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Abstract

We consider a P2P-system with two kinds of users: “seeders”

and “leechers”. Seeders provide data to others in a random manner

with a known distribution. Leechers maximize amount of down-

loaded data by trying to guess seeders’ behavior. An equilibrium

condition is derived for this system.

1 Introduction

P2P-networks are wide-spread in the Internet. A user of a P2P network
provides data and consumes it simultaneously. However, it is possible
that a user only gets data but gives nothing in exchange for it. We call
such users “leechers”.

Obviously, the network of this type still exists if there are users which
provide more data than they consume. We will call such parties “seeders”.
Considering the relationship between leechers and seeders unfair, we want
to encourage all participants in the system to provide some data. We offer
another way of interaction where a user must offer data with the aim to
obtain data from other users.
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2 Problem statement

The network brings together several parties which are either seeders or
leechers. Players (leechers) are seeking data provided by the seeders. The
amount of data available to other network users we call a contribution.
For simplicity assume that a valid contribution belongs to [0, 1]. The game
starts when all parties make contributions to the network; the contribu-
tion of a seeder is a random value from the interval [0, 1] with some known
distribution function. The player whose contribution was closest to the
value, but not less, gets this value minus the amount proportional to its
contribution. In this case, we say that the player predicts the seeder’s
contribution. Assume also that if the player did not predict the contri-
bution of any seeder, she loses the value proportional to its contribution.
In real networks such losses can be considered the cost of the presence in
the system or the value of traffic.

Each player tries to maximize her own expected payoff.
Related work describes a competitive prediction number game pro-

posed by Sakaguchi and Szajowsky [1]. The problem was solved under
asymmetrical conditions by Belkovskii and Garnaev [2]. The case of
an arbitrary number of players has been considered by Sakaguchi and
Mazalov [3]. Particulars of a P2P-system in which players choose their
type of behavior were considered by Feldman, Papadimitriou, Chuang and
Stoica [4].

3 A case of two leechers and one seeder

For simplicity we assume that a seeder’s contribution is uniformly dis-
tributed in [0, 1]. Let a be the seeder’s contribution, x1 be the contribution
of player I, and x2 be the contribution of player II. Then if a ≤ x1 < x2

or x2 < a ≤ x1 then player I payoff is a − cx1; otherwise player I loses
cx1. Similarly if a ≤ x2 < x1 or x1 < a ≤ x2 player II payoff is a − cx2;
otherwise player II loses cx2.

Denote H1(x1, x2) player I payoff if players make contributions x1 and
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x2. Then

H1(x1, x2) =















∫ x1

0

ada − cx1 =
x2

1

2
− cx1, for x1 < x2

∫ x1

x2

ada − cx1 =
x2

1 − x2
2

2
− cx1, for x1 > x2

Let player II use the mixed strategy with probability density function
g(x2) in [b, 1] in such a way that H1(x1, g(x2)) = v, where v is a game
value. In these conditions, player I payoff is:

for x1 < b:

H1(x1, g(x2)) =
x2

1

2
− cx1;

for x1 ∈ [b, 1]:

H1(x1, g(x2)) =

∫ x1

b

(x2
1 − x2

2

2
− cx1

)

g(x2)dx2

+

∫ 1

x1

(x2
1

2
− cx1

)

g(x2)dx2

(1)

Simplifying (1) we obtain

H1(x1, g(x2)) =
x2

1

2
− cx1 −

1

2

∫ x1

b

x2
2g(x2)dx2

Differentiating expression H1(x1, g(x2)) = v in x1 we get

x1 − c −
x2

1

2
g(x1) = 0.

Finally we find the probability density function

g(x1) =
2

x1
−

2c

x2
1

.

Distribution function G(x) =
∫

g(x)dx has the form:

G(x) = 2 lnx +
2c

x
+ const,
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and from property G(1) = 1 it follows that an optimal strategy for player
II is:

G(x) = 2 lnx +
2c

x
(1 − x) + 1 (2)

in [b, 1] and the value of b is found in G(b) = 0 or

2 ln b +
2c

b
(1 − b) + 1 = 0. (3)

Player I payoff is

H1(x1, g(x2)) =
b2

2
− cb.

The strategy (2) is optimal if

H1(x1, g(x2)) = x2
1/2 − cx1 < b2/2 − cb ∀x1 < b. (4)

Function x2/2 − cx has roots x = 0 and x = 2c so if b > 2c the
inequality (4) is satisfied. Using b = 2c in (3) we get condition for c:

ln (2c) + 1 − c = 0 =⇒ c∗ ≈ 0.23196. (5)

Since the game is symmetric we have proved

Theorem 3.1 Let c ∈ [0, c∗] where c∗ be a root of (5). Then the optimal
strategies of players coincide and have the form

G(x) =

{

0, for x < b

2 lnx +
2c

x
(1 − x) + 1, for x ∈ [b, 1]

,

where b satisfies

2 ln b +
2c

b
(1 − b) + 1 = 0

The player’s payoff is b2/2 − cb.
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4 A case of two leechers and n seeders

Let us define a game with two players and an arbitrary number of seeders
as follows. As before players (leechers) make contributions in a network
(spending c for a unit of contribution) and seeders make their contribution
in a random manner. After that players get data as a payoff from predicted
seeders.

Assuming that seeders’ contributions are independent identically dis-
tributed (iid) values uniformly distributed in [0, 1] we obtain player I pay-
off in a game with n seeders:

H1(x1, x2) =















n

∫ x1

0

ada − cx1 = n
x2

1

2
− cx1, for x1 < x2

n

∫ x1

x2

ada − cx1 = n
x2

1 − x2
2

2
− cx1, for x1 > x2

Further we will find a solution similarly with the case of one seeder.
Let player II use the mixed strategy with probability density function

g(x2) in [b, 1] in such a way that H1(x1, g(x2)) = v, where v is a game
value. In these conditions player I payoff is:

for x1 < b:

H1(x1, g(x2)) = n
x2

1

2
− cx1;

for x1 ∈ [b, 1]:

H1(x1, g(x2)) =

∫ x1

b

(

n
x2

1 − x2
2

2
− cx1

)

g(x2)dx2

+

∫ 1

x1

(

n
x2

1

2
− cx1

)

g(x2)dx2

(6)

Simplifying (6) we obtain

H1(x1, g(x2)) = n
x2

1

2
− cx1 − n

1

2

∫ x1

b

x2
2g(x2)dx2

Differentiating expression H1(x1, g(x2)) = v in x1 we get

nx1 − c − n
x1

2
g(x1) = 0.
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Finally we find the probability density function

g(x1) =
2

x1
−

2c

nx2
1

.

Distribution function G(x) =
∫

g(x)dx has the form:

G(x) = 2 lnx +
2c

nx
+ const,

and from property G(1) = 1 it follows that an optimal strategy for player
II is:

G(x) = 2 lnx +
2c(1 − x)

nx
+ 1

in [b, 1] wherein b is found in G(b) = 0 or

2 ln b +
2c(1 − b)

nb
+ 1 = 0. (7)

Player I payoff is

H1(x1, g(x2)) = n
b2

2
− cb.

For optimality it is necessary that nx2
1/2− cx1 < nb2/2− cb ∀x1 < b

or equivalent b > 2c/n. Using b = 2c/n in (7) we get the condition for c:

ln 2c/n + 1 −
c

n
= 0. (8)

Since the game is symmetric we have proved

Theorem 4.1 Let c ∈ [0, c∗] where c∗ is a root of (8). Then the optimal
strategies of players coincide and have the form

G(x) =

{

0, for x < b

2 lnx +
2c(1 − x)

nx
+ 1, for x ∈ [b, 1]

,

where b satisfies

2 ln b +
2c(1 − b)

nb
+ 1 = 0.

The player’s payoff is nb2/2 − cb.
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5 A case of m leechers and n seeders

Similarly to a case of n seeders, we change the definition of the game for
an arbitrary number of players. There are m players in a game. As before,
players (leechers) make contributions in a network spending c for unity of
contribution and seeders make their contributions in a random manner.
After that players get data as a payoff from predicted seeders.

To solve the problem we use the technique offered by Mazalov and
Sakaguchi [3].

Let each player use the mixed strategy with probability density func-
tion g(x) in [b, 1]. Let Gn(x) = I(x ≥ b)

∫ x

b g(t)dt. Denote G(x) =
1 − G(x). Then the expected payoff to player I if he contributes x and
the other players employ their strategies g(x) is

H1(x, g, . . . , g) = n
x2

2
− cx, for x < b.

for x ∈ [b, 1]:

H1(x, g, . . . , g) = −cx + n
x2

2
(G(x))m−1

+n

m−1
∑

k=1

(

m − 1

k

)

k(G(x))m−1−k

×

∫ x

b

g(t)(G(t))k−1 (x2 − t2)

2
dt,

(9)

since k players may contribute less than x and the other m − 1 − k con-
tribute greater than x.

Since we have, by integration by parts,

∫ x

b

g(t)(G(t))k−1 (x2 − t2)

2
dt =

1

k

∫ x

b

t(G(t))kdt,

we can rewrite (9) as

H1(x, g, . . . , g) = −cx + n
x2

2
(G(x))m−1

+n

m−1
∑

k=1

(

m − 1

k

)

(G(x))m−1−k

∫ x

b

t(G(t))kdt,
(10)
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Since players use optimal strategies for a game value v = H1(x, g, . . . , g)
for x ∈ [b, 1] and differentiating (10) by x we obtain

∂H1(x,g,...,g)
∂x = −c + n

[

x(G(x))m−1 − (m − 1)
x2

2
(G(x))m−2g(x)

+

m−1
∑

k=1

(

m − 1

k

)

[

(m − 1 − k)(−g(x))(G(x))m−2−k

×

∫ x

b

t(G(t))kdt

+x(G(x))m−1−k(G(t))k
]]

= 0.

After dividing both sides by (G(x))m−1 and simplifying we finally get

nx
[

1 +
m−1
∑

k=1

(

m − 1

k

)

(

G(x)

G(x)

)k
]

−
c

(G(x))m−1
=

n
g(x)

G(x)

[

(m − 1)
x2

2

+

m−1
∑

k=1

(

m − 1

k

)

(m − 1 − k)

∫ x

b

t

(

G(t)

G(x)

)k

dt
]

.

(11)

It is easy to see that

1 +

m−1
∑

k=1

(

m − 1

k

)

(

G(x)

G(x)

)k

=
1

(G(x))m−1
,

and

(m − 1)
x2

2
+

m−1
∑

k=1

(

m − 1

k

)

(m − 1 − k)

∫ x

b

t

(

G(t)

G(x)

)k

dt =

b2

2
+

∫ x

b

t

(

1 +
G(t)

G(x)

)m−2

dt.

Taking it into account we can present (11) as

nx − c

(G(x))m−1
= n(m − 1)

g(x)

G(x)

[b2

2
+

∫ x

b

t

(

1 +
G(t)

G(x)

)m−2

dt
]

,
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or more suitably

nx − c

g(x)n(m − 1)
=

b2

2
(G(x))m−2 +

∫ x

b

t(G(x) + G(t))m−2dt. (12)

Expression (12) matters for b < x < 1 and ∀m ≥ 2.
Consider the sequence of functions

sk(x) =
2

x2

[

b2

2
(G(x))k +

∫ x

b

t(G(x) + G(t))kdt

]

, ∀k = 1, 2, . . . , m − 2,

(13)
which clearly satisfies

1 ≡ s0(x) ≥ s1(x) ≥ s2(x) ≥ . . . ≥ sm−2(x) ≥ 0, ∀x ∈ [b, 1].

Multiplying x2/2 on both sides of (13) and differentiating we get a
recurrent differential equation

xsk(x) +
x2

2
s′k(x) = x −

x2

2
kg(x)sk−1(x),

or equivalently

2

x
(1 − sk(x)) − s′k(x) = kg(x)sk−1(x), ∀k = 1, 2, . . . , m − 2 (14)

with boundary conditions

sk(b) = 1, ∀k = 1, 2, . . . , m − 2.

By (12)-(13) we see

sm−2(x) =
2(nx − c)

nx2(m − 1)g(x)
. (15)

From above we obtain g(x)

g(x) =
2(nx − c)

nx2(m − 1)sm−2(x)
≥

2(nx − c)

nx2(m − 1)
.

We get b from
∫ 1

b

g(x)dx = 1. (16)
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For optimality it is necessary that nx2
1/2− cx1 < nb2/2− cb ∀x1 < b

or equivalent b > 2c/n. Using b = 2c/n in (16) we get the condition for c:

∫ 1

2c/n

g(x)dx = 1. (17)

Hence we have proved

Theorem 5.1 Let c ∈ [0, c∗] where c∗ is a root of (17). Also let
{s1, . . . , sm−2} be a solution of the system of differential equations (14)
and

g(x) =
2(nx − c)

nx2(m − 1)sm−2(x)
.

Let us choose b from condition
∫ 1

b g(x)dx = 1. Then g(x) is an optimal
strategy.

The player’s payoff is nb2/2 − cb.

The system (14) together with (15) can be used to find the solu-
tion of the problem with a following algorithm. We fix some value b
and consider the system of differential equations (14) in the interval
[b, 1]. When we found the solution with boundary conditions sk(b) =
1, ∀k = 1, 2, . . . , m− 2, we calculate the density function g(x) = 2(nx−
c)/(nx2(m − 1)sm−2(x)), x ∈ [b, 1]. Then we can determine b from the

condition
∫ 1

b g(x)dx = 1.

6 Conclusion

We have considered a P2P-system in which players have to predict the be-
havior of seeders who make contributions in a random manner. Thus, we
have a competitive prediction number game with payment for observation
and the predicted value as a payoff.

We have solved the problem for an arbitrary number of players and
seeders in case a seeder uses uniform distribution in [0, 1]. The theorem
5.1 presents a solution in mixed strategies in [b, 1] with player’s payoff of
nb2/2 − cb where c is a cost of observation and n is a number of seeders.
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