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Abstract—We develop defenses from resource-exhausting
Denial-of-Service attacks initiated by an attacker to a server. The
attacker does not have a permanent identity but spoofs the IP
addresses for other users. Generalizing the Defense-by-Offense
approach we enable benign users to obtain low service time by
re-submitting requests according to a game-theoretic strategy.
The attacker that tries to overwhelm the server by a constant
stream of requests cannot succeed as its requests are droppedby
the server. We derive optimal strategies for the server, as wellas
the attacker. We show that in the equilibrium state, the server
can successfully repel the attackers with selective processing of
requests. Simulations using OMNeT++ support analytical results.

I. I NTRODUCTION

Internet every day introduces new threats which requires
new defense mechanisms, while the study of the networking
itself discovers new sides of the problems [7], [1], [4], [8].

In this work we present a two-person game related to pro-
tection of a network server against Denial-of-Service attacks
(DoS-attacks) [6]. In the game, one player is a server and
another player is an attacker. The attacker sends additional
traffic to disturb the system. The server cannot identify if
the visitor is benign or an attacker. The server replies to the
demand following the protocol design. The standard protocol
is FIFO (First In, First Out). In this case the attacker can
visit the system many times with different names (spoofing
the identity) and make the waiting time of benign users very
large.

In this article, we introduce a novel protocol design MKFS
(Most Knocking First Served). In the protocol we separate
clients that already had entered the system (some initial
handshake was done) and new clients that are waiting for a
first server reply. This protocol deals with new clients onlyand
aims at prevention of identity-spoofing DoS attacks. Identity
spoofing means that an attacker can freely change its identity
and present itself as a new client every time. In that case, the
server suffers from bandwidth or resource consumption by a
number of attacking packets, if it is not possible to distinguish
them from benign clients’ packets.

The idea behind the protocol is to serve clients based on
the number of requests from the clients themselves. Hence,
clients’ packets are taken from a priority queue based on the
number of times the client has sent the initial packet. In that
case benign clients stay under same conditions as an attacker;
if they want to enter the system then they need to send more
initial packets. Thus, if an attacker spoofs an identity andsends

only one packet, then all clients who sent at least two packets
will be served before the attacker. On the other hand, if an
attacker sends many packets with the same identity then it
will spend some of its own capacity only for one reply. At the
same time not knowing the number of packets required for
one reply, an attacker can send more than required. It means
that all packets that it sends after a reply do not interfere with
the server’s work.

In theoretical analysis, we consider a simplified model of
such protocol, when an attacker uses only one identity at a
time. The attacker decides only the interval during which the
attacker wants to keep one identity before spoofing. Hence,
that interval is identical to interarrival time of one attacking
packet. In this case the strategy to visit the system with
small time intervals is not a good strategy for the attacker.
We consider attacker’s optimal behavior and find the optimal
behavior of the system for this DoS scenario. Simulation takes
into account an attack with spoofing identities and supportsour
analytical results.

We proceed as follows. In Section II, we present the
algorithm with notation used in the paper and present the
network view of the algorithm implementation. In Section III,
we obtain the distribution of waiting time for attackers and
benign users. In Section IV, we derive optimal strategies for
the players. Section V provides simulation results. Section VI
concludes the paper.

II. A LGORITHM

The paper is devoted to a novel MKFS algorithm. An idea
of “defense by offense” was suggested in [9]. However, MKFS
is a completely different in the sense that it does not suggest
to implement any thinner or to deal with all packets. MKFS
mainly suggests a new novel queueing policy which gives the
clients a right to fight to be served. This algorithm in addition
uses the fact that the attacker “spoofs” its identity. Attacker’s
IP address cannot be distinguished and blacklisted, and the
attacker cannot receive any reply on the spoofed identity. The
attacker floods the system by initial packets appearing as a
newcomer every time. From time to time an attacker can use
real identities to send initial packets, and, hence, receive some
feedback from the system, however the attacker cannot use
the same identity for the same procedure again. We restrict
users to enter the system only one time. Once a user enters
the system (the handshake is done) the user cannot start this
algorithm again and should be processed as a known user.



If creation of new identities for an attacker is not a cheap
procedure then the attacker avoids revealing them.

The algorithm can be formulated as follows. For every new
message a server checks if the id of a user, who sent the
message, has already been processed then discard message. If
the id is new, then add it to priority queue with priority 1. If
the id is not new and has not been processed then it is already
in the priority queue. We just increase its priority in the queue
by 1 and update the queue. It was a part of processing new
messages, another part of the algorithm is about replying to
users, that is simply to reply to every message in the top of
the priority queue, adding the id to processed list.

It is clear that MKFS should be working on the server
side while clients have to implement the entering-message
repeating mechanism. We will call the server-side part of
MKFS scheme asMKFS-server mechanism and the client-
side part of MKFS scheme asMKFS-client mechanism. For the
server and the client these mechanisms can be implemented in
a transparent way, if we place them outside the server/client in
some daemon, router or overlay. The MKFS-client most of the
time simply forwards all the messages from the client outside
to the network. Whenever a client does not receive a reply
message from some server (which “somehow” beforehand
was added to server list supporting MKFS scheme) in the
network the MKFS-client mechanism can be triggered. It
starts to send continuous flow of entering messages to the
MKFS server, while MKFS-server processes the incoming
messages by MKFS Algorithm and forwards messages only
from validated sources.

III. A NALYSIS

Following classical works on queuing theory [5], [2] we
analyze the model as follows. Consider two sequential requests
from the users with timest0 and t1. Supposez = t1 − t0 has
the exponential distribution with parameterλ. Let them wait
a service for the timeγ0 andγ1. Denote CDF and PDF ofγ1

asF (t), f(t).
Let t1 < t0 + γ0 + τ . The second request comes when the

system is busy by servicing the previous request. The time
until the end of service isγ0 + τ − z. If

γ0 + τ − z > θ (1)

then the second request is served otherwise the attacker’s
request is served. Thus, ifγ0 + τ − z > θ then

γ1 = γ0 + τ − z. (2)

If γ0 + τ − z ≤ θ then

γ1 = γ0 + τ − z + τ = γ0 + 2τ − z. (3)

Consider all events

{0 ≤ z ≤ γ0+τ−θ}∪∞

i=1{γ0+iτ−θ < z ≤ γ0+(i+1)τ−θ}.

In each setγ1 has the formγ0 + (i + 1)τ − z.
Now we can calculate the distribution ofγ1. Becauseγ1 ≥ θ

thenF (t) = 0 andf(t) = 0 for 0 ≤ t ≤ θ.

Note thatγ0 has the same distribution asγ1, so

f(t) =

∫

∞

0

λe−λudu

[

f(t + u − τ)P{z ≤ γ0 + τ − θ}+

∑

i=1

f(t + u − (i + 1)τ)×

P{γ0 + iτ − θ < z ≤ γ0 + (i + 1)τ − θ}]. (4)

The event{γ0 + iτ − θ < z ≤ γ0 + (i + 1)τ − θ} can be
presented in the form{z − (i + 1)τ + θ ≤ γ0 < z − iτ + θ}.

Now (4) yields

f(t) =

∫

∞

0

λe−λudu

[

f(t + u − τ)(1 − F (u − τ + θ))+

+
∑

i=1

f(t + u − (i + 1)τ) (F (u + θ − iτ)

−F (u + θ − (i + 1)τ))

]

.

or

f(t) =

∫

∞

0

λe−λudu

[

f(t + u − τ)(1 − F (u + θ))+

+
∑

i=1

f(t + u − iτ) (F (u + θ − (i − 1)τ) − F (u + θ − iτ))

]

.

Changingv = t + u − iτ in each term,

f(t) =

∫

∞

0

λe−λuduf(t + u − τ)(1 − F (u + θ))+

+

∞
∑

i=1

eλ(t−iτ)

∫

∞

t−iτ

λe−λvdvf(v) (F (v − t + θ + τ)

−F (v − t + θ)) . (5)

Denote

G(t) =

∫

∞

0

λe−λvdvf(v) (F (v − t + θ + τ)

−F (v − t + θ)) .

then from (5) and becauseF (t) = 0 for 0 ≤ t ≤ θ and∀i

v − t + θ + τ ≤ θ ⇒

f(t) =

∫

∞

0

λe−λuduf(t + u − τ)(1 − F (u + θ))+

eλt
G(t)

eλτ − 1
. (6)

HereG(t) is

G(t) = R(t − τ) − R(t),

where

R(t) =

∫

∞

0

λe−λvf(v)F (v − t + θ)dv.
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Fig. 1. Numerical analysis.

Finally we can present (6) as

f(t) = eλ(t−τ)

[
∫

∞

(t−τ)+
λe−λvf(v)dv − R(t − τ)

]

+

eλt
R(t − τ) − R(t)

eλτ − 1
. (7)

We obtain the presentationf(t) via integral operatorR at
the right side of (7). Now we can findf(t) numerically for
different parametersτ, θ andλ using the iterative procedure

fn(t) = Rfn−1(t), n = 1, 2, ...

starting from some initial approximationf0(t). We usef0(t) =
exp(−(t − θ)). We can see the form of the functionf(t) in
Fig. 1(a). It has a peak at point1.69.

IV. OPTIMAL STRATEGIES

Let us construct the optimal strategies in the game. The
principal function here isE =

∫

∞

1
tf(t)dt. It depends on

λ, θ, τ . Without loss of generality letλ = 1, now we consider
time not in seconds but inunits. Fix the service timeτ and
let us changeθ. We obtain from simulations thatE(λ, θ, τ)
is an increasing function inθ. We can see the behavior of
this function forτ = 0.45 with respect toθ in Fig. 1(b). It is
a linearly increasing function, hence, the optimal strategy for
an attacker is to increaseθ. At the same time the attacker
is interested to have in the queue an infinitive number of
the requests. Thus, it means that the best strategy for the
attacker isθ = 1

1
τ
−λ

. However, an attacker in fact does not
know the value ofτ , but the server knows it and the whole
situation. The system strategy isτ . From one side the player
presenting the system is interested to minimize the user’s
waiting time in queueE(λ, θ, τ) and from other side the player
is interested to minimize the service timeτ as it maintains
the service time on low level involving some costs (hardware,
traffic, or computation power from third party, e.g. using cloud
computing [3]). We suppose here that the improvement of the
system (minimization ofτ ) has cost const

τ
. So, the payoff

function for the system isE(λ, θ, τ) + const

τ
.

We numerically simulate this problem forconst = 1. From
the numerical analysis we found that the optimal strategy of
the system is approximately atτ = 0.5, i.e., a half of the
intensity flow.

V. I MPLEMENTATION AND SIMULATION RESULTS

For simulation of MKFS algorithm in realistic environment
we used OMNeT++ simulator. We created a simulated topol-
ogy using BRITE network generator with modified source
code in order to produce our own network format, which
can be used to speed up the simulation process. We used 20
autonomous systems (AS) with 20 routers each, 400 nodes in
total with 25% of zombie nodes (100 nodes). Every zombie
node produces 100 messages per second or 10 messages
per second depending on scenario. We also placed incoming
clients in 5 random nodes in the network, each client is able
to produce 100 messages per second. The server is able to
handle only 10 messages per second (we made it quite slow);
it is obvious that we have a DoS attack when a server cannot
handle even one client in the system. It is made so, because we
can receive data which represent real environment. If we use
a server that is capable to handle 1000 messages per second,
then it will have the same behavior with 10000 zombie nodes.

We implemented MKFS algorithm on server side using
binary heap data structure for priority queue (every time we
need only one element with the highest priority). Priority
queue keeps only two copies of repeating messages received
(which in our case is priority) and the id of element that sent
it. All additional information, such as “enqueued”, “position
in queue”, “is processed”, “last update”, is kept in additional
structure — a map. Also we added two rules to the algorithm
to keep the queue and the map size in reasonable size (too
much memory consumption makes simulation quite slow).
First of all, we added a rule that if a message from existing
in map id came after 10 second delay, then we delete it and
do not process the sender anymore (in reality it can be done
by flushing sent data on the sender, hence, it will have to start
from scratch). Secondly, we added a rule that all messages that
are older than 30 seconds are purged from the queue and the
map. This rule resembles the first one in a way, however, first
one works when we still receive messages from the sender,
and the second is global clean up rule, which we initiate only
once in 30 seconds, for example.

In simulation we used a simple scenario for an attack.
Globally an attacker sets the number of times before every
zombie node spoofs its identity. This value, which we now
call the attacker retry number, fully corresponds to the value
of θ in the theoretical and numerical analysis in previous
sections. Every zombie node generates an identity and sends
it the defined retry number of times to the server, after that
it generates a new identity and repeats the procedure. Every
normal user, a client, enters one of 5 nodes for clients, placed
randomly in the network, takes some new identity and starts
to send the initial messages to the server until it receives a
reply. After that reply the client is considered to have entered
the system, and a new client comes to the system to repeat
the entering procedure, etc. The number of the packets that
a client sends to a server before receiving a reply we call
the client retry number. It correspond toγ random variable
in analysis. Here we study the average client retry number,
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Fig. 2. Number of requests needed from benign client versus the number of
requests by an attacker .

which corresponds to principal function of analysis above.
We divided simulation of the attacking model to two scenar-

ios based on the speed of zombie nodes, one where the zombie
nodes work with the same speed as client nodes. Hence, all of
them are in the same conditions, except that zombie nodes
do not know when their current identity was replied, if it
was replied. We call this scenario Scenario A. The second
scenario is, when zombie nodes are 10 times slower than client
nodes. This is a reasonable assumption, as zombie nodes are in
many cases hacked computers, with the owner unaware that
the computer is attacking something. Hence, by aggressive
performance a zombie node can reveal itself to owner by
warnings from firewalls or antiviruses. Clients on another hand
are not restricted by those conditions as they by themselves
decide to pursue that algorithm. Hence, clients should have
more opportunities to increase traffic size. This scenario we
call Scenario B. In Scenario A clients and zombies send with
speed of 100 messages per second. In Scenario B clients send
with speed of 100 messages per second, while zombies with
speed 10 messages per second.

Fig. 2(a) shows the dependency of client retry number on
the attacker retry number (in Scenario A). As we can see,
behavior corresponds to analytical results in Fig. 1(b), which
was also linear forθ during fulfill of instability condition
θ < 1

1
τ
−λ

. In Fig. 2(a) linearity of the dependence stops
almost at the point, when the condition of overloading of
server stops holding. Fig. 2(b) shows the same behavior for
Scenario B. As we can see in this case in the beginning we also
have linear dependency, however, in Scenario B the load from
zombie machines is 10 times less and the instability condition
breaks earlier; as we can see in Fig. 2(b) it happens when the
attacker retry number is about 150. But again the behavior
fully corresponds to analytical results, while the condition
holds.

We additionally studied the delay for a client to enter a
system. The results are shown only from first node, where
clients appear, as all of the nodes behave in resulting sim-
ulation identically. Fig. 3(a) shows the delay for the worst
situation in Scenario A, when the zombie retry number is
equal to 900, Fig. V shows the delay for the worst situation in
Scenario B, when the zombie retry number is equal to 150. As
we can see in spite of the fact that the server is responsible to
answer a small fraction of requests, the server still replies in
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Fig. 3. Benign client waiting time when the attacker sends 900requests
(Scenario A) and 150 requests (Scenario B).

reasonable time to clients from different nodes. If the MKFS
algorithm were not used and traditional ideal (infinite) queue
were used, then in Scenario A, clients would have to wait
more than (VI−VO)t

VO
= 999t on the average, wheret is the

time when the client enters the system after a start of the
DoS attack,VI overall incoming number of messages to the
system per second,VO overall outgoing number of messages
per second, and wait more than99t in Scenario B.

VI. CONCLUSIONS

In the paper we introduced a novel MKFS algorithm. In
spite of the algorithm is being easy-to-understand and easy-to-
use, theoretical analysis of the algorithm is quite complicated.
In the paper we showed some analysis for the algorithm, with
numerical results where needed. We estimated the optimal
behavior of the attacker and payoff representation of the server
function. Our analysis is supported by simulation results.

Additionally, if the DDoS attack goes against the link
capacity, the same MKFS algorithm can be easily distributed
to a set of routers, that do not forward replies, but only the
number of message replies.
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