of the backoff counter (bi for station i),
and we call this probability the backoff function. We consider
f(bi) as a probability, but not necessarily

∑
bi

f(bi) = 1.
At any moment of time the probability f(bi) defines uniform
distribution for the next attempt to transmit when the backoff
counter bi is known. We can set the contention window size
via f(bi) ≤ 1, as Wi = f−1(x)W0 ≥ 1, where W0 is the
minimal contention window size and f−1(x) def= 1

f(i) . For W0

we use value 1 by default, when the opposite is not mentioned.
Note, function f−1(x) not necessary gives integer numbers,
in that case, we will define below somewhat modified uniform
distribution more precisely.

We need to retransmit a message after every collision, or
discard it. First of all, we increase the backoff counter, which
represents the load of the system. If we know the backoff
function for this counter, we can determine the contention win-
dow size. Then we take a random value from the contention
window representing some time delay in the slots. This is the
time that must elapse before the next transmission attempt.
This random value we call a backoff time, and it is uniformly
distributed on the contention window.

As an example, in Ethernet the backoff protocol is called the
BEB, and f(bi) = 2−bi , for bi ≤ 10, and f−1(bi) = 1024, for
bi > 10. As we mentioned before, after M = 16 we discard
the packet.

B. Related work

BEB protocol has over 30 years of research history. Results
that have been received, appear to contradict each other; some
authors say that the protocol is stable, some say it is not. The
result of analyses greatly depends on the used mathematical
model, i.e. how they mathematically approximate the Ethernet
protocol. Here, we are going to mention some of the most
interesting research outcomes.

Kelly [8] (later with MacPhee [9]) showed that BEB pro-
tocol is unstable for λ > 0.693, and strongly stable for λ <
0.567 for infinite model (N = ∞). Furthermore, this author
says that ”the expected number of successful transmissions
is finite for any acknowledgment based scheme with slower
than exponential backoff”. Then Aldous [1] with almost the
same model found that all acknowledgment-based protocols
are unstable. They used a queue-free infinite model. However,

later Håstad et al. [6] discovered that a finite model (i.e. model
with a finite number of stations) with queues is stable for
polynomial backoff protocol and BEB protocol is unstable for

λ ≥ λ0 +
1

4N − 2
with λ0 ≈ .567.

Additionally, the definition of stability in [6] differs from
the first authors. They define stability as the finiteness of
expected time to return to zero (which is also called positive
recurrence [6]) and finiteness of expected average total queue-
size. The first two authors talk about stability in terms of
throughput rate; several other results about the stability of
Ethernet can be found in literature, see [10]–[14]. However,
we are mostly interested in works of Bianchi [5] and Kwak
et al. [4]. The models proposed by the latter authors seem to
be the most reasonable. In [5] the throughput rate of wireless
local area network is analyzed for a protocol which is close
to Ethernet protocol. A similar model was considered in [4],
where some results on the expected delay time and throughput
for exponential backoff protocol from Ethernet network with
a general factor r (in BEB protocol the factor r equals to 2)
are obtained.

II. ANALYSIS

Our analysis is based on the work of Kwak et al. [4]
and Bianchi [5]. We use their model and now present some
assumptions adopted from [4], [5].

A. Model with unbounded backoff counter

We have the following assumptions
• Our first assumption is that our system is in a steady state.

It is a reasonable assumption for a big enough number
of stations N . We assume that a large number of stations
makes the network work uniformly. In other words, if the
number of stations is large, a single station does not have
a great effect on the performance of the system. On the
other hand, for a small number of stations this assumption
may be far from reality (it is possible, for example, that
one station may capture the channel, what is called a
capture effect). By this assumption at any moment of time
we have the same probability pc for the collision of a
message sent to the medium.

• The second assumption is that all stations are identical,
so the performance of every station is the same.

• The third assumption is that our model is under the
saturation condition. Hence, there are always messages
waiting in the input. Without saturation assumption the
system might show “better” results, but this assumption
lets us understand the worse case.

• The last assumption is that the time is divided into time
slots of equal length. During every time slot we can
send a message, the propagation time of the message is
assumed to be equal to the time slot. Every message is
synchronized to the time slot bounds. We know that if
a collision has not happened during the first time slot
for some large message (large means that the message
transmission duration is longer then time slot duration),

then most likely, it will not happen in the remaining time
slots of this message with high probability.

When a new packet is sent for the first time, the (initial)
contention window size is W0. After the first attempt, the
time within which the transmission will be tried is delayed
by an amount of time which is uniformly distributed over
the set {1, . . . ,W0}. Every time we have a collision we
increase this delay set according to a backoff function f(i),
where 0 < f(i) < 1 for i > 0 and we assume that
f(0) = 1. After the ith collision, the delay is distributed over
{1, . . . , df−1(i)W0e}. The initial value W0 can be interpreted
as the multiplier value for function f−1(i) (we always see it as
a multiplier). After a successful transmission the delay again
is distributed in {1, . . . W0}.

In our model, the backoff counter specifies the state of each
station. Let Di be the time of staying in state i, called delay,
thus we have the following formula for Di:

Pr{Di = k} =
1
Xi

− Yi

Xi(Xi + 1)

=
Xi + 1− Yi

Xi(Xi + 1)
, k = 1, . . . , Xi

Pr{Di = Xi + 1} =
Yi

Xi + 1
, (1)

where Xi = bf−1(i)W0c and Yi = f−1(i)W0 − Xi. The
construction above helps to deal with continuous backoff
function, and it is applicable if

f−1(i)W0 ≥ 1, for all i. (2)

If f−1(i)W0 is an integer then equation (1) has the following
(uniform) distribution,

Pr{Di = k} =
1

f−1(i)W0
, k = 1, . . . , f−1(i)W0.

Definition (1) is almost the same as in [4]; now Xi and Yi

are the integer and fractional parts not only for riW0, but for
f−1(i)W0 in general (in [4] f(i) = 1

ri).
Now we know how long we are going to stay in the state

i. Next what we should do, is to find the probability Pi to
succeed state i. The state model remains the same as in [4]
(see Figure 1), hence the probability Pi is

Pi = (1− pc)pi
c, (3)

where the collision probability pc to be determined below.

B. System load

Let EDi be the expected delay for state i. It then follows
from (1) that

EDi =
Wi + 1

2
, (4)

where Wi = f−1(i)W0. We know that we enter state i with
probability Pi and stay in i for EDi time in average. Thus,
we can find the probability γi to be in state i at any instant. It
corresponds to the fraction of time that system spends in this

state in steady-state model:

γi =
EDiPi∑∞

j=0 EDjPj
=

(Wi + 1)(1− pc)pi
c∑∞

j=0(Wj + 1)(1− pc)p
j
c

=
(Wi + 1)(1− pc)pi

c

W0(1− pc)
∑∞

j=0 f−1(j)pj
c + 1

. (5)

In general we cannot find the exact value of
∑∞

j=0 f−1(j)pj
c,

and furthermore we cannot expect that the sum of the series
even converges on 0 < pc < 1. Let us define a new function

F (z) def=
∞∑

j=0

f−1(j)zj . (6)

Denote by ξ = ξ(pc) the (random) number of successive
collisions before the successful transfer, then

E
[
f−1(ξ)

]
=

∞∑
i=0

f−1(i)P{ξ = i} = (1− pc)F (pc).

Note that we cannot consider F (pc) as a generating func-
tion, because of a dependence between pc and the set of the
backoff functions {f(i), i ≥ 0}.

Substituting (6) into (5), we obtain a compact form of the
equation for γi:

γi =
(Wi + 1)(1− pc)pi

c

W0(1− pc)F (pc) + 1
. (7)

It follows from [4] that the probability to be in state i with
backoff timer equal to zero (the station is transmitting in state
i) is exactly γi

EDi
, hence the transmission probability pt at any

instant is (see (4))

pt =
∞∑

i=0

γi

EDi
=

∞∑
i=0

2(1− pc)pi
c

W0(1− pc)F (pc) + 1
.

This immediately implies

pt =
2

W0(1− pc)F (pc) + 1
. (8)

Another dependence between pt and pc can be taken from [5]:

pc = P{collision}
= 1− P{no transmissions from other N − 1 stations}
= 1− (1− pt)N−1. (9)

So we obtain another equation connecting pt and pc:

pt = 1− (1− pc)
1

N−1 . (10)

Combining (8) and (10) implies

2
W0(1− pc)F (pc) + 1

= 1− (1− pc)
1

N−1 . (11)

Note that the right-hand side of (11) is 0, when pc = 0, it is
1, when pc = 1 and it monotonically increases with pc. Let

G(pc)
def=

2
W0(1− pc)F (pc) + 1

. (12)

i = 0 i = 1 i = 2 i = 3
cp

1 - pc

cp cp cp

1 - pc 1 - pc1 - pc 1 - pc

Fig. 1. State model.

Putting pc = 0 in (12) and taking into account (2) we obtain

0 < G(0) =
2

W0f−1(0) + 1
=

2
W0 + 1

≤ 1.

To have a unique solution pc of (11) the monotone decrease
of function G(pc) (for 0 < pc < 1) is sufficient. To check
this, we calculate derivative

G′(pc) =
(

2
W0(1− pc)F (pc) + 1

)′
pc

= − 2
(W0(1− pc)F (pc) + 1)2

×

(
−W0F (pc) + W0 (1− pc) F ′

pc
(pc)

)
.

As we can see, only the rightmost parentheses part in the
equation above determines the sign of the derivative G(pc)′.
Recall that F (pc)

def=
∑∞

j=0 f−1(j)pj
c. Thus we have

W0 [−F (pc) + (1− pc) F ′(pc)] =

W0

− ∞∑
j=0

f−1(j)pj
c

+(1− pc)
∞∑

j=0

(j + 1)f−1(j + 1)pj
c

 =

W0

− ∞∑
j=0

f−1(j)pj
c +

∞∑
j=0

(j + 1)f−1(j + 1)pj
c =

−
∞∑

j=0

(j + 1)f−1(j + 1)pj+1
c

 =

W0

− ∞∑
j=0

f−1(j)pj
c +

∞∑
j=0

(j + 1)f−1(j + 1)pj
c =

−
∞∑

j=0

jf−1(j)pj
c

 =

W0

 ∞∑
j=0

(j + 1)
(
f−1(j + 1)− f−1(j)

)
pj

c

 .

From the last equations we have that condition f−1(i + 1) ≥
f−1(i) for every i is enough to have non-increasing function
G. Hence, if we have for at least one k that f−1(k + 1) >
f−1(k) (in addition to condition f−1(i+1) ≥ f−1(i) for every
i), then we have only one intersection. Note, that if W0 > 1
then we need only condition f−1(i + 1) ≥ f−1(i). This is a
sufficient condition to have unique solution pc satisfying (11).

Note that if we have f(i) = d for all i (Aloha protocol),
then the function G will be a horizontal line.

Now we resolve equation (11) in such a way to obtain
F (pc):

F (pc) =
1 + (1− pc)

1
N−1

W0(1− pc)
(
1− (1− pc)

1
N−1

) . (13)

For z ∈ (0, 1), we introduce the function

L(z) def=
1 + (1− z)

1
N−1

W0(1− z)
(
1− (1− z)

1
N−1

) . (14)

Thus, the solution of the equation F (pc) = L(pc) gives us
the value of pc (See Figure 2). We can see that the faster we
increase the resolution window, the smaller is the probability
of collision. So by this graphics, BEB protocol seems to be
better than, for example, polynomial as the contention window
of exponential backoff increases faster than the contention
window for polynomial. Later we will show that with small
number of collisions (big contention window) the channel
becomes more and more loaded. (More packets wait in the
queue, what is called instability in [6]).

C. Expected transmission time

Next, we should find the average time for a message to
leave the system successfully. In this model we do not have
another choice, as we do not discard messages. For this
reason we should introduce a new random variable. Let NR

be the random variable of state at which a node transmits
successfully. In other words, it is the number of collisions
before a successful transmission.

Obviously, the probability to transmit successfully exactly
at the ith state is

Pi = P (NR = i) = (1− pc)pi
c i ≥ 0. (15)

Hence, the average number of collisions before transmission
is

E[NR] =
∞∑

i=0

iPi =
pc

1− pc
.

Let S be the service time of a message. That is the time since
the first attempt to transmit up to the instant when the message
leaves the system. (In other words, that is complete time of
transmission of a message). Now we can compute the average
service time ES of a message being in the top of the queue.
Because variables NR and Di are independent, we can use
the known property of conditional expectation to obtain

Fig. 2. Intersection points for equation F (x) = L(x), where F (x) is observed in particular cases. FQ(x) = 1+x
(1−x)3

for quadratic polynomial function,

FL(x) = 1
(1−x)2

for linear function, and FE(x) = 1
1−2x

for BEB protocol.

ES = E

[
NR∑
i=0

Di

]
= ENR

[
E

[
NR∑
i=0

Di

∣∣∣∣∣NR

]]

= E

[
NR∑
i=0

Wi + 1
2

]

=
W0

2
E

[
NR∑
i=0

f−1(i)

]
+

E[NR] + 1
2

. (16)

Furthermore, let the indicator function for a boolean variable
A be 1(A)

1(A) def=

{
1, if A,
0, otherwise.

Using function 1(A) and its property we find the value of the
first term in the sum

E

[
NR∑
i=0

f−1(i)

]
= E

[∞∑
i=0

f−1(i)1{NR ≥ i}

]

=
∞∑

i=0

f−1(i)P (NR ≥ i),

where 1(·) is the indicator function. Recall that P (NR ≥ i) =
pi

c. Then (16) becomes

ES =
1
2

(
W0

∞∑
i=0

f−1(i)pi
c +

1
1− pc

)
.

Thus, we have finally

ES =
1
2

(
W0F (pc) +

1
1− pc

)
. (17)

Now we insert (13) into (17) and obtain

ES =
1

(1− pc)
(
1− (1− pc)

1
N−1

) . (18)

By easy algebra, (18) gets minimum at

p∗c = 1−
(

1− 1
N

)N−1

(19)

Recall the well-known limit(
1− 1

N

)N
N→∞−−−−→ e−1. (20)

Hence,

p∗c = 1−
(

1− 1
N

)N−1
N→∞−−−−→ 1− e−1, (21)

and this simple expression gives us the optimal collision
probability p∗c as the number of stations N tends to infinity.

D. Stability condition

Let λ be the incoming rate for the system. We assume that
the incoming message uniformly chooses the station in the
network. Hence, the incoming rate for a single station is λ

N .
The condition that the queue of the station decreases over time
is ES < N

λ . This gives the following stability condition of the
protocol:

λ < N(1− pc)
(
1− (1− pc)

1
N−1

)
. (22)

E. Optimality condition

Now we could clearly say what conditions should be set to
have the best possible protocol (over the class of the backoff
protocols). Optimal value (19) of collision probability p∗c =
1−

(
1− 1

N

)N−1
tends to 1− e−1 as the number of stations

N tends to infinity. Also, for this (optimal) value the maximal
attainable throughput of the system is

λ∗ = sup
{

λ : λ <
(
1− 1

N

)N−1
}

, (23)

which tends to e−1 as N tends to infinity. It then follows from
(18) and (19) that optimal point pc = p∗c gives the following
minimal average service time

ES =
N(

1− 1
N

)N−1
. (24)

This expectation tends to infinity as N tends to infinity.
Note that for an individual station this tendency means

instability, if we have infinite number of stations. These results
agree with previous results of other authors on stability of
infinite model. In spite of tendency to infinity for individual
stations the whole network has finite expected service time
when N → ∞. For us, it is most significant to know the
service time of every station for some fixed finite parameter
N (the number of stations), by which we can tune real network
for the best performance.

Now we see from (13) that to achieve the optimal point, the
backoff parameters shall satisfy the following condition

F (p∗c) =
2N − 1

W0

(
1− 1

N

)N−1
. (25)

It means that if we can find such a protocol (i.e. the set of
backoff functions {f−1(i)}) that (25) holds, then the protocol
is the best over the class of backoff protocols in the sense of
minimization of the average transmission time of a message.

F. Elimination the saturation conditions

We extend our analysis by omitting the saturation condition.
To get it we change the model on the following, see Figure 3.
In the new model almost everything remains the same except
we add a new state −1 representing incoming messages. We
assume that there is always some incoming rate (λ > 0).
Hence there are always messages in the incoming queue, the
only difference is that we need to wait for them for a certain
delay. Let this time be the following random variable

D−1
def=

{
0, if q > 0,
τ, if q = 0,

where τ is a random variable representing the time between
incoming messages (E[τ] = 1

λ) and q is the number of
waiting messages in the queue. We can write the time delay for
incoming queue in the following way, D−1 = τ ·1{q = 0}. As
we can see there is a tight dependence between τ and queue
size q.

A technique of negative drift could help us to analyze the
stability of this model. This technique states that if we outside
some finite set have negative expected tendency for the change
in the queue size then the system is positive recurrent (see
[15]). (Also another condition is required to exclude an infinite
jump.) To use this technique we define a random process
X(t) = {q(t), b(t), l(t)} for some station, where q(t) is the
number of waiting massages in the queue, b(t) is the size of
backoff counter, and l(t) is the number of time slots remained
till the end of the current contention window at some moment
of time t (Note that b(t) is 0 or l(t) is 0 if q(t) is 0 at some
moment of time t). For us the recurrence is enough for the
system to be stable. Let us define the finite set outside which

we need the negative drift, as the set representing station with
at least one waiting message in it. Due to this condition the
station becomes saturated, and our model becomes identical
to the already studied saturation model. The condition of the
negative drift hence is identical to the inequality (22).

G. Model with bounded backoff counter

We can easily extend previous results on the model with
an upper bound on the backoff counter (see Figure 4). In this
model, if the backoff counter exceeds some value M then
the message becomes discarded and we take a new one from
the queue. Probability to discard a message is P{discard} =
pM+1

c . Now we shall recalculate the values for the new model,
but some of them do not depend on the number of states and
hence they remain the same. One of the unchanged values is
the delay time Di.

The probability to enter state i is to be modified, now we
can find it as

Pi =
(1− pc)pi

c

1− pM+1
c

. (26)

Hence the probability to be in state i at any moment of time
is

γi =
PiEDi∑M

j=0 PjEDj

=
(Wi + 1)(1− pc)pi

c∑M
j=0(Wj + 1)(1− pc)p

j
c

=
(Wi + 1)(1− pc)pi

c

W0(1− pc)
∑M

j=0 f−1(j)pj
c + 1

. (27)

Using the same arguments we find that

pt =
M∑
i=0

γi

EDi
=

M∑
i=0

2(1− pc)pi
c

W0(1− pc)FM (pc) + 1− pM+1
c

=
2(1− pM+1

c)
W0(1− pc)FM (pc) + 1− pM+1

c

, (28)

where FM (pc) =
∑M

i=0 f−1(i)pi
c. Note that equation (8) is

independent of the upper bound for backoff counter. Hence
we can use it here. Combining (28) and (8) we have solution
for FM (pc):

FM (pc) =

(
1− pM+1

c

) (
1 + (1− pc)

1
N−1

)
W0 (1− pc)

(
1− (1− pc)

1
N−1

) . (29)

Applying almost the same formula for the service time (now
we have a finite sum instead of an infinite sum) we have

ES = E

min{M,NR}∑
i=0

Di

= ENR

E

min{M,NR}∑
i=0

Di

∣∣∣∣∣∣NR

= E

min{M,NR}∑
i=0

Wi + 1
2

i = 0 i = 1 i = 2 i = 3
cp

1 - pc

cp cp cp

1 - pc 1 - pc

1 - pc

1 - pc

1
i =-1

Fig. 3. State model without saturation condition.

i = 0 i = 1 i = 2 i = 3
cp

1 - pc

cp cp cp

1 - pc 1 - pc
1 - pc

i = M

1

cp
...

...

Fig. 4. State model with bounded counter.

=
W0

2
E

min{M,NR}∑
i=0

f−1(i)

+
E[NR] + 1

2
, (30)

where similar computation for the last component is possible
by virtue of the same random variable NR.

E

min{M,NR}∑
i=0

f−1(i)

 = E

[
M∑
i=0

f−1(i)1{NR ≥ i}

]
=

=
M∑
i=0

f−1(i)P (NR ≥ i)

=
M∑
i=0

f−1(i)pi
c = FM (pc).

Combining again the last equations we have

ES =
1
2

(
W0FM (pc) +

1
1− pc

)
. (31)

But we already found FM (pc) for (31), hence

ES =

(
1− pM+1

c

)
(1− pc)

(
1− (1− pc)

1
N−1

) , (32)

which is equal to (17) when M = ∞. The negative drift
condition for the bounded model will be

λ <
N (1− pc)

(
1− (1− pc)

1
N−1

)
(
1− pM+1

c

) . (33)

When M = ∞ (33) gives (22).

III. APPLICATION TO THE ETHERNET CASE

Now we try to apply these results to the real Ethernet
protocol (See Section I-A). In addition, we present two ex-
ponential protocols that seem to show better performance in
mathematical models. We will probe these protocols in cases,
when the number of stations is 11, 51, 101, 501 and 1001. In
the end we will give an outline of the estimated performance
for these cases.

In the introduction we said that Ethernet is a bounded BEB
protocol with M = 16. Hence, for the Ethernet policy we have

F 16
E (pc) =

10∑
i=0

2ipi
c +

16∑
i=11

210pi
c

=
1− (2pc)11

1− 2pc
+ 210p11

c

1− p6
c

1− pc
.

Additionally, we consider another (exponential) set of backoff
functions

FM
a (x) =

M∑
i=0

aixi =
1− (ax)M+1

1− ax
.

Especially, we are interested in some sets of functions F 16
a (x)

(particularly F 16
2.1(x) and F 16

2.4(x)). See Figure 5 to understand
the behavior of the functions.

In the table III we give comparative data on the behavior
of the network depending on the protocol and the number
of stations. In the table, the leftmost column shows the
number of the stations, the next row shows the point of
intersection pc, after that column shows the average service
time for the network, and the last column shows the probability
of discarding for that protocol. Every cell has 3 numbers,
separated by ’/’, these numbers are correspondingly data for
F 16

2.4(x), F 16
2.1(x), and F 16

E (x).

From the table we derive that Ethernet protocol is better to
use for a small number of stations (something like 10 stations),
on the other hand the protocol F 16

2.1(x) is better to use for 51,
101 stations, and the protocol F 16

2.4(x) is a good choice for
501, 1001 active stations. Also the existing Ethernet protocol
is better not to use if the number of stations is greater than 500,
because the probability that your message will be discarded
is high. In real network, where some stations may be almost
“silent”, the number of active stations much lower than the
actual number of the stations in the network.

Fig. 5. Collision probability for Ethernet, where L(x) plots for 11, 51, 101, 501 and 1001 stations, F 16
E (x) is function for Ethernet, F 16

2.1 , F 16
2.4 are

exponential backoff functions (with parameter a = 2.1 and a = 2.4, respectively) with at most 16 attempts to transmit (as for Ethernet).

Number of stations Backoff function pc
ES
N P{discard}

11 F 16
2.4(x) 0.48 2.77 3 ∗ 10−6

11 F 16
2.1(x) 0.54 2.64 3 ∗ 10−5

11 F 16
E (x) 0.62 2.59 3 ∗ 10−4

51 F 16
2.4(x) 0.54 2.76 3 ∗ 10−5

51 F 16
2.1(x) 0.62 2.69 3 ∗ 10−4

51 F 16
E (x) 0.74 2.83 6 ∗ 10−3

101 F 16
2.4(x) 0.57 2.74 6 ∗ 10−5

101 F 16
2.1(x) 0.65 2.71 7 ∗ 10−4

101 F 16
E (x) 0.80 3.02 0.022

501 F 16
2.4(x) 0.64 2.72 5 ∗ 10−4

501 F 16
2.1(x) 0.73 2.82 5 ∗ 10−3

501 F 16
E (x) 0.94 3.86 0.349

1001 F 16
2.4(x) 0.67 2.73 1.2 ∗ 10−3

1001 F 16
2.1(x) 0.77 2.93 0.012

1001 F 16
E (x) 0.99 3.52 0.809

Fig. 6. Numeric results for bounded backoff protocols F 16
2.4(x), F 16

2.1(x), and F 16
E (x).

IV. DISCUSSION AND FUTURE WORK

So far we have focused on the binary backoff protocol in the
traditional Ethernet network where medium is shared through
collision resolution. The modern Ethernet standards are based
on switching frames rather than allowing frames to collide
and launching the backoff protocol on stations. Only stations
residing in a single collision domain in Ethernet network, that
is connected to a hub, have collisions.

Two important areas where the backoff protocol is still
used is congestion control in transport protocols and medium
access control in wireless networks. The stability of Internet is
largely due to the voluntarily use of additive increase – mul-
tiplicative decrease TCP congestion window combined with
packet retransmissions following the backoff protocol [16].
This approach is copied to several other transport protocols,
including Stream Control Transport Protocol (SCTP) and TCP
Friendly Rate Control (TFRC).

In wireless networks, most importantly IEEE 802.11
WLAN, stations still compete for medium access through

collisions. One important difference to wireline Ethernet is
that once the wireless station started transmitting a frame, it
cannot detect a collision until the transmission has completed.
Therefore, the price of collisions is higher than in Ethernet and
the MAC protocol performs collision avoidance. This area is
of more practical importance today since the use of WLAN
is rapidly growing while CSMA/CD Ethernet deployment is
shrinking. Our backoff model will be significantly affected by
the new assumptions. Its derivation and evaluation is a subject
of our current work.

The use of constant two in increasing the interval between
TCP retransmissions is mostly motivated by the easiness of im-
plementation. The multiplication by two can be implemented
as a simple bit shift operation, there as multiplication by
a real number requires many more CPU cycles. However,
this argument is largely obsolete now as the computational
capabilities of modern process had significantly increased.

An interesting scenario appears when the stations do not
follow the voluntary TCP congestion control, but attempt to

behave selfishly to maximize own throughput. Recent work
evaluated the impact of congestion control parameters on var-
ious TCP flavors [17]. However, the paper mostly concentrated
on the effect of additive increase and multiplicative decrease
coefficients, giving little consideration to the effect of backoff
behavior. During the network overload when all stations are
transmitting aggressively, the backoff conditions are likely to
prevail since the TCP protocol would need to recover many
lost packets.

We plan to develop a game-theoretic model of selfish
backoff strategy and search for equilibrium conditions. The
results will be evaluated with ns-2 simulations with TCP
modified to use the optimal backoff constants.

V. CONCLUSIONS

We have found stability conditions for the steady state
models of backoff protocols. These conditions were obtained
both for the bounded and for the unbounded retry limit models.
Consequently, we can analytically measure the throughput of
the system and the service time. We have also found the
optimality conditions. The question of the optimality is still
open, but for our model (unbounded retry limit) we prove that
exponential function is the best choice for the backoff function.
In the paper we present graphics that show the correlation
between the level function L(x) and the “extended” backoff
function F (x). Moreover, from the graphic in Figure 2 we
can see why sub-linear and super-exponential functions are
not good choices. Finally, we show the “connection” of the
stability for bounded backoff and the successful throughput
rate (1− P{discard}).

In this paper, we present analytical solutions, but some
questions still remain open. For example, the optimality (for
different M) of the general bounded backoff (particularly Eth-
ernet) and the appropriateness of the steady state assumption.
A simulation would help to answer the last question, but at
the present there are good reasons for supposing that this
assumption is appropriate.

A. Acknowledgment

Andrey Lukyanenko would like to thank Prof. Martti
Penttonen, who introduced him to the problem arising in
Ethernet and helped a lot with editing of this article. Andrey
thanks Prof. Evsey Morozov for many valuable comments
which have improved presentation of the paper and attracting
his attention to the principle of negative drift, and an excellent
book of Meyn and Tweedie.

REFERENCES

[1] D. J. Aldous, “Ultimate Instability of Exponential Back-Off Protocol
for Acknowledgement-Based Transmission Control of Random Access
Communication Channel”, IEEE Trans. on Information Theory, IT-
33(2), pp. 219-223, 1987.

[2] N. Abramson, “The ALOHA system-another alternative for computer
communications”, AFIPS, vol. 37, pp. 281-285, 1970.

[3] N. Abramson, “Development of the ALOHANE”, IEEE Trans. on
Inform. Theory, vol. 31(2), pp. 119-123, 1985.

[4] B. Kwak, N. Song, and L. E. Miller, “Performance analysis of exponen-
tial backoff”, IEEE/ACM Trans. Netw. vol. 13(2), pp. 343-355, 2005.

[5] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function”, IEEE J. on Sel. Areas in Commun., vol. 18(3),
pp. 535-547, 2000.

[6] J. Håstad, T. Leighton, and B. Rogoff, “Analysis of backoff protocols for
multiple access channel”, SIAM J. Comput,. vol 25, no. 4, pp. 740-774,
1996.

[7] R. Metcalfe, D. Boggs, “Ethernet: Distributed Packet Switching for
Local Computer Networks”, Communications of the ACM, vol. 19(7),
pp. 395-404, July 1976.

[8] F. P. Kelly, “Stochastic models of computer communication systems”,
J. Roy. Statist. Soc. B, vol.47., pp. 379-395, 1985.

[9] F.P. Kelly and I.M. MacPhee, “The number of packets transmitted by
collision detect random access scheme”, Annals of Prob., vol. 15, pp.
1557-1568, 1987.

[10] J. Goodman, A.G. Greenberg, N. Madras and P. March, “Stability of
binary exponential backoff”, J. of the ACM, vol. 35(3), pp. 579-602,
1988.

[11] G. Fayolle, P. Flajolet and M. Hofri, “On a functional equation arising
in the analysis of a protocol for a multi-access broadcast channel”, Adv.
Appl. Prob., vol. 18, pp. 441-472, 1986.

[12] W.A. Rosenkrantz, “Some theorems on the instability of the exponential
back-off protocol”, in Proc. of Performance ’84, pp. 199-205, 1985.

[13] L. A. Goldberg and P. MacKenzie, “Analysis of Practical Backoff
Protocols for Contention Resolution with Multiple Servers”, J. of Comp.
and System Sciences, vol. 58, pp. 232-258, 1999.

[14] L. A. Goldberg, P. MacKenzie, M. Paterson and A. Srinivasan, “Con-
tention Resolution with Constant Expected Delay”, Journal of the ACM
(JACM), vol. 47(6), pp. 1048-1096, 2000.

[15] S. P. Meyn and R. L. Tweedie, “Markov Chains and Stochastic Stabil-
ity”, Springer-Verlag, London, 1993.

[16] V. Jacobson, M. J. Karels, “Congestion Avoidance and Control”, in Proc.
of ACM SIGCOMM, 1998.

[17] A. Akella, S. Seshan, R. Karp, S. Shenker, “Selfish Behavior and
Stability of the Internet: A Game-Theoretic Analysis of TCP”, in Proc.
of ACM SIGCOMM, 2002.

Andrey Lukyanenko received his M.Sc. degree in
Computer Science from the University of Kuopio,
Finland in 2005 and the Petrozavodsk State Uni-
versity, Russia in 2005. For half a year he worked
as a Senior Programmer and Team Leader at the
PetrSU Metso Automation System Center, Petroza-
vodsk, Russia. He started his Ph.D. studies at the
University of Kuopio in 2006; now he is a researcher
at the Helsinki Institute for Information Technology
focusing on Queuing and Game Theory for next
generation Internet architecture in TrustInet project.

Andrei Gurtov received his M.Sc. and Ph.D. de-
grees in Computer Science from the University of
Helsinki, Finland in 2000 and 2004. At the present,
he is Principal Scientist leading the Networking Re-
search group at the Helsinki Institute for Information
Technology focusing on the Host Identity Protocol
and next generation Internet architecture. He is co-
chairing the IRTF research group on HIP and teaches
as an adjunct professor at Telecommunications and
Multimedia Laboratory of the Helsinki University
of Technology. Previously, his research focused on

the performance of transport protocols in heterogeneous wireless networks.
In 2000-2004, he served as a senior researcher at TeliaSonera Finland con-
tributing to performance optimization of GPRS/UMTS networks, intersystem
mobility, and IETF standardization. In 2003, he spent six months as a visiting
researcher in the International Computer Science Institute at Berkeley working
with Dr. Sally Floyd on simulation models of transport protocols in wireless
networks. In 2004, he was a consultant at the Ericsson NomadicLab. Dr.
Gurtov is a co-author of over 35 publications including research papers,
patents, and IETF RFCs.

