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Chapter 1  
 
Generation of Language Implementations from 
Specifications 

The implementation of compilers and interpreters for non-trivial programming languages is a complex 
and error prone process, if done by hand. Therefore, formalisms and generator tools have been 
developed that allow automatic generation of compilers and interpreters from formal specifications. This 
offers two major advantages: 

• High-level descriptions of language properties, rather than detailed programming of the 
translation process. 

• High degree of correctness of generated implementations. 

The high level specifications are typically more concise and easier to read than a detailed 
implementation in some traditional low-level programming language. The declarative and modular 
specification of language properties rather than detailed operational description of the translation 
process, makes it much easier to verify the logical consistency of language constructs and to detect 
omissions and errors. This is virtually impossible for a traditional implementation, which often requires 
time consuming debugging and testing to obtain a compiler of acceptable quality. By using automatic 
compiler generation tools, correct compilers can be produced in a much shorter time than otherwise 
possible. This, however, requires the availability of generator tools of high quality, that can produce 
compiler components with a performance comparable to hand-written ones. 

1.1 Using Meta-Modelica for Programming Language Modeling 

The Meta-Modelica specification or modeling language was originally developed as an object-oriented 
declarative equation-based specification formalism for mathematical modeling of complex systems, in 
particular physical systems. 

However, it turns out that with some minor extensions, the Modelica language is well suited for 
another modeling task, namely modeling of the semantics, i.e., the meaning, of programming language 
constructs. The semantics of a language construct can usually be modeled in terms of combinations of 
more primitive builtin constructs. One example of primitive builtin operations are the integer arithmetic 
operators. These primitives are combined using inference and pattern-matching mechanisms in the 
specification language.  
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Well-known language specification formalisms such as Natural Semantics and Structured 
Operational Semantics are also declarative equation-based formalisms. These fit well into the style of the 
Meta-Modelica specification language, which explains why Modelica with some minor extensions is 
well-suited as a language specification formalism. However, only an extended subset of Modelica called 
Meta-Modelica is needed for language specification since many parts of the language designed for 
physical system modeling are not used at all, or very little, for the language specification task. 

This text introduces the use of Meta-Modelica for programming language specification, in a style 
reminiscent of Natural or Operational Semantics, but using Modelica’s properties for enhanced 
readability and structure. 

Another great benefit of using and extending Modelica in this direction is that the language becomes 
suitable for meta-programming and meta-modeling. This means that Modelica can be used for 
transformation of models and programs, including transforming and combining Modelica models into 
other Modelica models. 

However, the main emphasis in the rest of this text is on the topic of generating compilers and 
interpreters from specifications in Meta-Modelica. 

1.2 Compiler Generation 

The process of compiler generation is the automatic production of a compiler from formal specifications 
of source language, target language, and various intermediate formalisms and transformations. This is 
depicted in Figure 1-1, which also shows some examples of compiler generation tools and formalisms 
for the different phases of a typical compiler. Classical tools such as scanner generators (e.g. Lex) and 
parser generators (e.g. Yacc) were first developed in the 1970:s. Many similar generation tools for 
producing scanners and parsers exist. 

However, the semantic analysis and intermediate code generation phase is still often hand-coded, 
although attribute grammar based tools have been available for practical usage for quite some time. Even 
though attribute grammars are easy to use for certain aspects of language specifications, they are less 
convenient when used for many other language aspects. Specifications tend to become long and involve 
many details and dependencies on external functions, rather than clearly expressing high level 
properties. Denotational Semantics is a formalism that provides more abstraction power, but is 
considered hard to use by most practitioners, and has problems with modularity of specifications and 
efficiency of produced implementations. We will not further discuss the matter of different specification 
formalisms, and refer the reader to other literature, e.g. [Pagan81??] which gives an easy to read 
introduction to several formalisms, including Attribute Grammars and Denotational Semantics. (??Also 
reference to [Louden2003??] and [Pierce2002??]) 

Semantic aspects of language translation include tasks such as type checking/type inference,  symbol 
table handling, and generation of intermediate code. If automatic generation of translator modules for 
semantic tasks should become as common as generation of parsers from BNF grammars, we need a 
specification formalism that is both easy to use and that provides a high degree of abstraction power for 
expressing language translation and analysis tasks. The Meta-Modelica formalism fulfils these 
requirements, and have therefore chosen this formalism for semantics specification in this text. 
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Figure 1-1.  Generation of implementations of compiler phases from different formalisms. Meta-Modelica 
is used to specify the semantics module, which is generated using the tool momc.  

The second necessary requirement for widespread practical use of automatic generation of semantics 
parts of language implementations is that the generated result need to be roughly as efficient as hand-
written implementations., a generator tool, momc, that produces highly efficient implementations in C—
roughly of the same efficiency as hand-written ones, and a Modelica debugger for debugging 
specifications. Modelica also enables modularity of specification through a module system with 
packages, and interfaceability to other tools since the generated modules in C can be readily combined 
with other frontend or backend modules.  

The later phases of a compiler, such as optimization of the intermediate code and generation of 
machine code are also often hand-coded, although code generator generators such as BEG [ref??], and 
BURG [ref??], [refAndersson,Fritzson-95??] have been developed during the late 1980s and early 
1990:s. A product version of BEG available in the CoSy compiler generation toolbox [??ref] also 
includes global register allocation and instruction scheduling. [??also reference the Karlsruhe version] 

The optimization phase of compilers is generally hand coded, although some prototypes of optimizer 
generators have recently appeared. For example, an optimizer generator tool called Optimix [ref??], has 
appeared as one of the tools in the CoSy [ref??] compiler generation system. 

 Meta-Modelica can also be used for these other phases of compilers, such as optimization of 
intermediate code and final code generation.. Intermediate code optimization works rather well since this 
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is usually a combination of analysis and transformation that can take advantage of patterns, tree 
transformation expressions, and other features of the Meta-Modelica language.  

Regarding final machine code generation modules of most compilers – these are probably best 
produced by specialized tools such as BEG, which use specific algorithms such as dynamic 
programming for “optimal” instruction selection, and graph coloring for register allocation. However, in 
this book we only present a few very simple examples of final code generation, and essentially no 
examples of advanced code optimization. 

1.3 Interpreter Generation 

The case of generating an interpreter from formal specifications can be regarded as a simplified special 
case of compiler generation. Although some systems interpret text directly (e.g. command interpreters 
such as the Unix C shell), most systems first perform lexical and syntactic analysis to convert the 
program into some intermediate form, which is much more efficient to interpret than the textual 
representation. Type checking and other checking is usually done at run-time, either because this is 
required by the language definition (as for many interpreted languages such as LISP, Postscript, 
Smalltalk, etc.), or to minimize the delay until execution is started. 

The semantic specification of a programming language intended as input for the generation of an 
interpreter if usually slightly different in style compared to a specification intended for compiler 
generation. Ideally, they would be exactly the same, and there exist techniques such as partial evaluation 
[ref??] that sometimes can produce compilers also from specifications of interpreters. 
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Figure 1-2.  Generation of a typical interpreter. The program text is converted into an abstract syntax 
representation, which is then evaluated by an interpreter generated by the Meta-Modelica momc system. 
Alternatively, some other intermediate representation such as postfix code can be produced, which is 
subsequently interpreted.  

In practice, an interpretive style specification often expresses the meaning of a language construct by 
invoking a combination of well-defined primitives in the specification language. A compilation oriented 
specification, however, usually defines the meaning of language constructs by specifying a translation to 
an equivalent combination of well-defined constructs in some target language. In this text we will show 
examples of both interpretive and translation-oriented specifications.  
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Chapter 2  
 
Expression Evaluators and Interpreters in Meta-
Modelica 

We will introduce the topic of language specification in Meta-Modelica through a number of example 
languages.  

The reader who would first prefer a general overview of some language properties of the Meta-
Modelica subset for language specification may want to read Chapter 5 before continuing with these 
examples. On the other hand, the reader who has no previous experience with formal semantic 
specification and is more interested in “hands-on” use of Meta-Modelica for language implementation is 
recommended to continue directly with the current chapter and later take a quick glance at those 
chapters.  

First we present a very small expression language called Exp1. 

2.1 The Exp1 Expression Language 

A very simple expression evaluator (interpreter) is our first example. This calculator evaluates constant 
expressions such as: 
 12 + 5*3 

or 
 -5 * (10 - 4) 

The evaluator accepts text of a constant expression, which is converted to a sequence of tokens by the 
lexical analyzer (e.g. generated by Lex or Flex) and further to an abstract syntax tree by the parser (e.g. 
generated by Yacc or Bison). Finally the expression is evaluated by the interpreter (generated by the 
Meta-Modelica compiler), which in the above case would return the value 27. This corresponds to the 
general structure of a typical interpreter as depicted in Figure 1-2. 

2.1.1 Concrete Syntax 

The concrete syntax of the small expression language is shown below expressed as BNF rules in Yacc 
style, and lexical syntax of the allowed tokens as regular expressions in Lex style. All token names are in 
upper-case and start with T_ to be easily distinguishable from nonterminals which are in lower-case. 
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/* Yacc BNF Syntax of the expression language Exp1 */ 
 
expression       :  term 
                 |  expression  weak_operator  term 
 
term             :  u_element 
                 |  term  strong_operator  u_element 
 
u_element        :  element 
                 |  unary_operator  element 
 
element          :  T_INTCONST 
                 |  T_LPAREN  expression  T_RPAREN 
 
weak_operator    :  T_ADD   |  T_SUB 
strong_operator  :  T_MUL   |  T_DIV 
unary_operator   :  T_SUB 
 
 
/* Lex style lexical syntax of tokens in the expression language Exp1 */ 
 
digit        ("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9") 
digits       {digit}+ 
%% 
{digits}     return T_INTCONST; 
"+"          return T_ADD; 
"-"          return T_SUB; 
"*"          return T_MUL; 
"/"          return T_DIV; 
"("          return T_LPAREN; 
")"          return T_RPAREN; 

Lex also allows a more compact notation for a set of alternative characters which form a range of 
characters, as in the shorter but equivalent specification of digit below: 
digit        [0-9] 

2.1.2 Abstract Syntax of Exp1 with Union Types 

The role of abstract syntax is to convey the structure of constructs of the specified language. It abstracts 
away (removes) some details present in the concrete syntax, and defines an unambiguous tree 
representation of the programming language constructs. There are usually several design choices for an 
abstract syntax of a given language. First we will show a simple version of the abstract syntax of the 
Exp1 language using the Meta-Modelica abstract syntax definition facilities. 

2.1.3 The uniontype Construct 

To be able to declare the type of abstract syntax trees we introduce the uniontype construct into 
Modelica: 
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• A union type specifies a union of one or more record types. 
• Its record types and constructors are automatically imported into the surrounding scope. 
• Union types can be recursive –  they can reference themselves. 

A common usage is to specify the types of abstract syntax trees. In this particular case the following 
holds for the Exp union type: 

• The Exp type is a union type of six record types  
• Its record constructors are INTConst, ADDop, SUBop, MULop, DIVop, and NEGop. 

The Exp union type is declared below. Its constructors are used to build nodes of the abstract syntax 
trees for the Exp language. 
/* Abstract syntax of the language Exp1 as defined using Meta-Modelica */ 

uniontype Exp   
  record  INTconst Integer x1;     end INTconst; 
  record  ADDop  Exp x1;  Exp x2;  end ADDop; 
  record  SUBop  Exp x1;  Exp x2;  end SUBop; 
  record  MULop  Exp x1;  Exp x2;  end MULop; 
  record  DIVop  Exp x1;  Exp x2;  end DIVop; 
  record  NEGop  Exp x1;           end NEGop; 
end Exp; 

Using the Exp abstract syntax definition, the abstract syntax tree representation of the simple expression 
12+5*13 will be as shown in Figure 2-1. The Integer data type is predefined in Meta-Modelica. Other 
predefined Meta-Modelica data types are Real, Boolean, and String as well as the parametric type 
constructors array, list, and Option.  

  

              

 ADDop 

MULop INTconst 

12

INTconst 

5

INTconst

13
 

Figure 2-1.  Abstract syntax tree of 12+5*13 in the language Exp1. 

The uniontype declaration defines a union type Exp and constructors (in the figure: ADDop, MULop, 
INTconst) for each node type in the abstract syntax tree, as well as the types of the child nodes. 
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2.1.4 Semantics of Exp1 

The semantics of the operations in the small expression language Exp1 follows below, expressed as an 
interpretive language specification in Meta-Modelica in a style reminiscent of Natural and/or 
Operational Semantics.. Such specifications typically consists of a number of functions, each of which 
contains a match expression with one or more cases, also called rules. In this simple example there is 
only one function, here called eval, since we specify an expression evaluator.  

2.1.4.1 Match Expressions in Meta-Modelica 

The following extension to Modelica is essential for specifying semantics of language constructs 
represented as abstract syntax trees: 

• Match expressions with pattern-matching case rules, local declarations, and local equations. 

A match expression is closely related to pattern matching in functional languages, but is also related to 
switch statements in C or Java. It has two important advantages over traditional switch statements: 

• A match expression can appear in any of the three Modelica contexts: expressions, statements, or 
in equations. 

• The selection in the case branches is based on pattern matching, which reduces to equality testing 
in simple cases, but is much more powerful in the general case. 

A very simple example of a match-expression is the following code fragment, which returns a number 
corresponding to a given input string. The pattern matching is very simple – just compare the string s 
with one of the constant strings "one", "two" or "three". 
  String s; 
  Real   x;  
algorithm 
  x :=  
    match s 
      case "one"   then 1 
      case "two"   then 2 
      case "three" then 3 
      else              0 
    end match; 

Match expressions have the following properties: 

• Only algebraic equations are allowed as local equations, no differential equations. 
• Only locally declared variables (local unknowns) declared by local declarations within the case 

expression are solved for, or may appear as pattern variables. 
• Equations are solved in the order they are declared (this restriction may be removed in the 

future??). 
• There are two variants of these expressions: match-expressions or matchcontinue-expressions. 

These have identical syntax apart from the keywords match or matchcontinue. 
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• If an equation or an expression in a case-branch of a matchcontinue-expression fails, all local 
variables become unbound, and matching continues with the next branch. However, in case of a 
match-expression, the whole match-expression will fail if one case-branch fails. 

In the following we will primarily use match-expressions in the specifications. 

2.1.4.2 Evaluation of the Exp1 Language 

The first version of the specification of the calculator for the Exp1 language is using a rather verbose 
style, since we are presenting it in detail, including its explicit dependence on the pre-defined builtin 
semantic primitives such as integer arithmetic operations such as int_add, int_sub, int_mul, etc. In 
the following we will show more concise versions of the specification, using the usual arithmetic 
operators which are just shorter syntax for the builtin arithmetic primitives. 
function eval 
  input  Exp     in_value1; 
  output Integer out_value1; 
algorithm 
 out_value1 := 
  match in_value1 
    local Integer v1,v2,v3; 
          Exp     e1,e2; 
    case INTconst(v1) then v1;   /* evaluation of an integer node */ 
                                 /* is the integer value itself */ 
 
/* Evaluation of an addition node ADDop is v3, if v3 is the result of 
 * adding the evaluated results of its children e1 and e2  
 * Subtraction, multiplication, division operators have similar specs. 
 */ 
    case ADDop(e1,e2) equation  
      v1 = eval(e1);  v2 = eval(e2); v3 = int_add(v1,v2);  then v3; 
 
    case SUBop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = int_sub(v1,v2);  then v3; 
 
    case MULop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = int_mul(v1,v2);  then v3; 
 
    case DIVop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); v3 = int_div(v1,v2);  then v3; 

 
    case NEGop(e1) equation 
      v1 = eval(e1); v2 = int_neg(v1);  then v2; 
   end match; 
end eval;  

In the eval function, which contains six cases or rules, the first case has no constraint equations: it 
immediately returns a value. 
    case INTconst(v1) then v1;   /* eval of an integer nodef */ 
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This rule states that the evaluation of an integer node containing an integer valued constant ival will 
return the integer constant itself. The operational interpretation of the rule is to match the argument to 
eval against the special case INTconst(ival) of an expression tree. If there is a match, the match 
variable ival will be bound to the corresponding part of the tree. Then the local equations will be 
checked (there are actually no local equations in this case) to see if they are fulfilled. Finally, if the local 
equations are fulfilled, the integer constant value bound to ival will be returned as the result. 

We now turn to the second rule of eval, which is specifying the evaluation of addition nodes labeled 
ADDop: 
    case ADDop(e1,e2) equation  
      v1 = eval(e1);  v2 = eval(e2); v3 = int_add(v1,v2);  then v3; 

For this rule to apply, the pattern ADDop(e1,e2) must match the actual argument to eval, which in this 
case is an abstract syntax tree of the expression to be evaluated. If there is a match, the variables e1 and 
e2 will be bound the two child nodes of the ADDop node, respectively. Then the local equations of the 
rule will be checked, in the order left to right. The first local equation states that the result of eval(e1) 
will be bound to v1 if successful, the second states that the result of eval(e2) will be bound to v2 if 
successful.  

If the first two local equations are successfully solved, then the third local equation v3 = 
int_add(v1,v2) will be checked. This local equation refers to a pre-defined Meta-Modelica function 
called int_add for addition of integer values. For a full set of pre-defined functions, including all 
common operations on integers and real numbers, see Appendix B??. This third local equation means 
that the result of adding integer values bound to v1 and v2 will be bound to v3. Finally, if all local 
equations are successful, v3 will be returned as the result of the whole rule. 

The rules (cases) specifying the semantics of subtraction (SUBop), multiplication (MULop) and integer 
division (DIVop) have exactly the same structure, apart from the fact that they map to different 
predefined Meta-Modelica operators such as int_sub, int_mul, and int_div. 

The last rule of the function eval specifies the semantics of a unary operator, unary integer negation, 
(example expression: -13): 
    case NEGop(e1) equation 
      v1 = eval(e1); v2 = int_neg(v1);  then v2; 

Here the expression tree NEGop(e) with constructor NEGop has only one subtree denoted by e. There 
are two local equations: the expression e should succeed in evaluating to some value v1, and the integer 
negation of v1 will be bound to v2. Then the result of NEGop(e) will be the value v2. 

It is possible to express the specification of the eval evaluator more concisely by using arithmetic 
operators such as +, -, *, etc., which is just different syntax for the builtin operations int_add, 
int_sub, int_mul, etc.: 
function eval 
  input  Exp     in_value1; 
  output Integer out_value1; 
algorithm 
 out_value1 := 
  match in_value1 
    local Integer v1,v2; 
          Exp     e1,e2; 
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    case INTconst(v1) then v1; 
 
    case ADDop(e1,e2) equation  
      v1 = eval(e1;  v2 = eval(e2; then v1+v2; 

 
    case SUBop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); then v1-v2; 
 
    case MULop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); then v1*v2; 
 
    case DIVop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); then v1/v2; 
 
    case NEGop(e1) equation 
      v1 = eval(e1);  then -v1; 
   end match; 
end eval;  

An even shorter specification can be achieved if all the intermediate variables v1, v2, etc. are completely 
eliminated. The temporary variables and the previously shown local equations are internally generated 
by the Meta-Modelica compiler, and therefore need not be manually specified: 
function eval 
  input  Exp     in_value1; 
  output Integer out_value1; 
algorithm 
 out_value1 := 
  match in_value1 
    local Integer v1;  Exp e1,e2; 
    case INTconst(v1) then v1; 
    case ADDop(e1,e2) then eval(e1) + eval(e2); 
    case SUBop(e1,e2) then eval(e1) - eval(e2); 
    case MULop(e1,e2) then eval(e1) * eval(e2); 
    case DIVop(e1,e2) then eval(e1) / eval(e2); 
    case NEGop(e1) then -eval(e1); 
  end match; 
end eval;  

In the following we will use verbose or concise specification styles depending on the context. 

2.2 Exp2 – Using Parameterized Abstract Syntax 

An alternative, more parameterized style of abstract syntax is to collect similar operators in groups: all 
binary operators in one group, unary operators in one group, etc. The operator will then become a child 
of a BINARY node rather than being represented as the node type itself. This is actually more 
complicated than the previous abstract syntax for our simple language Exp1 but simplifies the semantic 
description of languages with many operators. 
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The Exp2 expression language is the same textual language as Exp1, but the specification uses the 
parameterized abstract syntax style which has consequences for the structure of both the abstract syntax 
and the semantic rules of the language specification. 

We will continue to use the “simple” abstract representation in several language definitions, but 
switch to the parameterized abstract syntax for certain more complicated languages. 

2.2.1 Parameterized Abstract Syntax of Exp1 

Below is a parameterized abstract syntax for the previously introduced language Exp1, using the two 
nodes BINARY and UNARY for grouping. The Exp2 abstract syntax shown in the next section has the 
same structure, but with node constructors renamed to shorter names. 
uniontype Exp   
  record  INTconst  Integer x1;  end INTconst; 
  record  BINARY    Exp x1;  BinOp op;  Exp x2;  end BINARY; 
  record  UNARY     UnOp op;  Exp x1;  end UNARY; 
end Exp; 

uniontype BinOp   
  record  ADDop  end ADDop; 
  record  SUBop  end SUBop; 
  record  MULop  end MULop; 
  record  DIVop  end DIVop; 
end BinOp; 

uniontype UnOp   
  record  NEGop  end NEGop; 
end BinOp; 
 

            

BINARY 

BINARYINTconst 

12 

INTconst 

5 

INTconst

13

ADDop 

MULop

 
Figure 2-2.  A parameterized abstract syntax tree of 12+5*13 in the language Exp1. Compare to the 
abstract syntax tree in Figure 2-1. 

2.2.2 Parameterized Abstract Syntax of Exp2 

Here follows the abstract syntax of the Exp2 language. The two node constructors BINARY and UNARY 
have been introduced to represent any binary or unary operator, respectively. Constructor names have 
been shortened to INT, ADD, SUB, MUL, DIV and NEG. 
uniontype Exp   



  Chapter 2  Expression Evaluators and Interpreters in Meta-Modelica  27 

  record  INT     Integer x1;  end INT; 
  record  BINARY  Exp x1;  BinOp op;  Exp x2;  end BINARY; 
  record  UNARY   UnOp op;  Exp x1;  end UNARY; 
end Exp; 

uniontype BinOp   
  record  ADD  end ADD; 
  record  SUB  end SUB; 
  record  MUL  end MUL; 
  record  DIV  end DIV; 
end BinOp; 

uniontype UnOp   
  record  NEG  end NEG; 
end BinOp; 

2.2.3 Semantics of Exp2 

As in the previous specification of Exp1, we specify the interpretive semantics of Exp2 via a series of 
rules expressed as case-branches in match-expressions comprising the bodies of the evaluation functions. 
However, first we need to introduce the notion of tuples in Modelica, since this is used in two of the 
evaluation functions. 

2.2.3.1 Tuples in Meta-Modelica 

Tuples are like records, but without field names. They can be used directly, without previous declaration 
of a corresponding tuple type. 

The syntax of a tuple is a comma-separated list of values or variables, e.g. (..., ..., ...). The following 
is a tuple of a real value and a string value, using the tuple data constructor: 
 (3.14, "this is a string") 

Tuples already exist in a limited way in previous versions of Modelica since functions with multiple 
results are called using a tuple for receiving results, e.g.: 
(a,b,c) := foo(x, 2, 3, 5); 

2.2.3.2 The Exp2 Evaluator 

Below follows the semantic rules for the expression language Exp2, embedded in the functions eval, 
apply_binop, and apply_unop. As already mentioned, constructor names have been shortened 
compared to the specification of Exp1. Two rules have been introduced for the constructors BINARY and 
UNARY, which capture the common characteristics of all binary and unary operators, respectively. In 
addition to eval, two new functions apply_binop and apply_unop have been introduced, which 
describe the special properties of each binary and unary operator, respectively.  

First we show the function header of the eval function, including the beginning of the match-
expression: 
function eval 
  input Exp in_value1; 
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  output Integer out_value1; 
algorithm  
  out_value1:= 
   match in_value1 
    local 
      Integer ival,v1,v2,v3;  Exp e1,e2,e; 
      BinOp binop;  UnOp unop; 

Evaluation of an INT node gives the integer constant value itself: 
    case INT(ival) then ival; 

Evaluation of a binary operator node BINARY gives v3, if v3 is the result of successfully applying the 
binary operator to v1 and v2, which are the evaluated results of its children e1 and e2: 
    case BINARY(e1,binop,e2) equation  
        v1 = eval(e1); 
        v2 = eval(e2); 
        v3 = apply_binop(binop, v1, v2); 
      then v3; 

Evaluation of a unary operator node UNARY gives v2, if its child e can be successfully evaluated to a 
value v1, and the unary operator can be successfully applied to value v1, giving the result value v2. 
    case UNARY(unop,e) equation  
        v1 = eval(e); 
        v2 = apply_unop(unop, v1); 
      then v2; 
  end match; 
end eval; 

The Exp2 eval function can be made much more concise if we eliminate some intermediate variables 
and corresponding equations: 
function eval 
  input Exp in_value1; 
  output Integer out_value1; 
algorithm  
 out_value1:= 
  match in_value1 
    local 
      Integer ival;  Exp e1,e2,e; 
      BinOp binop;  UnOp unop; 
    case INT(ival) then ival; 
    case BINARY(e1,binop,e2) then apply_binop(binop, eval(e1), eval(e2)); 
    case UNARY(unop,e) then apply_unop(unop, eval(e)); 
  end match; 
end eval; 

Next to be presented is the function apply_binop which accepts a binary operator and two integer 
values.  
function apply_binop 
  input BinOp op; 
  input Integer arg1; 
  input Integer arg2; 
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  output Integer out_value1; 
algorithm  
 out_value1:= 
  match (op,arg1,arg2) 
    local Integer v1,v2; 
    case (ADD,v1,v2) then v1+v2; 
    case (SUB,v1,v2) then v1-v2; 
    case (MUL,v1,v2) then v1*v2; 
    case (DIV,v1,v2) then v1/v2; 
  end match; 
end apply_binop; 

If the passed binary operator successfully can be applied to the integer argument values an integer result 
will be returned. Note that we construct a tuple of three input values (op,arg1,arg2) in the match-
expression which is matched against corresponding patterns in the case branches.  

(??Note: You might wonder why we do not directly reference the function input arguments arg1 and 
arg2 in the case branches, instead of doing a pattern matching to v1 and v2? The reason is a limitation 
in the current version (April 2005) of the Meta-Modelica subset compiler which prevents you from 
accessing function input arguments except in match-expression headers. 

Finally we present the function apply_unop which accepts a unary operator and an integer value. If 
the operator successfully can be applied to this value an integer result will be returned. 
function apply_unop 
  input UnOp op; 
  input Integer arg1; 
  output Integer out_value1; 
algorithm  
  out_value1:= 
   match (op,arg1) 
    local Integer v; 
    case (NEG,v) then –v; 
  end match; 
end apply_unop; 

For the small language Exp2 the semantic description has become more complicated since we now need 
three functions, eval, apply_binop and apply_unop, instead of just eval. In the following, we will 
use the simple abstract syntax style for small specifications. The parameterized abstract syntax style will 
only be used for larger specifications where it actually helps in structuring and simplifying the 
specification. 

2.3 Recursion and Failure in Meta-Modelica 

Before continuing the series of language specifications expressed in Meta-Modelica, it is will be useful 
to say a few words about the Meta-Modelica language itself. A more in-depth treatment of these topics 
can be found in Chapter 6. 
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2.3.1 Short Introduction to Declarative Programming in Meta-Modelica 

We have already stated that Meta-Modelica can be used as a declarative specification language for 
writing programming language specifications. Since Modelica is declarative, it can also be viewed as a 
functional programming language. A Meta-Modelica function containing match- or matchcontinue-
expressions maps inputs to outputs, just as an ordinary function, but also has two additional properties: 

• Functions containing match/matchcontinue-expressions can succeed or fail. 
• Local backtracking between case rules can occur in matchcontinue-expressions. This means that 

if a case rule fails because one of its equations or function calls fail, the next rule is tried. 

The fac example below shows a function calculating factorials. This is an example of using Meta-
Modelica not for language specification, but to state a small declarative (i.e., functional) program: 
function fac 
  input Integer in_value1; 
  output Integer out_value1; 
algorithm  
 out_value1:= 
  match in_value1 
    local  Integer n; 
    case 0 then 1; 
    case n then if n>0 then n*fac(n-1); 
  end match; 
end lookup; 

The first three lines specifies the name (fac) and type signature of the function. In this example an 
integer factorial function is computed, which means that both the input parameter and the result are of 
type Integer. 

Next comes the two rules, which make up the body of the match-expression in function. The first rule 
in the above example can be interpreted as follows:  

• If the function is called to compute the factorial of the value 0 (i.e. matching the “pattern” 
fac(0)), then the result is the value 1.  

This corresponds to the base case of a recursive function calculating factorials.  
The first rule will be invoked if the argument matches the pattern fac(0) of the rule. If this is not the 

case, the next rule will be tried, if this rule does not match, the next one will be tried, and so on. If no 
rule matches the argument(s), the call to the function will fail. 

The second rule of the fac function handles the general case of a factorial function computation 
when the input value n is greater than zero, i.e., n>0. It can be interpreted as follows:  

• If the factorial is computed on a value n, i.e., fac(n), and n>0, then compute n*fac(n-1) 
which is returned as the result of the rule.  

2.3.1.1 Handling Failure 

If the fac function is used to compute the factorial of a negative value an important property of Meta-
Modelica is demonstrated, since the fac function will in this case fail.  
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A factorial call with a negative argument does not match the first rule, since all negative values 
differs from zero. The second rule matches, but fails, since the condition n>0 is not fulfilled for negative 
values of n.  

Thus the function will fail, meaning it will not return an ordinary value to the calling function. After 
a fail has occurred in a rule or in some function called from that rule, backtracking takes place, and the 
next rule in the current function is tried instead. 

However, functions with built-in failure handling can be useful, as in the following example: 
function fac_failsafe 
  input Integer in_value1; 
protected  
  Integer dummy_value1; 
algorithm  
 dummy_value1 := 
  matchcontinue in_value1 
    local  Integer n,result;  String str_result; 
    case n equation 
        str_result = int_string(fac(n)); 
        print("Res: "); print(str_result);  print("\n"); 
      then 0; 
    case n equation 
        failure(result = fac(n)); 
        print("Cannot apply factorial relation to n."); print("\n"); 
      then 1; 
  end matchcontinue; 
end lookup; 

The function fac_failsafe has two rules corresponding to the two cases of correct and incorrect 
arguments. Since the patterns are overlapping and we need to continue trying the next rule if the first 
rule fails, we need to use matchcontinue instead of match which would return immediately with a fail 
if the first rule fails. We use the failure(...) primitive to check for failure of the first equation in the 
second rule. 

The first rule handles the case where the fac function computes the value and returns successfully. In 
this case the value is converted to a string and printed using the built-in Meta-Modelica print function.  

The second rule is tried if the first rule fails, for example if the function fac_failsafe is called 
with a negative argument, e.g. fac(-1).  

In the second rule a new operator, failure(...), is introduced in the expression 
failure(result = fac(n)) which succeeds if the call fac(n) fails. Then an error message is 
printed by the second rule. 

It is important to note that fail is quite different from returning the logical value false. A function 
returning false would still succeed since it returns a value. The builtin operator not operates on the 
logical values true and false, and is quite different from the failure operator. There is also a builtin 
function bool_success(eqarg) which can be used for testing success or failure in a context where a 
Boolean value is needed. It returns true if its equation argument eqarg succeeds and false if it fails. 
See also Section 6.1.1. 
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2.4 The Assignments Language – Introducing Environments 

The Assignments language extends our simple evaluator with variables. For example, the assignment: 
 a := 5 + 3*10 

will store the value of the evaluated expression (here 35) into the variable a. The value of this variable 
can later be looked up and used for computing other expressions: 
 b := 100 + a 

 d := 10 * b 

giving the values 135 and 1350 for b and d, respectively. Expressions may also contain embedded 
assignments as in the example below: 
 e := 50 + (d := a + 100) 

2.4.1 Environments 

To handle variables, we need a mechanism for associating values with identifiers. This mapping from 
identifiers to values is called an environment, and can be represented as a set of pairs (identifier,value). 
A function called lookup is introduced for looking up the associated value for a given identifier. An 
association of some value or other structure to an identifier is called a binding. An identifier is bound to 
a value within some environment. 

There are several possible choices of data structures for representing environments. The simplest 
representation, often used in formal specifications, is to use a linked list of (identifier,value) pairs. This 
has the advantage of simplicity, but gives long lookup times due to linear search if there are many 
identifiers in the list. Other, more complicated, choices are binary trees (see Section Error! Reference 
source not found.) or hash tables. Such representations are commonly used to provide fast lookup in 
product quality compilers or interpreters. 

 

a 35 b 135 d 1350

Environment

 
Figure 2-3.  An environment represented as a linked list, containing name-value pairs for a, b and d. 

Here we will regard the environment as an abstract data structure only accessed through access functions 
such as lookup, to avoid exposing specific low level implementation details. This gives us freedom to 
change the underlying implementation without changing the language specification. Unfortunately, 
many published formal language specifications have exposed such details and made themselves 
dependent on a linked list implementation. In the following we will initially use a linked list 
implementation of the environment abstract data type, but will later change implementation (??update?) , 
see Section Error! Reference source not found., when generating production quality translators. 
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In this simple Assignments language, an integer value is stored in the environment for each variable. 
Compilers need other kinds of values such as descriptors, containing various information for example 
location, type, length, etc., associated to each name. Compilers also use more complicated structures, 
called symbol tables, to store information associated with names. An environment can be regarded as a 
simplified abstract view of the symbol table. 

2.4.2 Concrete Syntax of the Assignments Language 

The concrete syntax of the Assignments language follows below. A couple of new rules have been added 
compared to the Exp language: one rule for the assignment statement, two rules for the sequence of 
assignments, one rule for allowing assignments as subexpressions, and finally the program production 
has been extended to first take a sequence of assignments, then a separating semicolon, and lastly an 
ending expression. 
/* Yacc BNF grammar of the expression language called Assignments */ 

program          : assignments T_SEMIC expression 
 
assignments      :  assignment 
                 |  assignments  assignment 
 
assignment       :  ident  T_ASSIGN  expression 
 
expression       :  term 
                 |  expression  weak_operator  term 
 
term             :  u_element 
                 |  term  strong_operator  u_element 
 
u_element        :  element 
                 |  unary_operator  element 
 
element          :  T_INTCONST 
                 |  T_LPAREN  expression  T_RPAREN 
                 |  T_LPAREN assignment T_RPAREN 
 
weak_operator    :  T_ADD   |  T_SUB 
strong_operator  :  T_MUL   |  T_DIV 
unary_operator   :  T_SUB 

The lexical specification for the Assignments language contains three more tokens, ":=", ident, and 
";", compared to the Exp1 language. It is a more complete lexical specification, making extensive use 
of regular expressions. 

White space represents one or more blanks, tabs or new lines, and is ignored, i.e., no token is 
returned. A letter is a letter a-z or A-Z or underscore. An identifier (ident) is a letter followed by zero or 
more letters or digits. A digit is a character within the range 0-9. Digits is one or more of digit. An 
integer constant (intcon) is the same as digits. The function lex_ident returns the token T_IDENT 
and converts the scanned name to an atom representation  stored in the global variable yylval.voidp 
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which is used by the parser to obtain the identifier. The function lex_icon returns the token 
T_INTCONST and stores the integer constant converted into binary form in the same yyval.voidp. 
/* Lex style lexical syntax of tokens in the language Assignments */ 
 
whitespace   [ \t\n]+ 
letter       [a-zA-Z_] 
ident        {letter} ({letter} | {digit})* 
digit        [0-9] 
digits       {digit}+ 
%% 
{whitespace} ; 
{ident}  return lex_ident(); /* T_IDENT */ 
{digits}  return lex_icon();  /* T_INTCONST */ 
":="   return T_ASSIGN; 
"+"   return T_ADD; 
"-"   return T_SUB; 
"*"   return T_MUL; 
"/"   return T_DIV; 
"("   return T_LPAREN; 
")"   return T_RPAREN; 
";"  return T_SEMIC; 

2.4.3 Abstract Syntax of the Assignments Language 

We introduce a few additional node types compared to the Exp1 language: the ASSIGN constructor 
representing assignment and the IDENT constructor for identifiers.  
uniontype Exp   
  record  INT     Integer x1;  end INT; 
  record  IDENT   Ident id;  end IDENT; 
  record  BINARY  Exp x1;  BinOp op;  Exp x2;  end BINARY; 
  record  UNARY   UnOp op;  Exp x1;  end UNARY; 
  record  ASSIGN  Ident id;  Exp x1;  end ASSIGN; 
end Exp; 

Now we have also added a new abstract syntax type Program that represents an entire program as a list 
of assignments followed by an expression: 
uniontype Program 
  record  PROGRAM  ListExp x1;  Exp x2;  end PROGRAM; 
end Program; 

type  ListExp = list<Exp>; 

The first list of expressions contains the initial list of assignments made before the ending expression 
will be evaluated. 

The new type Ident is exactly the same as the builtin Modelica type String. The Modelica type 
declaration just introduces new names for existing types. The type Value is the same as Integer and 
represents integer values. 
type Ident       =  String; 
type Value       =  Integer; 
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The environment type Env is represented as a list of pairs (tuples) of (identifier,value) representing 
bindings of type VarBnd of identifiers to values. The Meta-Modelica syntax for tuples is: (item1, item2, 
... itemN) of which a pair is a special case with two items. The Meta-Modelica list type constructor 
denotes a list type. 
type VarBnd        = tuple<Ident,Value>; 
type Env           = list<VarBnd>; 

Below follows all abstract syntax declarations needed for the specification of the Assignments language. 
/* Complete abstract syntax for the Assignments language */ 

uniontype Exp   
  record  INT     Integer x1;  end INT; 
  record  IDENT   Ident id;  end IDENT; 
  record  BINARY  Exp x1;  BinOp op;  Exp x2;  end BINARY; 
  record  UNARY   UnOp op;  Exp x1;  end UNARY; 
  record  ASSIGN  Ident id;  Exp x1;  end ASSIGN; 
end Exp; 

uniontype BinOp   
  record  ADD  end ADD; 
  record  SUB  end SUB; 
  record  MUL  end MUL; 
  record  DIV  end DIV; 
end BinOp; 

uniontype UnOp   
  record  NEG  end NEG; 
end BinOp; 

uniontype Program 
  record  PROGRAM  ListExp x1;  Exp x2;  end PROGRAM; 
end Program; 

type ListExp       = list<Exp>; 
type Ident         = String; 
 
/* Values stored in environments */ 
type Value         = Integer; 
 
/* Bindings and environments */ 
type VarBnd        = tuple<Ident,Value>; 
type Env           = list<VarBnd>; 

2.4.4 Semantics of the Assignments Language 

As previously mentioned, the Assignments language introduces the treatment of variables and the 
assignment statement to the former Exp2 language. Adding variables means that we need to remember 
their values between one expression and the next. This is handled by an environment (also known as 
evaluation context), which in our case is represented as list of variable-value pairs. 
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A semantic rule will evaluate each descendent expression in one environment, modify the 
environment if necessary, and then pass the value of the expression and the new environment to the next 
evaluation. 

2.4.4.1 Semantics of Lookup in Environments 

To check whether an identifier is already present in an environment, and if so, return its value, we 
introduce the function lookup, see also Section Error! Reference source not found.. If there is no 
value associated with the identifier, lookup will fail. 
function lookup 
  input Env in_env; 
  input Ident in_id; 
  output Value out_value1; 
algorithm  
 out_value1:= 
  match (in_env,in_id) 
    local  Ident id2,id;  Integer value;  Env rest; 
    case ( (id2,value) :: rest, id) 
      then  if id == id2 then value else lookup(rest,id); 
  end match; 
end lookup; 

This version of lookup performs a linear search of an environment represented as a list of pairs 
(identifier,value).  

The case rule works as follows: Either identifier id is found (id==id2) in the first pair of the list, 
and value is returned, or it is not found in the first pair of the list, and lookup will recursively search 
the rest of the list. If found, value is returned, otherwise the function will fail since there is no match. 

In more detail, the pattern (id2,value) :: rest is matched against the environment argument 
in_env. The :: is the cons operator for adding a new element at the front of a list; and rest is a 
pattern variable the becomes bound to the rest of the list. If there is a match, id2 will become bound to 
the identifier of that pair, and value will be bound to its associated value. If the condition id == id2 is 
fulfilled, then value will be returned as the result of lookup, otherwise a recursive call to lookup is 
performed. 

For example, the environment (env) depicted in Figure 2-3 shown is below: 
{(a,35), (b,135), (d,1350)} 

The list is the result of several cons  operations: 
(a,35) :: (b,135) :: (d,1350) :: {} 

An example lookup call: 
lookup(env, a) 

will match the pattern 
lookup((id2,value) :: rest, id) 

of the first rule, and thereby bind id2 to a, value to 35, id to a, and rest to {(b,135),(d,1350)} 
Since the condition id==id2 is fulfilled, the value 35 will be returned. 
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Below we also show a slightly more complicated variant of lookup, which does the same job, but is 
interesting from a semantic point of view. It has two rules corresponding to the two cases. Since the 
patterns are overlapping and we need to continue trying the next rule if the first rule fails, we need to use 
matchcontinue instead of match which would return immediately with a fail if the first rule fails. We 
use the failure(...) primitive to check for failure of the first equation in the second rule. 
function lookup 
  input Env in_env; 
  input Ident in_id; 
  output Value out_value1; 
algorithm  
 out_value1:= 
  matchcontinue (in_env,in_id) 
    local  Ident id2,id;  Integer value;  Env rest; 
    /* Identifier id is found in the first pair of the list, and value 
     * is returned. */ 
    case ( (id2,value)::_ ,id)  equation  id = id2;  then value; 
    /* Identifier id is not found in the first pair of the list, and lookup will 
     * recursively search the rest of the list. If found, value is returned. */ 
    case ( (id2,_)::rest, id)  equation  
        failure(id = id2);  value = lookup(rest, id); 
      then value; 
  end matchcontinue; 
end lookup; 

The first rule, also shown below, deals with the case when the identifier is present in the leftmost (most 
recent) pair in the environment.  
    case ( (id2,value)::_ ,id)  equation id = id2;  then value; 

It will try to match the (id2,value) :: _ pattern against the environment argument. The underscore _ 
is a “wildcard” pattern that matches anything. If there is a match, id2 will become bound to the identifier 
of that pair, and value will be bound to its associated value. If the local equation id = id2 is fulfilled, 
then value will be returned as the result of lookup, otherwise the next rule will be applied. 

The second rule of lookup deals with the case when the identifier might be present in the rest of the 
list (i.e., not in the leftmost pair). The pattern (id2,_) :: rest binds id2 to the identifier in the 
leftmost pair, and rest to the rest of the list.  

For a call such as lookup(env, b), id2 will be bound to a, rest to {(b,135),(d,1350)}, and 
id to b. 

The first local equation of the second rule below states that id is not in the leftmost pair ((a,35) in 
the above example call), whereas the second local equation retrieves the value from the rest of the 
environment if it succeeds. 
    case ( (id2,_):: rest, id)  equation  
        failure(id = id2);  value = lookup(rest, id); 
      then value; 
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2.4.4.2 Updating and Extending Environments at Lookup 

In the Assignments language we have the following two rules for the occurrence of an identifier (i.e., a 
variable) in an expression: 

• If the variable is not yet in the environment, initialize it to zero and return its zero value and the 
new environment containing the added variable. 

• If the variable is already in the environment, return its value together with the environment. 

This is expressed by the function lookupextend below, which is using the builtin primitive 
bool_success to test for success or failure of the equation value = lookup(env, id): 
function lookupextend 
  input Env in_env; 
  input Ident in_id; 
  output Env out_value1; 
  output Value out_value2; 
algorithm  
 out_value1:= 
  match (in_env,in_id) 
    local  Env env;  Ident id;  Integer value; 
    case (env,id) then  
        if bool_success(value = lookup(env, id)) then (env, value); 
        else ( (id,0) :: env), 0); 
  end match; 
end lookupextend; 

For example, the following call on the above example environment env: 
lookupextend(env,x) 

will return the following environment together with the value 0: 
{(x,0), (a,35), (b,135), (d,1350)} 

For the sake of completeness, we also show a version of lookupextend with two rules corresponding 
to the above two rules concerning the occurrence of an identifier. Both rules are using the same pattern 
(env,id). Here we need to use matchcontinue in order to continue matching with the next rules if 
the current rule fails – a kind of exception handling for fail exceptions. A match-expression would 
immediately return with a fail if the current rule fails. 
function lookupextend 
  input Env in_value1; 
  input Ident in_value2; 
  output Env out_value1; 
  output Value out_value2; 
algorithm  
 out_value1:= 
  matchcontinue (in_value1,in_value2) 
    local  Env env;  Ident id;  Integer value; 
    case (env,id)  equation  
        failure(value = lookup(env, id));  then ( (id,0) :: env), 0); 
    case (env,id) equation  
        value = lookup(env, id);  then (env, value); 
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  end matchcontinue; 
end lookupextend; 

For the evaluation of an assignment (node ASSIGN) we need to store the variable and its value in an 
updated environment, expressed by the following two rules: 

• If the variable on the left hand side of the assignment is not yet in the environment, associate it 
with the value obtained from evaluating the expression on the right hand side, store this in the 
environment, and return the new value and the updated environment. 

• If the variable on the left hand side is already in the environment, replace the current variable 
value with the value from the right hand side, and return the new value and the updated 
environment. 

We actually cheat a bit in the function update below. Both lookupextend and update add a new pair 
(id,value) at the front of the environment represented as a list, even if the variable is already present. 
Since lookup will always search the environment association list from beginning to end, it will always 
return the most recent value, which gives the same semantics in terms of computational behavior but 
consumes more storage than a solution which would locate the existing pair and replace the value. The 
function update is as follows: 
function update 
  input Env in_env; 
  input Ident in_id; 
  input Value in_value3; 
  output Env out_value1; 
algorithm  
 out_value1:= 
  match (in_env,in_id,in_value3) 
    local  Env env;  Ident id;  Integer value; 
    case (env,id,value) then (id,value) :: env; 
  end match; 
end update; 

For example, the following call to update the variable x in the above example environment env: 
update(env,x,999) 

will give the following environment list: 
{(x,999), (a,35), (b,135), (d,1350)} 

One more call update(env,x,988) on the returned environment will give: 
{(x,988), (x,999), (a,35), (b,135), (d,1350)} 

A call to lookup the variable x in the new environment (here called env3): 
lookup(env3, x) 

will return the most recent value of x, which is 988. 
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2.4.4.3 Evaluation Semantics 

The eval function from the earlier Exp2 language has been extended with rules for assignment 
(ASSIGN) and variables (IDENT), as well as accepting an environment as an extra argument and 
returning an (updated) environment as a result. In the rule to evaluate an IDENT node, lookupextend 
returns a possibly updated environment env2 and the value associated with the identifier id in the 
current environment env. If there is no such value, identifier id will be bound to zero and the current 
environment will be updated to become env2. 
function eval 
  input Env in_value1; 
  input Exp in_value2; 
  output Env out_value1; 
  output Integer out_value2; 
algorithm  
  out_value1:= 
  match (in_value1,in_value2) 
    local 
      Env env,env1,env2,env3; 
      Integer ival, value, v1,v2,v3; 
      Ident id; 
      Exp exp,e1,e2,e; 
      BinOp binop;  UnOp unop; 
   
  /* eval of an integer constant node INT in an environment is the integer 
   * value together with the unchanged environment. 
   */ 
    case (env,INT(ival))   then (env,ival); 
 
  /* eval of an identifier node IDENT will lookup the identifier and return a 
   * value if present; otherwise insert a binding to zero, and return zero. 
   */ 
    case (env,IDENT(id)) 
      equation  
        (env2,value) = lookupextend(env, id); 
        then (env2,value); 
 
  /* eval of an assignment node returns the updated environment and 
   * the assigned value. 
   */ 
    case (env,ASSIGN(id,exp)) 
      equation  
        (env2,value) = eval(env, exp); 
        env3 = update(env2, id, value); 
        then (env3,value); 

The rules below specify the evaluation of the binary (ADD, SUB, MUL, DIV) and unary (NEG) operators. 
The first rule specifies that the evaluation of an binary node BINARY(e1,binop,e2) in an environment 
env1 is a possibly changed environment env3 and a value v3, provided that function eval succeeds in 
evaluating e1 to the value v2 and possibly a new environment env2, and e2 successfully evaluates e2 
to the value v2 and possibly a new environment env3. Finally, the apply_binop function is used to 
apply the operator to the two evaluated values. The reason for returning new environments is that 
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expressions may contain embedded assignments, for example: e := 35 + (d := a + 100). The rule 
for unary operators is similar. 
/* eval of a binary node BINARY(e1,binop,e2), etc. in an environment env */ 
    case (env1,BINARY(e1,(binop,e2))) 
      equation  
        (env2,v1) = eval(env1, e1); 
        (env3,v2) = eval(env2, e2); 
        v3 = apply_binop(binop, v1, v2); 
      then (env3,v3); 

/* eval of a unary node UNARY(unop,e), etc. in an environment env */ 
    case (env1,UNARY(unop,e)) 
      equation  
        (env2,v1) = eval(env1, e); 
        v2 = apply_unop(unop, v1); 
      then (env2,v2); 
  end match; 
end eval; 

The functions apply_binop and apply_unop are not shown here since they are unchanged from the 
Exp2 specification. 

In Section 2.6 the Assignments language will be extended into a language called AssignTwoType, that 
can handle expressions containing constants and variables of two types: Real and Integer, which has 
interesting consequences for the semantics of the evaluation rules and storing values in the environment. 

2.5 PAM – Introducing Control Structures and I/O 

PAM is a Pascal-like language that is too small to be useful for serious programming, but big enough to 
illustrate several important features of programming languages such as control structures, including 
loops (but excluding goto), and simple input/output. However, it does not include procedures/functions 
and multiple types. Only integer variables and values are dealt with during computation, although 
Boolean values can occur temporarily in comparisons within if- or while-statements. 

The language was originally presented by Frank Pagan in his book Formal Specification of 
Programming Languages [ref??], which gives a very pedagogical introduction to formal specification 
using several formalisms such as attribute grammars, two-level grammars, operational semantics, 
denotational semantics and axiomatic semantics. The reader who would like a more in-depth description 
of PAM and would like to learn about other formalisms is highly recommended to read Pagan’s book.  

2.5.1 Examples of PAM Programs 

A PAM program consists of a series of statements, as in the example below where the factorial of a 
number N is computed. First the number N is read from the input stream. Then the special case of 
factorial of zero is dealt with, giving the value 1. Note that factorial of a negative number is not handled 
by this program, not even by an error message since there are no strings in this language. 
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The factorial for N>0 is computed by the else-part of the if-statement, which contains a definite loop: 

  to  expression  do  series-of-statement  end   

This loop computes series-of-statement a definite number of times given by first evaluating expression. 
In the example below, to N do ... end  will compute the factorial by iterating N times. 
Alternatively, we could have expressed this as an indefinite loop, i.e., a while statement: 

  while  comparison  do  series-of-statement  end 

which will evaluate series-of-statement as long as comparison is true. 
  /* Computing factorial of the number N, and store in variable Fak */ 
  /* N is read from the input stream; Fak is written to the output */ 
  /* Fak is  1 * 2 * ....  (N-1) * N    */ 
  read N; 
  if N=0 then 
    Fak := 1; 
  else  
    if N>0 then 
      Fak := 1; 
      I := 0; 
      to N do 
        I := I+1; 
        Fak := Fak*I; 
      end 
    endif 
  endif 
  write Fak; 

Variables are not declared in this language, they are created when they are assigned values. The usual 
arithmetic operators “+”, “-” with weak precedence and “*”, “/” with stronger precedence, are included. 
Comparisons are expressed by the relational operators “<”, “<=”, “=”, “>=”, “>”. One small change has 
been done to PAM as compared to Pagan’s book: the reserved word FI has been replaced by the more 
readable endif. 

2.5.2 Concrete Syntax of PAM 

The concrete syntax of the PAM language is given as a BNF grammar below. A program is a 
series_of_statement. A statement is an input_statement (read id1,id2,...); an output_statement 
(write id1,id2...); an assignment_statement (id := expression); an if-then conditional_statement 
(if expression then series-of-statement endif), an if-then-else conditional_statement (if expression 
then series-of-statement else series-of-statement endif), a definite_loop for a fixed number of 
iterations (to expression do series-of-statement end), or a while_loop for an indefinite number of 
iterations (while comparison do series-of-statement end). The usual arithmetic expressions are 
included, as well as comparisons using relational operators. 
/* Yacc BNF grammar of the PAM language */ 
 
program               :  series 
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series                :  statement 
                      |  statements series 
 
statement             :  input_statement T_SEMIC 
                      |  output_statement T_SEMIC 
                      |  assignment_statement T_SEMIC 
                      |  conditional_statement 
                      |  definite_loop 
                      |  while_loop 
 
input_statement       :  T_READ  variable_list 
 
output_statement      :  T_WRITE  variable_list 
 
variable_list         :  variable 
                      |  variable variable_list 
 
assignment_statement  :  variable  T_ASSIGN  expression 
 
conditional_statement :  T_IF comparison T_THEN series T_ENDIF 
                      |  T_IF comparison T_THEN series  
                                         T_ELSE series T_ENDIF 
 
definite_loop         |  T_TO expression T_DO series T_END 
 
while_loop            |  T_WHILE comparison T_DO series T_END 
 
 
expression       :  term 
                 |  expression  weak_operator  term 
 
term             :  element 
                 |  term  strong_operator  element 
 
element          :  constant 
                 |  variable 
                 |  T_LPAREN  expression  T_RPAREN 
 
comparison       :  expression  relation  expression 
 
variable         :  T_IDENT 
constant         :  T_INTCONST 
relation         :  T_EQ | T_LE | T_LT  T_GT | T_GE | T_NE 
weak_operator    :  T_ADD   |  T_SUB 
strong_operator  :  T_MUL   |  T_DIV 

The lexical syntax of the PAM language has two extensions compared to the previously presented 
Assignments language: tokens for relational operators “<”, “<=”, “=”, “<>”, “>=”, “>” and tokens for 
reserved words: if, then, else, endif, while, do, end, to, read, write. The function lex_ident 
checks if a possible identifier is a reserved word, and in that case returns one of the tokens T_IF, 
T_THEN, T_ELSE, T_ENDIF, T_ELSE, T_WHILE, T_DO, T_END, T_TO, T_READ or T_WRITE.       
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/* Lex style lexical syntax of tokens in the PAM language */ 
 
whitespace   [ \t\n]+ 
letter       [a-zA-Z] 
ident        {letter} ({letter} | {digit})* 
digit        [0-9] 
digits       {digit}+ 
icon         {digits} 
%% 
{whitespace} ; 
{ident}      return lex_ident(); /* T_IDENT or reserved word tokens */ 
/* Reserved words: if,then,else,endif,while,do,end,to,read,write */ 
 
{digits}     return lex_icon();  /* T_INTCONST */ 
":="         return T_ASSIGN; 
"+"          return T_ADD; 
"-"          return T_SUB; 
"*"          return T_MUL; 
"/"          return T_DIV; 
"("          return T_LPAREN; 
")"          return T_RPAREN; 
"<"          return T_LT; 
"<="         return T_LE; 
"="          return T_EQ; 
"<>"         return T_NE; 
">="         return T_GE; 
">"          return T_GT; 

2.5.3 Abstract Syntax of PAM 

Since PAM is slightly more complicated than previous languages we choose the parameterized style of 
abstract syntax, first introduced in Section 2.2 and Section 2.2. This style is better at grouping related 
semantic constructs and thus making the semantic specification more concise and better structured. 

In comparison to the Assignments language, we have introduced relational operators (RelOp) and the 
RELATION constructor which belongs to the set of expression nodes (Exp). There is also a  union type 
Stmt for different kinds of statements. Note that statements are different from expressions in that they 
do not return a value but update the value environment and/or modify the input or output stream. 
However, in this simplified semantics the streams are implicit and not part of the semantic model to be 
presented. The constructor SEQ allows the representation of statement sequences, whereas SKIP 
represents the empty statement. 
/* Parameterized abstract syntax for the PAM language */ 
 
  type Ident = String; 
 
  uniontype BinOp 
    record ADD  end ADD; 
    record SUB  end SUB; 
    record MUL  end MUL; 
    record DIV  end DIV; 
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  end BinOp; 
 
  uniontype RelOp 
    record EQ  end EQ; 
    record GT  end GT; 
    record LT  end LT; 
    record LE  end LE; 
    record GE  end GE; 
    record NE  end NE; 
  end RelOp; 
 
  uniontype Exp 
    record INT     Integer x1;  end INT; 
    record IDENT   Ident id;    end IDENT; 
    record BINARY  Exp x1; BinOp op;  Exp x2;  end BINARY; 
    record RELATION  Exp x1;  RelOp op;  Exp x3;  end RELATION; 
  end Exp; 
 
  type IdentList = list<Ident>; 
  uniontype Stmt 
    record ASSIGN Ident id; Exp x2; end ASSIGN;      "Id := Exp" 
    record IF     Exp x1; Stmt x2; Stmt x3; end IF;  "if Exp then Stmt.." 
    record WHILE  Exp x1; Stmt x2;  end WHILE;       " while Exp do Stmt" 
    record TODO   Exp x1;  Stmt x2; end TODO;        " to Exp do Stmt..." 
    record READ   IdentList x1;  end READ;           "read id1,id2,..." 
    record WRITE  IdentList x1;  end WRITE;          "write id1,id2,.." 
    record SEQ    Stmt x1;  Stmt x2;  end SEQ;       "Stmt1; Stmt2" 
    record SKIP  end SKIP;                           " ; empty stmt" 
  end Stmt; 

The type specifications below are not part of the abstract syntax of the language constructs, but needed 
to model the static and dynamic semantics of PAM. As for the Assignments language, the environment 
(Env) is a mapping from identifiers to values, used to store and retrieve variable values. Here it is 
represented as a list of pairs of variable bindings (VarBnd).  
/* Types needed for modeling static and dynamic semantics */ 
 
/* Variable binding and environment/state type */ 
type VarBnd = tuple<Ident,Value>; 
type Env    = list<VarBnd>; 
type Stream = list<Integer>; 
 
type State  = tuple<Env,Stream,Stream> "Environment,input stream,output stream"; 
 
uniontype Value  "Value type needed for evaluated results" 
  record INTval  Integer x1;  end INTval; 
  record BOOLval  Boolean x1; end BOOLval; 
end Value; 

We also introduce a data type Value for values obtained during expression evaluation. Even though 
only Integer values tagged by the constructor INTval are stored in the environment, Boolean values, 
represented by BOOLval(Boolean), occur when evaluating comparison functions. 
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Since PAM contains input and output statements, we need to model the overall state including both 
variable bindings and input and output files. This could have been done (as in Pascal [ref **]) by 
introducing two predefined variables in the environment denoting the standard input stream and output 
stream, respectively. Since standard input/output streams are not part of the PAM language definition we 
choose another solution. The concept of state is introduced, of type State, which is represented as a 
triple of environment, input stream and output stream (Env,Stream,Stream). The term configuration 
is sometimes used for this kind of state. 

2.5.4 Semantics of PAM 

The semantics of PAM is specified by several functions that contain groups of rules for similar 
constructs. Expression evaluation together with binary and relational operators are described first, since 
this is very close to previously presented expression languages. Then we present statement evaluation 
including simple control structures and input/output. Finally some utility functions (functions) for 
lookup of identifiers in environments, repeated evaluation, and I/O are defined. 

2.5.4.1 Expression Evaluation 

The eval function defines the semantics of expression evaluation. The first rule specifies evaluation of 
integer constant leaf nodes (INT(v)) which evaluate independently of the environment (because of the 
wildcard _) into the same constant value v tagged by the constructor INTval.  

We choose to introduce a special data type Value with constructors INTval and BOOLval for values 
generated during the evaluation. Alternatively, we could have used the abstract syntax leaf node INT, 
and introduced another node called BOOL. However, we chose the Value alternative, in order not to mix 
up the type of values produced during evaluation with the node types of the abstract syntax. An 
additional benefit of giving the specification a more clear type structure is that the Meta-Modelica 
compiler will have better chances of detecting type errors in the specification. 
function eval  "Evaluation of expressions in the current environment" 
  input Env in_env; 
  input Exp in_exp; 
  output Value out_value1; 
algorithm  
  out_value1:= 
  match (in_env,in_exp) 
    local 
      Integer v,v1,v2,v3; 
      Env env; 
      Ident id; 
      Exp e1,e2; 
      BinOp binop; 
      RelOp relop; 
    case (_,INT(v)) then INTval(v);                       // Integer constant v 

The next two rules define the evaluation of identifier leaf nodes (IDENT(id)). The first rule describe 
successful lookup of a variable value in the environment, returning a tagged integer value (INTval(v)). 
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The second rule describes what happens if a variable is undefined. An error message is given and the 
evaluation will fail. 
    case (env,IDENT(id)) then lookup(env, id);            // Identifier id 
    case (env,IDENT(id))  
      equation                         // If id not declared, give an error  
        failure(v = lookup(env, id));  // message and fail by calling error()    
      then error("Undefined identifier", id); 

Alternatively, the evaluation of identifier nodes can be specified by just one rule containing a conditional 
expression: 
    case (env,IDENT(id)) then                             // Identifier id 
      if bool_success(v = lookup(env,id)) then v  
      else error("Undefined identifier", id);             // If id not declared, 
                           //  give an error message and fail by calling error() 

The last two rules specify evaluation of binary arithmetic operators and boolean relational operators, 
respectively. These rules first take care of argument evaluation, which thus need not be repeated for each 
rule in the invoked functions apply_binop and apply_relop which compute the values to be 
returned. Here we see the advantages of parameterized abstract syntax, which allows grouping of 
constructs with similar structure. The last rule returns values tagged BOOLval, which cannot be stored in 
the environment, and are used only for comparisons in while- and if-statements. 
    case (env,BINARY(e1,binop,e2))               // expr1 binop expr2 
      equation 
        INTval(v1) = eval(env, e1); 
        INTval(v2) = eval(env, e2); 
        v3 = apply_binop(binop, v1, v2); then INTval(v3); 
    case (env,RELATION(e1,relop,e2))                      // expr1 relop expr2 
      local Boolean v3;  
      equation 
        INTval(v1) = eval(env, e1); 
        INTval(v2) = eval(env, e2); 
        v3 = apply_relop(relop, v1, v2); then BOOLval(v3); 
  end match; 
end eval; 

2.5.4.2 Arithmetic and Relational Operators 

The functions apply_binop and apply_relop define the semantics of applying binary arithmetic 
operators and binary boolean operators to integer arguments, respectively. Since argument evaluation 
has already been taken care of by the eval function, only one local equation is needed in each rule to 
invoke the appropriate predefined Meta-Modelica operation. 
function apply_binop  
            "Apply a binary arithmetic operator to constant integer arguments"    
  input BinOp op; 
  input Integer arg1; 
  input Integer arg2; 
  output Integer out_value1; 
algorithm  
  out_value1:= 
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  match (op,arg1,arg2) 
    local  Integer x,y; 
    case (ADD(),x,y) then x + y; 
    case (SUB(),x,y) then x - y; 
    case (MUL(),x,y) then x*y; 
    case (DIV(),x,y) then x/y; 
  end match; 
end apply_binop; 
 
function apply_relop  "Apply a relation operator, returning a boolean value" 
  input RelOp op; 
  input Integer arg1; 
  input Integer arg2; 
  output Boolean out_boolean; 
algorithm  
  out_boolean := 
  match (op,arg1,arg2) 
    local  Integer x,y; 
    case (LT(),x,y) then (x < y); 
    case (LE(),x,y) then (x <= y); 
    case (EQ(),x,y) then (x == y); 
    case (NE(),x,y) then (x <> y); 
    case (GE(),x,y) then (x >= y); 
    case (GT(),x,y) then (x > y); 
  end match; 
end apply_relop; 

2.5.4.3 Statement Evaluation 

The eval_stmt function defines the semantics of statements in the PAM language. In contrast to 
expressions, statements return no values. Instead they modify the current state which contains variable 
values, the input stream and the output stream. The type State is defined as follows: 
type State  =  tuple<Env,Stream,Stream>; 

Statements change the current state, returning a new updated state. This is expressed by the type 
signature of eval_stmt which is (State, Stmt) => State. Below we describe the function 
eval_stmt by explaining the semantics of each statement type separately. 

First we show the function header and the beginning of the match expression 
function eval_stmt   
    "Statement evaluation: map the current state into a new state" 
    input State in_state; 
    input Stmt in_stmt; 
    output State out_state; 
  algorithm  
    out_state := 
    match (in_state,in_stmt) 
      local 
        Value v1; 
        Env env,env2; 
        State state,state1,state2,state3; 
        Stream istream,istream2,ostream,ostream2; 
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        Ident id;  Exp e1,comp; 
        Stmt s1,s2,stmt1,stmt2; 
        Integer n1,v2; 

The semantics of an assignment statement id := e1 is to first evaluate the expression e1 in the current 
environment env, and then update env by associating identifier id with the value v1, giving a new 
environment env2. The returned state contains the updated environment env2 together with unchanged 
input stream (is) and output stream (os).  (??update text) 
      case (env,ASSIGN(id,e1))                            /* Assignment */ 
        equation  
          v1 = eval(env, e1); 
          env2 = update(env, id, v1);  then env2; 

The conditional statement occurs in two forms: a long form: if comparison then stmt1 else stmt2 
or a short form if comparison then stmt1. Both forms are represented by the abstract syntax node 
(IF(comp,s1,s2)), where the short form has an empty statement (a SKIP node) in the else-part. Both 
stmt1 and stmt2 can be a sequence of statements, represented by the SEQ abstract syntax node. 

The pattern state1 as (env,_,_) means that the state argument that matches (env,_,_) will 
also be bound to state1. The environment component of the state will be bound to env, whereas the 
input and output components always match because of the wildcards (_,_). 

The first rule is the case where the comparison evaluates to true. Thus the then-part (statement s1) 
will be evaluated, giving a new state state2, which is the result of the if-statement. The second rule 
covers the case where the comparison evaluates to false, causing the else-part (statement s2) to be 
evaluated, giving a new state state2, which then becomes the result of the if-statement.  
case (state1 as (env,_,_), IF(comp,s1,s2))             /* if true ... */ 
  equation  
    BOOLval(true) = eval(env, comp); 
    state2 = eval_stmt(state1, s1);  then state2; 
case (state1 as (env,_,_), IF(comp,s1,s2))             /* if false ... */ 
  equation  
    BOOLval(false) = eval(env, comp); 
    state2 = eval_stmt(state1, s2); then state2; 

These two rules can be compacted into one rule, using a conditional expression: 
case (state as (env,_,_), IF(comp,s1,s2))             /* if ... */ 
  then  
    if BOOLval(true) == eval(env, comp) then eval_stmt(state, s1) 
    else if BOOLval(true) == eval(env, comp) then eval_stmt(state, s2) 
    else fail(); 

The next rule defines the semantics of the iterative while-statement. It is fundamentally different from all 
rules we have previously encountered in that the while construct recursively refers to itself in the local 
equation of the rule. The meaning of while is the following: first evaluate the comparison comp in the 
current state. If true, then evaluate the statement (sequence) s1, followed by recursive evaluation of the 
while-loop. On the other hand, if the comparison evaluates to false, no further action takes place. 

There are at least two ways to specify the semantics of while. The first version, shown in the rule 
immediately below, uses the availability of if-statements and empty statements (SKIP) in the language. 
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The if-statement will first evaluate the comparison comp. If the result is true, the then-branch will be 
chosen, which consists of a sequence of two statements. The while body (s1) will first be evaluated, 
followed by recursive evaluation of the while-loop once more. On the other hand, if the comparison 
evaluates to false, the else-branch consisting of the empty statement (SKIP) will be chosen, and no 
further action takes place.  

Since the recursive invocation of while is tail-recursive (this occurs as the last action, at the end of 
the then-branch), the Meta-Modelica compiler can implement this rule efficiently, without consuming 
stack space, similar to a conventional implementation that uses a backward jump. Note that this is only 
possible if there are no other candidate rules in the function. 
case (state,WHILE(comp,s1))                         // while ...  
  equation  
    state2 = eval_stmt(state, IF(comp,SEQ(s1,WHILE(comp,s1)),SKIP())); 
  then state2; 

The semantics of the while-statement can alternatively be modeled by the two rules below. The first rule, 
when the comparison evaluates to false, returns the current state unchanged. The second rule, in which 
the comparison evaluates to true, subsequently evaluates the while-body (s1) once, giving a new state 
state2, after which the while-statement is recursively evaluated, giving the state state3 to be 
returned. 
case (state as (env,_,_), WHILE(comp,s1))          // while false ... 
  equation  
    BOOLval(false) = eval(env,comp); then state; 

case (state as (env,_,_), WHILE(comp,s1))          // while true ... 
  equation  
    BOOLval(true) = eval(env,comp); 
    state2 = eval_stmt(state,s1); 
    state3 = eval_stmt(state2,WHILE(comp,s1); then state3; 

Both versions of the while semantics are OK. Since the previous version is slightly more compact, using 
only one rule, we choose that one in our final specification of PAM. 

The definite iterative statement: to expression do statement end first evaluates expression e1 to 
obtain some number n1, and provided that n1 is positive, repeatedly evaluates statement s1 the definite 
number of times given by n1. The repeated evaluation is performed by the function repeat_eval. 
case (state as (env,_,_), TODO(e1,s1))                   // to e1 do s1 ... 
  equation  
    INTval(n1) = eval(env, e1); 
    state2 = repeat_eval(state, n1, s1); then state2; 

Read and write statements modify the input and output stream components of the state, respectively. The 
input stream and output streams can be thought of as infinite sequences of items (for PAM: sequences of 
integer constants), which are handled by the operating system. First we describe the read statement. 

The read statement: read id1,id2,...idN reads N values into variables id1, id2,... idN, picking them 
from the beginning of the input stream which is updated as a result. 

The first rule covers the case of reading into an empty list of variables, which has no effect and 
returns the current state unchanged. The second rule models actual reading of values from the input 
stream. First, one item is extracted from the input stream by calling input_item, which returns a 
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modified input stream and a value. The input_stream should be regarded as part of an abstract 
interface that hides the implementation of Stream.  
case (state,READ({})) then state;                        // read () 

case (state as (env,istream,ostream, READ(id :: rest))   // read id1,.. 
  equation  
    (istream2,v2) = input_item(istream); 
    env2 = update(env, id, INTval(v2)); 
    state2 = eval_stmt((env2,istream2,ostream), READ(rest));  then state2; 
 

Analogously, the write statement: write id1,id2,...idN writes N values from variables id1, id2,... idN, 
adding them to the end of the current output stream which is modified accordingly. Writing an empty list 
of identifiers has no effect.  
case (state, WRITE({})) then state;                        // write () 

case (state as (env,istream,ostream), WRITE(id :: rest))   // write id1,.. 
  equation  
    INTval(v2) = lookup(env, id); 
    ostream2 = output_item(ostream,v2); 
    state2 = eval_stmt((env,istream,ostream2), WRITE(rest));  then state2; 
 

The semantics of a sequence stmt1; stmt2 of two statements is simple. First evaluate stmt1, giving 
an updated state state2. Then evaluate stmt2 in state2, giving state3 which is the resulting state. 
case (state,SEQ(stmt1,stmt2))                            // stmt1 ; stmt2 
  equation  
    state2 = eval_stmt(state, stmt1); 
    state3 = eval_stmt(state2, stmt2); then state3; 

The semantics of the empty statement, represented as SKIP, is even simpler. Nothing happens, and the 
current state is returned unchanged. 
    case (state,SKIP()) then state;                      // ; empty statement 

  end match; 

end eval_stmt; 

2.5.4.4 Auxiliary Functions 

The next few subsections defines auxiliary functions, repeat_eval, error, input_item, 
output_item, lookup, and update, needed by the rest of the PAM specification. 

2.5.4.5 Repeated Statement Evaluation 

The function repeat_eval(state,n,stmt) simply evaluates the statement stmt n times, starting 
with state, which is updated into a new state for each iteration. The then-part specifies that nothing 
happens if n <= 0. The else-part evaluates stmt in state and recursively calls repeat_eval for the 
remaining n-1 iterations, giving state which is returned. 
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function repeat_eval  "repeatedly evaluate stmt n times" 
  input State state; 
  input Integer n; 
  input Stmt stmt; 
  output State out_state; 
algorithm  
  out_state := 
  if n <= 0 then state                                  /* n <= 0 */ 
  else repeat_eval(eval_stmt(state, stmt), n-1, stmt);  /* eval n times */ 
end repeat_eval; 

2.5.4.6 Error Handling 

The error function can be invoked when there is some semantic error, for example when an undefined 
identifier is encountered. It simply prints one or two error messages, returns the empty value, and fails, 
which will stop evaluation (for an interpreter) or stop semantic analysis (for a translator). 
function error  "Print error messages str1 and str2, and fail" 
  input Ident str1; 
  input Ident str2; 
algorithm  
  print("Error - "); 
  print(str1);  print(" "); 
  print(str2);  print("\n"); 
  fail(); 
end error; 

2.5.4.7 Stream I/O Primitives 

The input_item function retrieves an item (here an integer constant) from the input stream, which can 
be thought of as an infinite list implemented by the operating system. The item is effectively removed 
from the beginning of the stream, giving a new (updated) stream consisting of the rest of the list. Since 
Stream in reality is implemented by the operating system, the streams passed to and returned from  this 
implementation of input_item and output_item are not updated, they are just dummy streams which 
give the functions the correct type signatures. 
 
function input_item  "Read an integer item from the input stream" 
  input Stream istream; 
  output Stream istream2; 
  output Integer i; 
algorithm  
  print("input: "); 
  i := Input.read(); 
  print("\n"); 
  istream2 := istream; 
end input_item; 

The output_item function outputs an item by attaching the item to the front of the output stream 
(effectively a possibly infinite list of items), giving an updated output stream ostream2.  
function output_item  "Write an integer item on the output stream" 
  input Stream ostream; 
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  input Integer i; 
  output Stream ostream2; 
 protected 
  String s; 
algorithm 
  s := int_string(i); 
  print(s); 
  ostream2 := ostream; 
end output_item; 

2.5.4.8 Environment Lookup and Update 

The function lookup(env,id) returns the value associated with identifier id in the environment env. 
If there is no binding for id in the environment, lookup will fail. Here the environment is implemented 
(as usual) as a linked list of (identifier,value) pairs.  

The first rule covers the case where id is found in the first pair of the list. The pattern (id2,value) 
is concatenated (::) to the rest of the list (the pattern wildcard: _), whereas the second rule covers the 
case where id is not in the first pair, and therefore recursively searches the rest of the list. 
function lookup  "lookup returns the value associated with an identifier. 
                 If no association is present, lookup will fail."    
  input Env in_env; 
  input Ident in_id; 
  output Value out_value; 
algorithm  
  out_value := 
  match (in_env,in_id) 
    local  Ident id2,id;  Value value;  State rest; 
    case ((id2,value) :: rest, id) then 
      if id==id2 then value              // id first in list 
      else lookup(rest,id);              // id in rest of list 
  end match; 
end lookup; 

The function update(env,id,value) inserts a new binding between id and value into the 
environment. Here the new (id,value) pair is simply put at the beginning of the environment. If an 
existing binding of id was already in the environment, it will never be retrieved again because lookup 
performs a left-to-right search that will always encounter the new binding before the old one. 
function update 
  input Env env; 
  input Ident id; 
  input Value value; 
  output Env out_env; 
algorithm  
  out_env := (id,value) :: env; 
end update; 

2.5.4.9 The Complete Interpretive Semantics for PAM 

The complete semantics of PAM follows below. The functions have been sorted in a bottom-up fashion, 
definition-before-use, even though that is not necessary in Modelica. Auxiliary utility functions and low 
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level constructs appear first, whereas statements appear last since they directly or indirectly refer to all 
the rest. 
encapsulated package Pam 
 
   "In this version the State is (environment, input stream, output stream). 
    However, the passed I/O streams are not used and updated, instead the I/O 
    is done through operating system calls. 
      Input is done through the function read which just calls a C function  
    doing a call to scanf. This works well if no backtracking occurs,  
    as when print is used."    
 

/* Parameterized abstract syntax for the PAM language */ 
 
  type Ident = String; 
 
  uniontype BinOp 
    record ADD  end ADD; 
    record SUB  end SUB; 
    record MUL  end MUL; 
    record DIV  end DIV; 
  end BinOp; 
 
  uniontype RelOp 
    record EQ  end EQ; 
    record GT  end GT; 
    record LT  end LT; 
    record LE  end LE; 
    record GE  end GE; 
    record NE  end NE; 
  end RelOp; 
 
  uniontype Exp 
    record INT     Integer x1;  end INT; 
    record IDENT   Ident id;    end IDENT; 
    record BINARY  Exp x1; BinOp op;  Exp x2;  end BINARY; 
    record RELATION  Exp x1;  RelOp op;  Exp x3;  end RELATION; 
  end Exp; 
 
  type IdentList = list<Ident>; 
  uniontype Stmt 
    record ASSIGN Ident id; Exp x2; end ASSIGN;      "Id := Exp" 
    record IF     Exp x1; Stmt x2; Stmt x3; end IF;  "if Exp then Stmt.." 
    record WHILE  Exp x1; Stmt x2;  end WHILE;       " while Exp do Stmt" 
    record TODO   Exp x1;  Stmt x2; end TODO;        " to Exp do Stmt..." 
    record READ   IdentList x1;  end READ;           "read id1,id2,..." 
    record WRITE  IdentList x1;  end WRITE;          "write id1,id2,.." 
    record SEQ    Stmt x1;  Stmt x2;  end SEQ;       "Stmt1; Stmt2" 
    record SKIP  end SKIP;                           " ; empty stmt" 
  end Stmt; 
 

/* Types needed for modeling static and dynamic semantics */ 
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/* Variable binding and environment/state type */ 
 
  type VarBnd = tuple<Ident,Value>; 
  type Env    = list<VarBnd>; 
  type Stream = list<Integer>; 
 
  type State  = tuple<Env,Stream,Stream>  
                                "Environment, input stream, output stream"; 
 
  uniontype Value  "Value type needed for evaluated results" 
    record INTval  Integer x1;  end INTval; 
    record BOOLval  Boolean x1; end BOOLval; 
  end Value; 
 
 
/*************** Statement evaluation **************/ 
 
  function eval_stmt   
                 "Statement evaluation: map the current state into a new state" 
    input State in_state; 
    input Stmt in_stmt; 
    output State out_state; 
  algorithm  
    out_state := 
    match (in_state,in_stmt) 
      local 
        Value v1; 
        Env env,env2; 
        State state,state1,state2,state3; 
        Stream istream,istream2,ostream,ostream2; 
        Ident id;  Exp e1,comp; 
        Stmt s1,s2,stmt1,stmt2; 
        Integer n1,v2; 
        IdentList rest; 
      case (env,ASSIGN(id,e1))                                 // Assignment 
        equation  
          v1 = eval(env, e1); 
          env2 = update(env, id, v1);  then env2; 
      case (state1 as (env,istream,ostream), IF(comp,s1,s2))   // if true ... 
        equation  
          BOOLval(true) = eval(env, comp); 
          state2 = eval_stmt(state1, s1);  then state2; 
      case (state1 as (env,istream,ostream),IF(comp,s1,s2))    // if false ... 
        equation  
          BOOLval(false) = eval(env, comp); 
          state2 = eval_stmt(state1, s2); then state2; 
      case (state,WHILE(comp,s1))                              // while ... 
        equation  
          state2 = eval_stmt(state, IF(comp,SEQ(s1,WHILE(comp,s1)),SKIP())); 
        then state2; 
      case (state as (env,istream,ostream), TODO(e1,s1))       // to e1 do s1 .. 
        equation  
          INTval(n1) = eval(env, e1); 
          state2 = repeat_eval(state, n1, s1); then state2; 
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      case (state,READ({})) then state;                        // read () 
      case (state as (env,istream,ostream), READ(id :: rest))  // read id1,.. 
        equation  
          (istream2,v2) = input_item(istream); 
          env2 = update(env, id, INTval(v2)); 
          state2 = eval_stmt((env2,istream2,ostream), READ(rest));  then state2; 
      case (state, WRITE({})) then state;                      // write {} 
      case (state as (env,istream,ostream), WRITE(id :: rest)) // write id1,.. 
        equation  
          INTval(v2) = lookup(env, id); 
          ostream2 = output_item(ostream,v2); 
          state2 = eval_stmt((env,istream,ostream2), WRITE(rest));  then state2; 
      case (state,SEQ(stmt1,stmt2))                            // stmt1 ; stmt2 
        equation  
          state2 = eval_stmt(state, stmt1); 
          state3 = eval_stmt(state2, stmt2); then state3; 
      case (state,SKIP()) then state;                      // ; empty statement 
    end match; 
  end eval_stmt; 
 
 
/*************** Expression evaluation **************/ 
 
function eval  "Evaluation of expressions in the current environment" 
  input Env in_env; 
  input Exp in_exp; 
  output Value out_value; 
algorithm  
  out_value := 
  match (in_env,in_exp) 
    local 
      Integer v,v1,v2,v3; 
      Env env; 
      Ident id; 
      Exp e1,e2; 
      BinOp binop; 
      RelOp relop; 
    case (_,INT(v)) then INTval(v);                       // Integer constant v 
    case (env,IDENT(id)) then  
      if bool_success(v = lookup(env,id)) then v          // Identifier id 
      else error("Undefined identifier", id);             // If id not declared, 
                           //  give an error message and fail by calling error() 
    case (env,BINARY(e1,binop,e2)) equation               // expr1 binop expr2 
      INTval(v1) = eval(env, e1); 
      INTval(v2) = eval(env, e2); 
      v3 = apply_binop(binop, v1, v2); then INTval(v3); 
    case (env,RELATION(e1,relop,e2))                      // expr1 relop expr2 
      local Boolean v3; equation  
       INTval(v1) = eval(env, e1); 
       INTval(v2) = eval(env, e2); 
       v3 = apply_relop(relop, v1, v2); then BOOLval(v3); 
  end match; 
end eval; 
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/*************** Arithmetic and relational operators **************/ 
 
function apply_binop  
            "Apply a binary arithmetic operator to constant integer arguments"    
  input BinOp op; 
  input Integer arg1; 
  input Integer arg2; 
  output Integer out_value1; 
algorithm  
  out_value1 := 
  match (op,arg1,arg2) 
    local  Integer x,y; 
    case (ADD(),x,y) then x + y; 
    case (SUB(),x,y) then x - y; 
    case (MUL(),x,y) then x*y; 
    case (DIV(),x,y) then x/y; 
  end match; 
end apply_binop; 
 
function apply_relop  "Apply a relation operator, returning a boolean value" 
  input RelOp op; 
  input Integer arg1; 
  input Integer arg2; 
  output Boolean out_boolean; 
algorithm  
  out_boolean := 
  match (op,arg1,arg2) 
    local  Integer x,y; 
    case (LT(),x,y) then (x < y); 
    case (LE(),x,y) then (x <= y); 
    case (EQ(),x,y) then (x == y); 
    case (NE(),x,y) then (x <> y); 
    case (GE(),x,y) then (x >= y); 
    case (GT(),x,y) then (x > y); 
  end match; 
end apply_relop; 

 

 

/***************** Auxiliary utility relations ******************/ 
 
function lookup  "lookup returns the value associated with an identifier. 
                 If no association is present, lookup will fail."    
  input Env env; 
  input Ident id; 
  output Value out_value; 
algorithm  
  out_value := 
  match (env,id) 
    local  Ident id2,id;  Value value;  Env rest; 
    case ((id2,value) :: rest, id) then 
      if id==id2 then value   // id first in list 
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      else lookup(rest,id);   // id is hopefully in rest of list 
  end match; 
end lookup; 
 
function update  "update returns an updated environment with a new 
                  (id,value) association" 
  input Env env; 
  input Ident id; 
  input Value value; 
  output Env out_env; 
algorithm  
  out_env := (id,value) :: env; 
end update; 
 
function repeat_eval  "repeatedly evaluate stmt n times" 
  input State state; 
  input Integer n; 
  input Stmt stmt; 
  output State out_state; 
algorithm  
  out_state := 
  if n <= 0 then state                                  /* n <= 0 */ 
  else repeat_eval(eval_stmt(state, stmt), n-1, stmt);  /* eval n times */ 
end repeat_eval; 
 
function error  "Print error messages str1 and str2, and fail" 
  input Ident str1; 
  input Ident str2; 
algorithm  
  print("Error - "); 
  print(str1);  print(" "); 
  print(str2);  print("\n"); 
  fail(); 
end error; 
 
function input_item  "Read an integer item from the input stream" 
  input Stream istream; 
  output Stream istream2; 
  output Integer i; 
algorithm  
  print("input: "); 
  i := Input.read(); 
  print("\n"); 
  istream2 := istream; 
end input_item; 
 
function output_item  "Write an integer item on the output stream" 
  input Stream ostream; 
  input Integer i; 
  output Stream ostream2; 
 protected 
  String s; 
algorithm 
  s := int_string(i); 



  Chapter 2  Expression Evaluators and Interpreters in Meta-Modelica  59 

  print(s); 
  ostream2 := ostream; 
end output_item; 

2.6 AssignTwoType – Introducing Typing 

AssignTwoType is an extension of the Assignments language made by introducing Real numbers. Now 
we have two types in the language, Integer and Real, which creates a need both to check the typing of 
expressions during evaluation, and to be able to store constant values of two different types in the 
environment. 

2.6.1 Concrete Syntax of AssignTwoType 

Real valued constants contain a dot and/or an exponent, as in: 
3.14159 
5.36E-10 
11E+5 

Only one additional rule has been added compared to the BNF grammar of the Assignments language. 
The non-terminal element can now also expand into a Real constant, as shown below: 
element          :  T_INTCONST 
                 |  T_REALCONST 
                 |  T_LPAREN  expression  T_RPAREN 

The lexical specification follows below. One new token type, T_REALCONST, has been introduced 
compared to the Assignments language. The regular expression rcon1 represents a real constant that 
must contain a dot, whereas rcon2 must contain an exponent. Any real constant must contain either a 
dot or an exponent. The ? in the regular expressions signify optional occurrence. 
/* Lex style lexical syntax of tokens in the language AssignTwoType */ 
 
whitespace   [ \t\n]+ 
letter       [a-zA-Z_] 
ident        {letter} ({letter} | {digit})* 
digit        [0-9] 
digits       {digit}+ 
icon         {digits} 
pt           "." 
sign         [+-] 
exponent     ([eE]{sign}?{digits}) 
rcon1        {digits}({pt}{digits}?)?{exponent} 
rcon2        {digits}?{pt}{digits}{exponent}? 
rcon         {rcon1}|{rcon2} 
%% 
{whitespace} ; 
{ident}      return lex_ident(); /* T_IDENT */ 
{icon}       return lex_icon();  /* T_INTCONST */ 
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{rcon}       return lex_rcon();  /* T_REALCONST */ 
":="         return T_ASSIGN; 
"+"          return T_ADD; 
"-"          return T_SUB; 
"*"          return T_MUL; 
"/"          return T_DIV; 
"("          return T_LPAREN; 
")"          return T_RPAREN; 

2.6.2 Abstract Syntax 

The abstract syntax of AssignTwoType has been extended in two ways compared to the Assignments 
language. A REAL node has been inserted into the expression (Exp) union type, and a parameterized 
abstract syntax (Section 2.2) has been selected to enable a more compact semantics part of the 
specification by grouping rules for similar constructs in the language. 

The environment must now be able to store values of two types: Integer or Real. This is achieved 
by representing values, of type Value, as either INTval or REALval nodes. We could alternatively have 
used the INT and REAL constructors of the Exp union type. However, this would have had the 
disadvantages of mixing up the evaluation value type Value with the abstract syntax (which contain 
many other nodes), and making the strong typing of the specification less orthogonal, thus reducing the 
probability of the Modelica system catching possible type errors. 

An auxiliary union type Ty2 has been introduced to more conveniently be able to encode the 
semantics of different combinations of Integer and Real typed values. 

The package header of AssignTwoType preceeds the abstract syntax declarations. 
package AssignTwoType    "Assignment language with two types, integer and real" 
 
/* Parameterized abstract syntax for the Assigntwotype language */ 
 
uniontype Program 
  record PROGRAM  ExpList x1;  Exp x2;  end PROGRAM; 
end Program; 
 
uniontype Exp 
  record INT    Integer x1;  end INT; 
  record REAL   Real x1;  end REAL; 
  record BINARY Exp x1;  BinOp op;  Exp x2;  end BINARY; 
  record UNARY  UnOp op;  Exp x1;  end UNARY; 
  record ASSIGN Ident id;  Exp x1;  end ASSIGN; 
  record IDENT  Ident id;  end IDENT; 
end Exp; 
 
type ExpList = list<Exp>; 
 
uniontype BinOp 
  record ADD  end ADD; 
  record SUB  end SUB; 
  record MUL  end MUL; 
  record DIV  end DIV; 
end BinOp; 
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uniontype UnOp 
  record NEG  end NEG; 
end UnOp; 
 
type Ident = String; 
 
/* Values, bindings and environments */ 
 
uniontype Value "Values stored in environments" 
  record INTval  Integer x1;  end INTval; 
  record REALval  Real x1;  end REALval; 
end Value; 
 
type VarBnd = tuple<Ident,Value>; 
 
type Env = list<VarBnd>; 
 
uniontype Ty2  "An auxiliary datatype used to handle types during evaluation" 
  record INT2  Integer x1;  Integer x2;  end INT2; 
  record REAL2  Real x1;  Real x2;  end REAL2; 
end Ty2; 

2.6.3 Semantics of AssignTwoType 

The semantics of the AssignTwoType language is quite similar to the semantics of the Assignments 
language described in Section 2.4.4, except for the introduction of multiple types. Having multiple types 
in a language may give rise to a combinatorial explosion in the number of rules needed, because the 
semantics of each combination of argument types and operators needs to be described. 

In order to somewhat limit this potential “explosion” of rules, we introduce a type lattice (see Section 
0), and use the function type_lub (for least upper bound of types; Section 0) which derives the 
resulting type and inserts possibly needed type conversions. This reduces the number of needed rules for 
binary operators to two: one for Integer results and one for Real results. The parameterized abstract 
syntax makes it possible to place argument evaluation and type handling for binary operators in only 
those two rules. 

2.6.3.1 Expression Evaluation 

Compared to the Assignments language, the eval function is still quite similar. Values are now tagged 
by either INTval or REALval. We have inserted one additional rule for Real constants, and collected 
all binary operators together into two rules, and unary operators into two additional rules. The rules for 
assignments and variable identifiers are the same as before. 

We show the application of some rules to a small example, e.g: 
  44 + 3.14 

The abstract syntax representation will be: 
  BINARY( INT(44), ADD, REAL(3.14)) 
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On calling eval, this will match the rule for binary operators and real number results. The first argument 
will be evaluated to INTval(44), bound to v1, and the second argument to REALval(3.14) bound to 
v2. The call to type_lub will insert a conversion of the first argument from Integer to a Real value, 
giving the result REAL2(44.0, 3.14), which also causes x to be bound to 44.0 and y to be bound to 
3.14. Finally, apply_real_binop will apply the operator ADD to the two arguments, returning the 
result 47.14, which in the form REALval(47.14) together with the unchanged environment is the 
result of the call to function eval. 
function eval  
 "Evaluation of an expression in_exp in current environment in_env, returning 
  a possibly updated environment out_env, and an out_value which can be 
  either an integer- or real-typed constant value, tagged with constructors 
  INTval or REALval, respectively. 
    Note: there will be no type error if a real value is assigned to an 
  existing integer-typed variable, since the variable will change 
  type when it is updated" 
  input Env in_env; 
  input Exp in_exp; 
  output Env out_env; 
  output Value out_value; 
algorithm  
  (out_env,out_value):= 
  matchcontinue (in_env,in_exp) 
    local 
      Env env,env2,env1; 
      Integer ival,x,y,z; 
      Real rval; 
      Value value,v1,v2; 
      Ident id; 
      Exp e1,e2,e,exp; 
      BinOp binop;  UnOp unop; 
    case (env,INT(ival)) then (env,INTval(ival)); 
    case (env,REAL(rval)) then (env,REALval(rval)); 
    case (env,IDENT(id)) " variable id " 
      equation  
        (env2,value) = lookupextend(env, id); then (env2,value); 
    case (env,BINARY(e1,binop,e2))      "integer integer_binop integer" 
      equation  
        (env1,v1) = eval(env, e1); 
        (env2,v2) = eval(env, e2); 
        INT2(x,y) = type_lub(v1, v2); 
        z = apply_int_binop(binop, x, y); then (env2,INTval(z)); 
    case (env,BINARY(e1,binop,e2))      "integer/real real_binop integer/real" 
        local Real x,y,z; 
      equation  
        (env1,v1) = eval(env, e1); 
        (env2,v2) = eval(env, e2); 
        REAL2(x,y) = type_lub(v1, v2); 
        z = apply_real_binop(binop, x, y); then (env2,REALval(z)); 
    case (env,UNARY(unop,e))           "integer_unop  exp" 
      equation  
        (env1,INTval(x)) = eval(env, e); 
        y = apply_int_unop(unop, x); then (env1,INTval(y)); 
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    case (env,UNARY(unop,e))           "real_unop  exp" 
        local Real x,y; 
      equation  
        (env1,REALval(x)) = eval(env, e); 
        y = apply_real_unop(unop, x); then (env1,REALval(y)); 
    case (env,ASSIGN(id,exp))   "id := exp;  eval of an assignment node returns 
                                the updated environment and the assigned value." 
      equation  
        (env1,value) = eval(env, exp); 
        env2 = update(env1, id, value); then (env2,value); 
  end match; 
end eval; 

2.6.3.2 Type Lattice and Least Upper Bound 

One general way to partially avoid the potential “combinatorial explosion” of semantic rules for different 
combinations of operators and types is to introduce a type lattice. The trivial type lattice for real and 
integer (i.e., Real and Integer) is shown in Figure 2-4 below, using the partial order that Real is 
greater than Integer since integers always can be converted to reals, but not the other way around.  

          

Real 

Integer 

lub 

glb  
Figure 2-4.  Simple type lattice for types integer and real. The least upper bound (lub) is real; the greatest 
lower bound (glb) is integer. 

We are however more interested in combinations of two argument types for binary operators, for which 
the following four rules apply: 

• Real op Real => Real 
• Real op Integer => Real 
• Integer op Real => Real 
• Integer op Integer => Integer 

These rules are represented by the function type_lub, introduced below. The function is in fact doing 
two jobs simultaneously. It is computing the least upper bound of pairs of types, represented by the 
constructors INT2 or REAL2. Additionally, it performs type conversions of the arguments as needed, to 
ensure that both arguments become either Integer (for INT2) or Real (for REAL2). Thus we will need 
only two sets of rules for each operator, covering the cases when both arguments are Integer or both 
arguments are Real. 
function type_lub  "Type least upper bound, e.g. real & integer gives real" 
  input Value in_value1; 
  input Value in_value2; 
  output Ty2 out_ty2; 
algorithm  
  out_ty2:= 
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  match (in_value1,in_value2) 
    local 
      Integer x,y; 
      Real x2,y2; 
    case (INTval(x),INTval(y)) then INT2((x,y)); 
    case (INTval(x),REALval(y)) 
        local Real y; 
      equation  
        x2 = int_real(x); then REAL2((x2,y)); 
    case (REALval(x),INTval(y)) 
        local Real x; 
      equation  
        y2 = int_real(y); then REAL2((x,y2)); 
    case (REALval(x),REALval(y)) 
        local Real x,y;  then REAL2((x,y)); 
  end match; 
end type_lub; 

2.6.3.3 Binary and Unary Operators 

The essential properties of binary arithmetic operators are described below in the functions 
apply_int_binop and apply_real_binop, respectively. Argument evaluation has been taken care 
of by the two rules for binary operators in the function eval, and thus need not be repeated for each rule. 
The type conversion needed for some combinations of Real and Integer values have already been 
described by the function type_lub, which reduces the number of cases that need to be handled for 
each operator to two: either Integer values (apply_int_binop) or Real values 
(apply_real_binop). 
function apply_int_binop  "Apply integer binary operator" 
  input BinOp in_binop1; 
  input Integer in_integer2; 
  input Integer in_integer3; 
  output Integer out_integer; 
algorithm  
  out_integer:= 
  match (in_binop1,in_integer2,in_integer3) 
    local Integer x,y; 
    case (ADD(),x,y) then x + y; 
    case (SUB(),x,y) then x - y; 
    case (MUL(),x,y) then x*y; 
    case (DIV(),x,y) then x/y; 
  end match; 
end apply_int_binop; 
 
function apply_real_binop  "Apply real binary operator" 
  input BinOp in_binop1; 
  input Real in_real2; 
  input Real in_real3; 
  output Real out_real; 
algorithm  
  out_real:= 
  match (in_binop1,in_real2,in_real3) 
    local Real x,y; 
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    case (ADD(),x,y) then x +. y; 
    case (SUB(),x,y) then x +. y; 
    case (MUL(),x,y) then x*.y; 
    case (DIV(),x,y) then x/.y; 
  end match; 
end apply_real_binop; 

There is only one unary operator, unary minus, in the current language. Thus the functions 
apply_int_unop and apply_real_unop for operations on integer and real values, respectively, 
become rather short. 
function apply_int_unop  "Apply integer unary operator" 
  input UnOp in_unop; 
  input Integer in_integer; 
  output Integer out_integer; 
algorithm  
  out_integer:= 
  match (in_unop,in_integer) 
    local Integer x; 
    case (NEG(),x) then -x; 
  end match; 
end apply_int_unop; 
 
function apply_real_unop  "Apply real unary operator" 
  input UnOp in_unop; 
  input Real in_real; 
  output Real out_real; 
algorithm  
  out_real:= 
  match (in_unop,in_real) 
    local Real x; 
    case (NEG(),x) then -.x; 
  end match; 
end apply_real_unop; 
 

2.6.3.4 Functions for Lookup and Environment Update 

We give the usual functions for lookup and environment update. Stored values may be either integers, 
tagged by INTval(), or real numbers tagged by REALval(). However, there is no declaration of types 
or static typing of variables in this language. A variable gets its type when it is assigned a value. 
function lookup  "lookup returns the value associated with an identifier. 
                 If no association is present, lookup will fail."    
  input Env env; 
  input Ident id; 
  output Value out_value; 
algorithm  
  out_value := 
  match (env,id) 
    local  Ident id2,id;  Value value;  Env rest; 
    case ((id2,value) :: rest, id) then 
      if id==id2 then value   // id first in list 
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      else lookup(rest,id);   // id in rest of list 
  end match; 
end lookup; 
 
 
function lookupextend   "lookupextend returns the value associated with 
                         an identifier and an updated environment. 
                        If no association is present, lookupextend will fail." 
  input Env in_env; 
  input Ident in_ident; 
  output Env out_env; 
  output Value out_value; 
algorithm  
  (out_env,out_value):= 
  matchcontinue (in_env,in_ident) 
    local 
      Value value;  Env env;  Ident id; 
    case (env,id) "Return value of id in env.  
                   If id not present, add id and return 0" 
      equation  
        failure(v = lookup(env, id)); 
        value = INTval(0); then ((id,value) :: env,value); 
    case (env,id) 
      equation  
        value = lookup(env, id); then (env,value); 
  end match; 
end lookupextend; 

 
function update  "update returns an updated environment with a new 
                  (id,value) association" 
  input Env env; 
  input Ident id; 
  input Value value; 
  output Env out_env; 
algorithm  
  out_env := (id,value) :: env; 
end update; 

 
end AssignTwoType; 

2.7 A Modular Specification of the PAMDECL Language 

PAMDECL is PAM extended with declarations of variables and two types: Integer and Real. Thus it 
combines the properties of both PAM and AssignTwoType. The specification is modular, including 
separate packages for different aspects. 

In general, Modelica packages facilitates writing modular specifications, where each package 
describes some related aspects of the specified language. Thus, it is common to specify the abstract 
syntax in a special module and other aspects such as evaluation, translation, or type elaboration in 
separate packages. 
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We present a modularized version of the complete abstract syntax and semantics for PamDecl below, 
using five modules: Main for the main program, ScanParse for scanning and parsing, Absyn for 
abstract syntax, Env for variable bindings and environment handling, and Eval for evaluation. 

A package must import definitions from other modules in order to reference items declared in those 
modules. References to names defined in other modules must be prefixed by the defining module name 
followed by a dot, as in Absyn.ASSIGN() when referencing the ASSIGN constructor from module 
Absyn. 

2.7.1 The Main Module (?? update) 

The main module implements the prompt-read-eval-print loop as the function evalprog, which accepts 
the initial environment initial containing only true and false exported from module Eval, and loops 
indefinitely??. 

The main module of the PamDecl evaluator calls ScanParse to read and parse text from the 
standard input, and Eval to evaluate and print the results. (?? update ??) 
package Main 
  import PamDecl.ScanParse; 
  import PamDecl.Eval; 
 
type StringList = list<String>; 
 
function mainprogram 
  input StringList; 
  output Boolean dummy; 
algorithm 
  ast := ScanParse.scanparse(); 
  ast := Eval.evalprog(ast); 
  dummy := true; //?? should really call mainprogram recursively to have a loop 
?? 
end mainprogram; 
 
end Main; 

2.7.2 ScanParse 

The ScanParse package contains only one function scanparse, which is an external function implemented 
in C to scan and parse text written in the PamDecl language. 
package ScanParse 
  import PamDecl.Absyn; 
 
function scanparse 
  output Absyn.Prog ast; 
external "C"; 
 
end ScanParse; 



68   Peter Fritzson   Language Modeling and Symbolic Transformations with Meta-Modelica 

2.7.3 Absyn 

Add more explanations?? 
package Absyn  "Package for abstract syntax of PamDecl" 
 
uniontype BinOp 
  record ADD  end ADD; 
  record SUB  end SUB; 
  record MUL  end MUL; 
  record DIV  end DIV; 
end BinOp; 
 
uniontype UnOp 
  record NEG  end NEG; 
end UnOp; 
 
uniontype RelOp 
  record LT  end LT; 
  record LE  end LE; 
  record GT  end GT; 
  record GE  end GE; 
  record NE  end NE; 
  record EQ  end EQ; 
end RelOp; 
 
type Ident = String; 
 
uniontype Expr 
  record INTCONST  Integer x1;  end INTCONST; 
  record REALCONST  Real x1;  end REALCONST; 
  record BINARY  Expr x1;  BinOp x2;  Expr x3;  end BINARY; 
  record UNARY  UnOp x1;  Expr x2;  end UNARY; 
  record RELATION  Expr x1;  RelOp x2;  Expr x3;  end RELATION; 
  record VARIABLE  Ident x1;  end VARIABLE; 
end Expr; 
 
type StmtList = list<Stmt>; 
 
uniontype Stmt 
  record ASSIGN  Ident x1;  Expr x2;  end ASSIGN; 
  record WRITE  Expr x1;  end WRITE; 
  record NOOP  end NOOP; 
  record IF  Expr x1;  StmtList x2;  StmtList x3;  end IF; 
  record WHILE  Expr x1;  StmtList x2;  end WHILE; 
end Stmt; 
 
type StmtList = list<Stmt>; 
 
uniontype Decl 
  record NAMEDECL  Ident x1;  Ident x2;  end NAMEDECL; 
end Decl; 
 
type DeclList = list<Decl>; 
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uniontype Prog 
  record PROG  DeclList x1;  StmtList x2;  end PROG; 
end Prog; 
 
end Absyn; 

2.7.4 Env 

Add more explanations?? 
package Env  "Package for Environment types and functions of PamDecl" 
 
type Ident = String; 
 
uniontype Value  "Three types of values can be handled by the semantics" 
  record INTVAL  Integer x1;  end INTVAL; 
  record REALVAL  Real x1;  end REALVAL; 
  record BOOLVAL  Boolean x1;  end BOOLVAL; 
end Value; 
 
uniontype Value2  "Values for real-integer type lattice conversions" 
  record INTVAL2  Integer x1;  Integer x2;  end INTVAL2; 
  record REALVAL2  Real x1;  Real x2;  end REALVAL2; 
end Value2; 
 
uniontype Type  "Three kinds of types can be declared" 
  record INTTYPE  end INTTYPE; 
  record REALTYPE  end REALTYPE; 
  record BOOLTYPE  end BOOLTYPE; 
end Type; 
 
uniontype Bind  "Type for associating identifer, type, and value" 
  record BIND  Ident id;  Type ty;  Value val;  end BIND; 
end Bind; 
 
type Env = list<Bind>; 
 
// Initial environment of predefined constants false and true 
constant Bind initial = list(  
           BIND(("false",BOOLTYPE(),BOOLVAL(false))), 
           BIND(("true",BOOLTYPE(),BOOLVAL(true)))); 
 
 
function lookup  "lookup returns the value associated with an identifier. 
                 If no association is present, lookup will fail." 
  input Env in_env; 
  input Ident in_ident; 
  output Value out_value; 
algorithm  
  out_value:= 
  match (in_env,in_ident) 
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    local 
      Ident id2,id; 
      Value value;  Env rest; 
    case (BIND(id2,_,value) :: rest, id) then 
      if id==id2 then value   // id first in list 
      else lookup(rest,id);   // id is hopefully in rest of list 
  end match; 
end lookup; 

 
 
function lookuptype  "lookuptype returns the type associated with an identifier. 
                      If no association is present, lookuptype will fail." 
 
  input Env in_env; 
  input Ident in_ident; 
  output Type out_type; 
algorithm  
  out_type:= 
  match (in_env,in_ident) 
    local 
      Ident id2,id; 
      Type ty;  Env rest; 
    case (BIND(id2,ty,_) :: rest, id) then 
      if id==id2 then ty          // id first in list 
      else lookuptype(rest,id);   // id is hopefully in rest of list 
  end match; 
end lookuptype; 
 
function update  "update returns an updated environment containing a 
                  typed variable-type-value association BIND(id,type,value)" 
  input Env env; 
  input Ident id; 
  input Type ty; 
  input Value value; 
  output Env out_env; 
algorithm  
  out_env := BIND((id,ty,value) :: env) 
end update; 

 
end Env; 
 

2.7.5 Eval 

Add more explanations ?? 
package Eval 
 
import PamDecl.Absyn; 
import PamDecl.Env; 
 
function evalprog  "Evaluating a program means to evaluate the list of 
   statements with an initial environment containing just standard definitions." 
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  input Absyn.Prog in_prog; 
  output Boolean dummy; 
algorithm  
  dummy:= 
  match (in_prog) 
    local 
      type Env_BindList = list<Env.Bind>; 
      Env_BindList env1; 
    case Absyn.PROG(decls,stmts) 
      equation  
        env1 = Env.initial; 
        env2 = eval_decl_list(env1, decls); 
        env3 = eval_stmt_list(env2, stmts); then true; 
  end match; 
end evalprog; 
 
 
/* Evaluation of statements */ 

 
function eval_stmt "Evaluate a single statement. Pass environment forward." 
  input Env.Env in_env; 
  input Absyn.Stmt in_stmt; 
  output Env.Env out_env; 
algorithm  
  out_env:= 
  matchcontinue (in_env,in_stmt) 
    local 
      type Env_BindList = list<Env.Bind>; 
      Env.Value v; 
      Env.Type ty; 
      Env_BindList env,env1; 
      String id; 
      Absyn.Expr e; 
    case (env,Absyn.ASSIGN(id,e)) 
      equation  
        v = eval_expr(env, e); 
        ty = Env.lookuptype(env, id); 
        v2 = promote(v, ty); 
        env1 = Env.update(env, id, ty, v2); then env1; 
    case (env,Absyn.ASSIGN(id,e)) 
      equation  
        v = eval_expr(env, e); 
        print("Error: assignment mismatch or variable missing\n"); then fail(); 
    case (env,Absyn.WRITE(e)) 
      equation  
        v = eval_expr(env, e); 
        print_value(v); then env; 
    case (env,Absyn.NOOP()) then env; 
    case (env,Absyn.IF(e,c,_)) 
      equation  
        Env.BOOLVAL(true) = eval_expr(env, e); 
        env1 = eval_stmt_list(env, c); then env1; 
    case (env,Absyn.IF(e,_,a)) 
      equation  
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        Env.BOOLVAL(false) = eval_expr(env, e); 
        env1 = eval_stmt_list(env, a); then env1; 
    case (env,Absyn.WHILE(e,ss)) 
      equation  
        Env.BOOLVAL(true) = eval_expr(env, e); 
        env1 = eval_stmt_list(env, ss); 
        env2 = eval_stmt(env1, Absyn.WHILE((e,ss))); then env2; 
    case (env,Absyn.WHILE(e,ss)) 
      equation  
        Env.BOOLVAL(false) = eval_expr(env, e); then env; 
    case (env,Absyn.IF(e,_,a)) 
      equation  
        Env.BOOLVAL(false) = eval_expr(env, e); 
        env1 = eval_stmt_list(env, a); then env1; 
    case (env,Absyn.WHILE(e,ss)) 
      equation  
        Env.BOOLVAL(true) = eval_expr(env, e); 
        env1 = eval_stmt_list(env, ss); 
        env2 = eval_stmt(env1, Absyn.WHILE((e,ss))); then env2; 
    case (env,Absyn.WHILE(e,ss)) 
      equation  
        Env.BOOLVAL(false) = eval_expr(env, e); then env; 
  end match; 
end eval_stmt; 
 
function eval_stmt_list "Evaluate a list of statements in an environment. 
                         Pass environment forward" 
  input Env.Env in_env; 
  input Absyn.StmtList in_stmtlist; 
  output Env.Env out_env; 
algorithm  
  out_env:= 
  match (in_env,in_stmtlist) 
    local 
      type Env_BindList = list<Env.Bind>; 
      Env_BindList env; 
    case (env, {}) then env; 
    case (env, s :: ss) 
      equation  
        env1 = eval_stmt(env, s); 
        env2 = eval_stmt_list(env1, ss); then env2; 
  end match; 
end eval_stmt_list; 
 
/* Evaluation of Declarations */ 
 
function eval_decl "Evaluate a single declaration. Pass environment forward." 
  input Env.Env in_env; 
  input Absyn.Decl in_decl; 
  output Env.Env out_env; 
algorithm  
  out_env:= 
  match (in_env,in_decl) 
    local 
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      type Env_BindList = list<Env.Bind>; 
      Env_BindList env2,env; 
      String var; 
    case (env,Absyn.NAMEDECL(var,"integer")) 
      equation  
        env2 = Env.update(env, var, Env_INTTYPE, Env.INTVAL(0)); then env2; 
    case (env,Absyn.NAMEDECL(var,"real")) 
      equation  
        env2 = Env.update(env, var, Env_REALTYPE, Env.REALVAL(0.0)); then env2; 
    case (env,Absyn.NAMEDECL(var,"boolean")) 
      equation  
        env2 = Env.update(env, var, Env_BOOLTYPE, Env.BOOLVAL(false)); 
        then env2; 
  end match; 
end eval_decl; 
 
function eval_decl_list  
                 "Evaluate a list of declarations, extending the environent." 
  input Env.Env in_env; 
  input Absyn.DeclList in_decllist; 
  output Env.Env out_env; 
algorithm  
  out_env:= 
  match (in_env,in_decllist) 
    local 
      type Env_BindList = list<Env.Bind>; 
      Env_BindList env; 
    case (env,nil) then env; 
    case (env,s :: ss) 
      equation  
        env1 = eval_decl(env, s); 
        env2 = eval_decl_list(env1, ss); then env2; 
  end match; 
end eval_decl_list; 
 
 
function eval_expr "Evaluate a single expression in an environment. Return 
                    the new value. Expressions do not change environments. " 
  input Env.Env in_env; 
  input Absyn.Expr in_expr; 
  output Env.Value out_value; 
algorithm  
  out_value:= 
  matchcontinue (in_env,in_expr) 
    local 
      type Env_BindList = list<Env.Bind>; 
      Env_BindList env; 
      Env.Value v1,v2; 
      Real c1,c2,v3; 
      Absyn.Expr e1,e2; 
      Absyn.BinOp binop; 
      Absyn.UnOp unop; 
      Absyn.RelOp relop; 
      String id; 
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    case (env,Absyn.INTCONST(v)) then Env.INTVAL(v); 
    case (env,Absyn.REALCONST(v)) then Env.REALVAL(v); 
    case (env,Absyn.BINARY(e1,binop,e2))                "Binary operators" 
      equation  
        v1 = eval_expr(env, e1); 
        v2 = eval_expr(env, e2); 
        Env.INTVAL2(c1,c2) = binary_lub(v1, v2); 
        v3 = apply_int_binary(binop, c1, c2); then Env.INTVAL(v3); 
    case (env,Absyn.BINARY(e1,binop,e2)) 
      equation  
        v1 = eval_expr(env, e1); 
        v2 = eval_expr(env, e2); 
        Env.REALVAL2(c1,c2) = binary_lub(v1, v2); 
        v3 = apply_real_binary(binop, c1, c2); then Env.REALVAL(v3); 
    case (_,Absyn.BINARY(_,_,_)) 
      equation  
        print("Error: binary operator applied to invalid type(s)\n"); 
        then fail(); 
    case (env,Absyn.UNARY(unop,e1))                      "unary operators" 
        local Real v1,v2; 
      equation  
        Env.INTVAL(v1) = eval_expr(env, e1); 
        v2 = apply_int_unary(unop, v1); then Env.INTVAL(v2); 
    case (env,Absyn.UNARY(unop,e1)) 
      equation  
        Env.REALVAL(v1) = eval_expr(env, e1); 
        v2 = apply_real_unary(unop, v1); then Env.REALVAL(v2); 
    case (_,Absyn.UNARY(_,_)) 
      equation  
        print("Error: unary operator applied to invalid type\n"); then fail(); 
    case (env,Absyn.RELATION(e1,relop,e2))              "relational operators" 
        local Boolean v3; 
      equation  
        v1 = eval_expr(env, e1); 
        v2 = eval_expr(env, e2); 
        Env.INTVAL2(c1,c2) = binary_lub(v1, v2); 
        v3 = apply_int_relation(relop, c1, c2); then Env.BOOLVAL(v3); 
    case (env,Absyn.RELATION(e1,relop,e2)) 
      equation  
        v1 = eval_expr(env, e1); 
        v2 = eval_expr(env, e2); 
        Env.REALVAL2(c1,c2) = binary_lub(v1, v2); 
        v3 = apply_real_relation(relop, c1, c2); then Env.BOOLVAL(v3); 
    case (_,Absyn.RELATION(_,_,_)) 
      equation  
        print("Error: relation operator applied to invalid type(s)\n"); 
        then fail(); 
    case (env,Absyn.VARIABLE(id))    "Variable identifier lookup" 
      equation  
        v = Env.lookup(env, id); then v; 
    case (env,Absyn.VARIABLE(id)) 
      equation  
        failure(v = Env.lookup(env, id)); 
        print("Error: undefined variable ("); 
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        print(id); 
        print(")\n"); then fail(); 
  end matchcontinue; 
end eval_expr; 
 
 
 
function binary_lub  "Type lattice; int --> real" 
  input Env.Value in_value1; 
  input Env.Value in_value2; 
  output Env.Value2 out_value2; 
algorithm  
  out_value2:= 
  match (in_value1,in_value2) 
    local Real v1,v2; 
    case (Env.INTVAL(v1),Env.INTVAL(v2)) then Env.INTVAL2((v1,v2)); 
    case (Env.REALVAL(v1),Env.REALVAL(v2)) 
        local Integer v1; then Env.REALVAL2((v1,v2)); 
    case (Env.INTVAL(v1),Env.REALVAL(v2)) 
        local Integer v2; 
      equation  
        c1 = int_real(v1); then Env.REALVAL2((c1,v2)); 
    case (Env.REALVAL(v1),Env.INTVAL(v2)) 
      equation  
        c2 = int_real(v2); then Env.REALVAL2((v1,c2)); 
  end match; 
end binary_lub; 
 
function promote "Promotion and type check " 
  input Env.Value in_value; 
  input Env.Type in_type; 
  output Env.Value out_value; 
algorithm  
  out_value:= 
  match (in_value,in_type) 
    local Integer v; 
    case (Env.INTVAL(v),Env.INTTYPE()) then Env.INTVAL(v); 
    case (Env.REALVAL(v),Env.REALTYPE()) then Env.REALVAL(v); 
    case (Env.BOOLVAL(v),Env.BOOLTYPE()) then Env.BOOLVAL(v); 
    case (Env.INTVAL(v),Env.REALTYPE()) 
      equation  
        v2 = int_real(v); then Env.REALVAL(v2); 
  end match; 
end promote; 
 
/*  Auxiliary functions for applying the binary operators */ 
 
function apply_int_binary  "Apply integer binary operators" 
  input Absyn.BinOp in_binop1; 
  input Integer in_integer2; 
  input Integer in_integer3; 
  output Integer out_integer; 
algorithm  
  out_integer:= 
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  match (in_binop1,in_integer2,in_integer3) 
    local Integer v1,v2; 
    case (Absyn.ADD(),v1,v2) then v1 + v2; 
    case (Absyn.SUB(),v1,v2) then v1 - v2; 
    case (Absyn.MUL(),v1,v2) then v1*v2; 
    case (Absyn.DIV(),v1,v2) then v1/v2; 
  end match; 
end apply_int_binary; 
 
function apply_real_binary  "Apply real binary operators" 
  input Absyn.BinOp in_binop1; 
  input Real in_real2; 
  input Real in_real3; 
  output Real out_real; 
algorithm  
  out_real:= 
  match (in_binop1,in_real2,in_real3) 
    local Real v1,v2; 
    case (Absyn.ADD(),v1,v2) then v1 +. v2; 
    case (Absyn.SUB(),v1,v2) then v1 -. v2; 
    case (Absyn.MUL(),v1,v2) then v1 *. v2; 
    case (Absyn.DIV(),v1,v2) then v1 /. v2; 
  end match; 
end apply_real_binary; 
 
 
/* Auxiliary functions for applying the unary operators */ 
 
function apply_int_unary  "Apply integer unary operators" 
  input Absyn.UnOp in_unop; 
  input Integer in_integer; 
  output Integer out_integer; 
algorithm  
  out_integer:= 
  match (in_unop,in_integer) 
    local Real v1; 
    case (Absyn.NEG(),v1) then -v1; 
  end match; 
end apply_int_unary; 
 
function apply_real_unary  "Apply unary real operators" 
  input Absyn.UnOp in_unop; 
  input Real in_real; 
  output Real out_real; 
algorithm  
  out_real:= 
  match (in_unop,in_real) 
    local Integer v1; 
    case (Absyn.NEG(),v1) then -. v1; 
  end match; 
end apply_real_unary; 
 
/* Auxiliary functions for applying the relational operators  */ 
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function apply_int_relation  "Apply integer relational operators" 
  input Absyn.RelOp in_relop1; 
  input Integer in_integer2; 
  input Integer in_integer3; 
  output Boolean out_boolean; 
algorithm  
  out_boolean:= 
  match (in_relop1,in_integer2,in_integer3) 
    local Integer v1,v2; 
    case (Absyn.LT(),v1,v2) then (v1 < v2); 
    case (Absyn.LE(),v1,v2) then (v1 <= v2); 
    case (Absyn.GT(),v1,v2) then (v1 > v2); 
    case (Absyn.GE(),v1,v2) then (v1 >= v2); 
    case (Absyn.NE(),v1,v2) then (v1 <> v2); 
    case (Absyn.EQ(),v1,v2) then (v1 == v2); 
  end match; 
end apply_int_relation; 
 
function apply_real_relation  "Apply real relational operators" 
  input Absyn.RelOp in_relop1; 
  input Real in_real2; 
  input Real in_real3; 
  output Boolean out_boolean; 
algorithm  
  out_boolean:= 
  match (in_relop1,in_real2,in_real3) 
    local Real v1,v2; 
    case (Absyn.LT(),v1,v2) then (v1 <. v2); 
    case (Absyn.LE(),v1,v2) then (v1 <=. v2); 
    case (Absyn.GT(),v1,v2) then (v1 >. v2); 
    case (Absyn.GE(),v1,v2) then (v1 >=. v2); 
    case (Absyn.NE(),v1,v2) then (v1 <>. v2); 
    case (Absyn.EQ(),v1,v2) then (v1 ==. v2); 
  end match; 
end apply_real_relation; 

 
function print_value  "Evaluate the 'write' statement, i.e., print a value" 
  input Env.Value in_value; 
  output Boolean dummy; 
algorithm  
  dummy:= 
  match (in_value) 
    local 
      String vstr; 
      Real v; 
    case Env.INTVAL(v) 
      equation  
        vstr = int_string(v); 
        print(vstr); 
        print("\n"); then true; 
    case Env.REALVAL(v) 
      equation  
        vstr = real_string(v); 
        print(vstr); 
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        print("\n"); then true; 
    case Env.BOOLVAL(true) 
      equation  
        print("true\n"); then true; 
    case Env.BOOLVAL(false) 
      equation  
        print("false\n"); then true; 
  end match; 
end print_value; 
 
 
end Eval; 

2.8 Summary 

In this chapter we present a series of small example languages to introduce Meta-Modelica together with 
techniques for programming language specification. We start with the very simple Exp1 language, 
containing simple integer arithmetic and integer constants. Then follows a short section on the 
parameterized style of abstract syntax.The Exp2 specification describes the same language as Exp1 but 
shows the consequences of using parameterized abstract syntax. The Assignments language extends 
Exp1 with variables and assignments, thus introducing the concept of environment. 

The small Pascal-like PAM language further extends our toy language by introducing control 
structures such as if-then-else statements, loops (but not goto), and simple input/input. However, PAM 
does not include procedures and multiple variable types. Only integer variables are handled by the 
produced evaluator. PAM also introduces relational expressions. Parameterized abstract syntax is used in 
the specification. 

Our next language, called AssignTwoType, is designed to introduce multiple variable types in the 
language. It is the same language as Assignments, but adding real values and variables, and employing 
the parameterized style of abstract syntax. The concept of type lattice is also introduced in this section. 

Next, we present the concept of Modelica packages, to show how different aspects of a specification 
such as abstract syntax, environment handling, evaluation rules, etc. can be separated into different 
packages. Such modularization is especially important for large specifications. 

Finally, we combine the constructs of the PAM language, the multiple variable types of 
AssignTwoType and the usage of Modelica packages, to produce a modular specification of a language 
called PAMDECL, which is PAM extended with declarations and multiple (integer and real) variable 
types. 

The style of all specifications so far have been “evaluative” in nature, aiming at producing 
interpreters. In Chapter 3 we will present “translational” style specifications, from which compilers can 
be generated. 

(BRK) 
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Chapter 3  
 
Translational Semantics 

A compiler is a translator from a source language to a target language. Thus, it would be rather natural if 
the idea of translation is somehow reflected in the semantic definition of a programming language. In 
fact, the meaning of a programming language can be precisely described by defining the meaning 
(semantics) of the source language in terms of a translation to some target (object) language, together 
with a definition of the semantics of the object language itself, see Figure 3-1. This is called a 
translational semantics of the programming language. 
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Figure 3-1.  A comparison between an interpretive semantics and translational semantics. In an 
interpretive semantics, the computational meaning of source language primitives are directly defined, e.g. 
using Meta-Modelica. In a translational semantics, the meaning is defined as a translation to object 
language primitives, which in turn are defined using an interpretive semantics. 

However, so far in this text we have primarily focused on how to define the semantics of programming 
languages directly in terms of evaluation of Meta-Modelica primitives. That style of semantics 
specification, called interpretive semantics, can be used for automatic generation of interpreters which 
interpret abstract syntax representations of source programs. Analogously, a translational semantics can 
be used for the generation of a compiler from a source language to a target language, as briefly 
mentioned in Section 1.2. 
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There are also techniques based on partial evaluation [refs??see big book from 92 or 94], for the 
generation of compilers from certain styles of interpretive semantics. However, these techniques often 
give unpredictable results and performance problems. Therefore, in the rest of this text we will 
exclusively use translational semantics as a basis for practical compiler generation. 

In fact, writing translational semantics is usually not harder than writing interpretive semantics. One 
just has to keep in mind that the semantics is described in two parts: the meaning of source  language 
primitives in terms of (a translation to) target language primitives, and the meaning of the target 
primitives themselves. A simplified picture of compiler generation from translational semantics is shown 
in Figure 3-2. 
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Figure 3-2.  Simplified version of compiler generation based on translational semantics. The semantics of 
a language is specified directly in terms of object code primitives. In comparison to Figure 1-1, the 
optimization and final code generation phases have been excluded. 

3.1 Translating PAM to Machine Code 

As an introduction translational semantics, we will specify the translational semantics of a simple 
language, with the goal of generating a compiler from this language to machine code. The simple PAM 
language has already been described, and an interpretive semantics has been given in Section 2.5. This 
makes it a natural first choice for a translational semantics. In Chapter 3 of [ref Pagan], an attribute 
grammar style translational semantics of PAM can be found. It is instructive to compare the attribute 
grammar specification to the Meta-Modelica style translational semantics of PAM described in this 
chapter. The target assembly language described in the next section has been chosen to be the same as in 
[ref Pagan] to simplify parallel study. 
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3.1.1 A Target Assembly Language 

In the translational approach, a target language for the translation process is needed. Here we choose a 
very simple assembly (machine code) language, which is similar to realistic assembly languages, but 
very much simplified. For example, this machine has only one register (an accumulator) and much fewer 
instructions than commercial microprocessors. Still, it is complete enough to reflect most properties of 
realistic assembly languages. There are 17 types of instructions, listed below: 
        LOAD       Load accumulator 
        STO        Store 
        ADD        Add 
        SUB        Subtract 
        MULT       Multiply 
        DIV        Divide 
        GET        Input a value 
        PUT        Output a value 
        J          Jump 
        JN         Jump on negative 
        JP         Jump on positive 
        JNZ        Jump on negative or zero 
        JPZ        Jump on positive or zero 
        JNP        Jump on negative or positive 
        LAB        Label (no operation) 
        HALT       Halt execution 

All instructions, except HALT, have one operand. For example, LOAD X, will load the variable at address 
X into the accumulator. Conversely, STO X will store the current value in the accumulator at the address 
specified by X. The instructions ADD, SUB, MULT, and DIV perform arithmetic operations on two values, 
the accumulator value and the operand value. Operands can be integer constants or symbolic addresses 
of variables or temporaries (T1,T2,...), or symbolic labels representing code addresses. Instructions 
which compute a result always store it in the accumulator. For example, SUB X means that accumulator-X 
is computed, and stored in the accumulator.  

The input/output instructions GET X and PUT X will input and output a value to variable X, 
respectively. There are 5 conditional jump instructions and one unconditional jump. The conditional 
jumps are: JN,JP,JNZ,JPZ, and JNP which jump to a label (address) conditionally on the current value in 
the accumulator. The J L1 instruction is an example of an unconditional jump to the label L1. The LAB 
pseudo instruction is no instruction, it just declares the position of a label in the code. Finally, the HALT 
instruction stops execution.  

3.1.2 A Translated PAM Example Program 

Before going into the details of the translational semantics, it is instructive to take a look at the 
translation of a small PAM example PAM program, shown below: 
                read x,y; 
                while x<> 99 do 
                  ans :=  (x+1) - (y / 2); 
                  write ans; 
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                  read x,y; 
                end 

This example program is translated into the following assembly code, presented in its textual 
representation: 
  GET   x                          STO   T1 
  GET   y                          LOAD  T0 
    L2  LAB                              SUB   T1 
  LOAD  x                          STO   ans 
  SUB   99                         PUT   ans 
  JZ    L3                         GET   x 
  LOAD  x                          GET   y 
  ADD   1                          J     L2 
  STO   T0                      L3 LAB  
  LOAD  y                          HALT 
  DIV   2 

However, to simplify and structure the translational semantics of PAM, the target language will be a 
structured representation of the assembly code, called MCode, which is defined in Meta-Modelica. The  
MCode representation of the translated program, as shown below, is finally converted into the textual 
representation previously presented. 

All MCode operators start with the letter M. Binary arithmetic operators are grouped under the node 
MB, and conditional jump operators under MJ. There are four kinds of operands, indicated by the 
constructors I (Identifier), L (Label), N (Numeric integer), and T (for Temporary). 
  MGET(   I(x) )    MSTO(   T(2) ) 
  MGET(  I(y) )    MLOAD(  T(1) ) 
  MLABEL( L(1) )    MB(MSUB,T(2) ) 
  MLOAD(  I(x) )    MSTO(   I(ans) ) 
  MB(MSUB,N(99) )    MPUT(   I(ans) ) 
  MJ(MJZ, L(2) )    MGET(   I(x) ) 
  MLOAD(  I(x) )    MGET(   I(y) ) 
  MB(MADD,N(1) )    MJMP(   L(1) ) 
  MSTO(   T(1) )    MLABEL( L(2) ) 
  MLOAD(  I(y) )    MHALT 
  MB(MDIV,N(2) )        

3.1.3 Abstract Syntax for Machine Code Intermediate Form 

The abstract syntax of the structured machine code representation, called MCode, is defined in Meta-
Modelica below. We group the four arithmetic binary operators MADD, MSUB, MMULT and MDIV in the 
union type MBinOp. The six conditional jump instructions MJMP,MJP,MJN,MJNZ,MJPZ,MJZ are 
represented by constructors in the union type MCondJmp. As usual, this grouping of similar constructs 
simplifies the semantic description. There are four kinds of operands: identifiers, numeric constants, 
labels, and temporaries. For these we have defined the type aliases MLab, MTemp, MIdent, MidTemp in 
order to make the translational semantics more readable. 
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The constructors MB and MJ are used for binary arithmetic instructions and conditional jumps, 
respectively. The first argument to these constructors indicates the specific arithmetic operation or 
conditional jump. 
package MCode 

uniontype MBinOp 
  record MADD  end MADD; 
  record MSUB  end MSUB; 
  record MMULT end MMULT; 
  record MDIV  end MDIV; 
end MBinOp; 
 
uniontype MCondJmp 
  record MJNP  end MJNP; 
  record MJP   end MJP; 
  record MJN   end MJN; 
  record MJNZ  end MJNZ; 
  record MJPZ  end MJPZ; 
  record MJZ   end MJZ; 
end MCondJmp; 
 
uniontype MOperand 
  record I  Id x1;  end I; 
  record N  Integer x1;  end N; 
  record T  Integer x1;  end T; 
end MOperand; 
 
type MLab =  MOperand;    // Label 
type MTemp = MOperand;    // Temporary 
type MIdent = MOperand;   // Identifier 
type MIdTemp = MOperand;  // Id or Temporary 
 
uniontype Mcode  
  record MB     MBinOp x1;  Moperand x2;  end MB;    /* Binary arith ops */ 
  record MJ     MCondJmp x1; MLab x2;  end MJ;       /* Conditional jumps */ 
  record MJMP   Mlab x1;     end MJMP; 
  record MLOAD  MIdTemp x1;  end MLOAD; 
  record MSTO   MIdTemp x1;  end MSTO; 
  record MGET   MIdent x1;  end MGET; 
  record MPUT   MIdent x1;  end MPUT; 
  record MLABEL MLab x1;  end MLABEL; 
  record MHALT  end MHALT; 
end MCode; 
 
end Mcode; 

3.1.4 Concrete Syntax of PAM 

The concrete syntax of PAM has already been described in Section 2.5.2. 
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3.1.5 Abstract Syntax of PAM 

The abstract syntax of PAM is identical to that described in Section 2.5.3. It is repeated here for 
convenience. 
package Absyn  "Parameterized abstract syntax for the PAM language" 
 
type Ident = String; 
 
uniontype BinOp 
  record ADD  end ADD; 
  record SUB  end SUB; 
  record MUL  end MUL; 
  record DIV  end DIV; 
end BinOp; 
 
uniontype RelOp 
  record EQ  end EQ; 
  record GT  end GT; 
  record LT  end LT; 
  record LE  end LE; 
  record GE  end GE; 
  record NE  end NE; 
end RelOp; 
 
uniontype Exp 
  record INT     Integer x1;  end INT; 
  record IDENT   Ident id;    end IDENT; 
  record BINARY  Exp x1; BinOp op;  Exp x2;  end BINARY; 
  record RELATION  Exp x1;  RelOp op;  Exp x3;  end RELATION; 
end Exp; 
 
type IdentList = list<Ident>; 
uniontype Stmt 
  record ASSIGN Ident id; Exp x2; end ASSIGN;      "Id := Exp" 
  record IF     Exp x1; Stmt x2; Stmt x3; end IF;  "if Exp then Stmt.." 
  record WHILE  Exp x1; Stmt x2;  end WHILE;       " while Exp do Stmt" 
  record TODO   Exp x1;  Stmt x2; end TODO;        " to Exp do Stmt..." 
  record READ   IdentList x1;  end READ;           "read id1,id2,..." 
  record WRITE  IdentList x1;  end WRITE;          "write id1,id2,.." 
  record SEQ    Stmt x1;  Stmt x2;  end SEQ;       "Stmt1; Stmt2" 
  record SKIP  end SKIP;                           " ; empty stmt" 
end Stmt; 
 
end Absyn; 

3.1.6 Translational Semantics of PAM 

The translational semantics of PAM consists of several separate parts. First we describe the translation of 
arithmetic expressions, which is the simplest case. Then we turn to comparison expressions which occur 
in the conditional part of if-statements and while-statements. Such comparisons are translated into 
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conditional jump instructions. Next, the translation of all statement types in PAM are described together 
with the translation of a whole program. Finally, a Meta-Modelica program for emitting assembly text 
from the structured MCode representation is presented, although this is not really part of the translational 
semantics of PAM. 

3.1.6.1 Arithmetic Expression Translation 

The translation of binary arithmetic expressions is specified by the trans_expr relation together 
with two small help functions trans_binop and gentemp. The trans_binop function just translates 
the four arithmetic node types in the abstract syntax into corresponding MCode node types. Each call to 
the gentemp generator function produces a unique label of type L1, L2, etc.  

The trans_expr function contains essentially all semantics of PAM arithmetic expressions. The 
first two axioms handle the simple cases of expressions which are either an integer constant or a 
variable. The generated code is in the form of a list of MCode tuples, as is reflected in the signature of 
the trans_expr function below: 
function trans_expr "Arithmetic expression translation" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Exp in_exp; 
  output MCode_MCodeList out_MCode_MCodeList; 
algorithm  
  ... 
    case Absyn.INT(v) then list(MCode.MLOAD(MCode.N(v)));  " integer constant " 
    case Absyn.IDENT(id) then list(MCode.MLOAD(MCode.I(id))); " identifier id " 

The semantics of computing a constant or a variable is to load the value into the accumulator, as in the 
following instruction where id is the variable X4: 
 MLOAD( I(X4) ) 

and in assembly text form: 
 LOAD X4 

The first rule is for simple binary arithmetic expressions such as e1 - e2 where expression e2 only is a 
constant or a variable which gives rise to a load instruction (see the second local equation in the rule). 
The code for this expression is as follows, where MB denotes a binary operator and MSUB subtraction: 
 <code for expression e1> 
 MB(MSUB(), e2) 

and in assembly text form: 
 <code for expression e1> 
 SUB e2 

The corresponding rule follows below. 
    case Absyn.BINARY(e1,binop,e2) "Arith binop: simple case, expr2 is just an 
                                    identifier or constant:   expr1 binop expr2" 
      equation  
        cod1 = trans_expr(e1); 
        list(MCode.MLOAD(operand2)) = trans_expr(e2);  "Condition expr2 simple"; 
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        opcode = trans_binop(binop); 
        cod3 = list_append(cod1, list(MCode.MB(opcode,operand2))); then cod3; 

The second rule handles binary arithmetic expressions such as e1-e2, e1+e2, etc., where e2 can be a 
complicated expression. The code pattern for e1-e2 in assembly text form becomes: 
      <code for e1> 
 STO T1 

      <code for e2> 
 STO T2 
 LOAD T1 
 SUB T2 

The rule is presented below. The generated code for expressions e1 and e2 are bound to cod1 and cod2, 
respectively. The binary operation is translated to the MCode version, which is bound to opcode. Then 
two temporaries are produced. Finally a code sequence is produced which closely follows the code 
pattern above. The function list_append6 appends the elements of six argument lists, whereas the 
standard list_append only accepts two list arguments. 
    case Absyn.BINARY(e1,binop,e2) "Arith binop: general case, expr2 is a more 
                                    complicated expr:   expr1 binop expr2" 
      equation  
        cod1 = trans_expr(e1); 
        cod2 = trans_expr(e2); 
        opcode = trans_binop(binop); 
        t1 = gentemp(); 
        t2 = gentemp(); 
        cod3 = list_append6(cod1, // code for expr1 
          {MCode.MSTO(t1)},       // store expr1 
          cod2,                   // code for expr2 
          {MCode.MSTO(t2)},       // store expr2 
          (MCode.MLOAD(t1)},      // load expr1 value into Acc 
          {MCode.MB((opcode,t2))} // Do arith operation 
        );  
      then cod3; 
 

As one additional example, we show the following expression: 
 (x + y*z) + b*c 

which is translated into the code sequence: 
 LOAD x  STO T3 
 STO T1  LOAD b 
 LOAD  y  MULT c 
 MULT z  STO T4 
 STO T2  LOAD T3 
 LOAD T1  ADD T4 
 ADD T2 

Note that the two rules for binary arithmetic operations overlap. The first rule covers the simple case 
where the second expression is just an identifier or constant, and will give rise to more compact code 
than the second rule which covers both the simple and the general case. From a semantic point of view, 
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the first rule is not needed since the second rule specifies the same semantics for simple arithmetic 
expressions as the second rule, even though the second rule will give rise to more instructions in the 
translated code. Still, it is not incorrect to keep the first rule, since the PAM semantics is not changed by 
it.  

Operationally, Meta-Modelica will evaluate the rules in top-down order, and thus will use the more 
specific first rule whenever it matches. Therefore we keep the first rule in order to obtain a compiler that 
produces slightly more efficient code than otherwise possible. 

The complete trans_expr function follows below, together with some help functions: 
function trans_expr  "Arithmetic expression translation" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Exp in_exp; 
  output MCode_MCodeList out_MCode_MCodeList; 
algorithm  
  out_MCode_MCodeList:= 
  match (in_exp) 
    local 
      Integer v; 
      String id; 
      MCode_MCodeList cod1,cod3,cod2; 
      MCode.MOperand operand2,t1,t2; 
      MCode.MBinOp opcode; 
      Absyn.Exp e1,e2; 
      Absyn.BinOp binop; 
    case Absyn.INT(v) then list(MCode.MLOAD(MCode.N(v)));  " integer constant " 
    case Absyn.IDENT(id) then list(MCode.MLOAD(MCode.I(id))); " identifier id " 
 
    case Absyn.BINARY(e1,binop,e2) " Arith binop: simple case, expr2 is just an 
                                   identifier or constant:   expr1 binop expr2 " 
      equation  
        cod1 = trans_expr(e1); 
        list(MCode.MLOAD(operand2)) = trans_expr(e2); 
        opcode = trans_binop(binop)   " expr2 simple "; 
        cod3 = list_append(cod1, list(MCode.MB(opcode,operand2))); then cod3; 
 

    case Absyn.BINARY(e1,binop,e2) "Arith binop: general case, expr2 is a more 
                                    complicated expr:   expr1 binop expr2" 
      equation  
        cod1 = trans_expr(e1); 
        cod2 = trans_expr(e2); 
        opcode = trans_binop(binop); 
        t1 = gentemp(); 
        t2 = gentemp(); 
        cod3 = list_append6(cod1, // code for expr1 
          {MCode.MSTO(t1)},       // store expr1 
          cod2,                   // code for expr2 
          {MCode.MSTO(t2)},       // store expr2 
          (MCode.MLOAD(t1)},      // load expr1 value into Acc 
          {MCode.MB(opcode,t2)}   // Do arith operation 
        );  
    then cod3; 



88   Peter Fritzson   Language Modeling and Symbolic Transformations with Meta-Modelica 

  end match; 
end trans_expr; 
 
function trans_binop  "Translate binary operator from Absyn to MCode" 
  input Absyn.BinOp in_binop; 
  output MCode.MBinOp out_mbinop; 
algorithm  
  out_mbinop:= 
  match (in_binop) 
    case Absyn.ADD() then MCode.MADD(); 
    case Absyn.SUB() then MCode.MSUB(); 
    case Absyn.MUL() then MCode.MMULT(); 
    case Absyn.DIV() then MCode.MDIV(); 
  end match; 
end trans_binop; 
 
function gentemp  "Generate temporary" 
  output MCode.MOperand out_moperand; 
protected 
  Integer no; 
algorithm  
  no = tick(); 
  out_moperand := MCode.T(no); 
end gentemp; 

 
function list_append6 
  replaceable type Type_a; 
  type Type_aList = list<Type_a>; 
  input Type_aList l1; 
  input Type_aList l2; 
  input Type_aList l3; 
  input Type_aList l4; 
  input Type_aList l5; 
  input Type_aList l6; 
  output Type_aList l16; 
protected  
  Type_aList l13,l46; 
algorithm  
  l13 = list_append3(l1, l2, l3); 
  l46 = list_append3(l4, l5, l6); 
  l16 = list_append(l13, l46); 
end list_append6; 

3.1.6.2 Translation of Comparison Expressions 

Comparison expressions have the form <expression><relop> <expression>, as for example in: 
 x < 5 
 y >= z 

In the simple PAM language, such comparison expressions only occur as predicates in if-statements and 
while-statements. If the predicate is true, then the body of the if-statement should be executed, otherwise 
jump over it to some label if the predicate is false. Thus, a conditional jump to a label occurs if the 
predicate is false.  
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This is reflected in the translation of relational operators by the function trans_relop, where the 
selected conditional jump instruction is logically opposite to the relational operator. For example, 
regarding the comparison x <= y which is equivalent to x-y <= 0 if we ignore the fact that overflow or 
underflow of arithmetic operations can cause errors, a jump should occur if the comparison is false, i.e., 
x-y > 0, meaning that the relational operator LE (less or equal) should be translated to MJP (jump on 
positive): 
function trans_relop  "Translate relation operator" 
  input Absyn.RelOp in_relop; 
  output MCode.MCondJmp out_mcondjmp; 
algorithm  
  out_mcondjmp:= 
  match (in_relop) 
    case Absyn.EQ() then MCode.MJNP();  " Jump on Negative or Positive " 
    case Absyn.LE() then MCode.MJP();   " Jump on Positive " 
    case Absyn.LT() then MCode.MJPZ();  " Jump on Positive or Zero " 
    case Absyn.GT() then MCode.MJNZ();  " Jump on Negative or Zero " 
    case Absyn.GE() then MCode.MJN();   " Jump on Negative " 
    case Absyn.NE() then MCode.MJZ();   " Jump on Zero " 
  end match; 
end trans_relop; 

Translation of the actual comparison expression is described by the trans_comparison function, 
having the following signature: 
function trans_comparison  "Translate comparison relation operator" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Comparison in_comparison; 
  input MCode.MLab in_mlab; 
  output MCode_MCodeList out_MCode_MCodeList; 

The label argument is needed as an argument to the generated conditional jump instruction. The 
following code sequence is suitable for all comparison expressions having the structure e1 <relop> e2, 
here represented by the example e1 <= e2, which is equivalent to 0 <= e2-e1: 
 <code  for e1> 
 STO T1 
 <code for e2> 
 SUB T1  /* Compute e2-e1; comparison false if negative */ 
 JN   Lab  /* Jump to label Lab if negative */ 

The second rule in the trans_comparison function translates according to this pattern, as shown 
below. The first rule applies to the special case when e2 is a variable or a constant, and can then avoid 
using a temporary. 
    case (Absyn.RELATION(e1,relop,e2),lab)  /* expr1 relop expr2 */ 
      equation  
        cod1 = trans_expr(e1); 
        list(MCode.MLOAD(operand2)) = trans_expr(e2); 
        jmpop = trans_relop(relop); 
        cod3 = list_append3(cod1, {MCode.MB(MCode.MSUB(),operand2)}, 
                                  {MCode.MJ(jmpop,lab)} );  then cod3; 
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The functions needed for translation of comparison expressions, including trans_comparison, follow 
below: 
/*************** Comparison expression translation **************/ 

function trans_comparison   "translation of a comparison: expr1 relop expr2 
    Example call:  trans_comparison(RELATION(INDENT(x), GT, INT(5)), L(10))" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Comparison in_comparison; 
  input MCode.MLab in_mlab; 
  output MCode_MCodeList out_MCode_MCodeList; 
algorithm  
  out_MCode_MCodeList := 
  matchcontinue (in_comparison,in_mlab) 
    local 
      MCode_MCodeList cod1,cod3,cod2; 
      MCode.MOperand operand2,lab,t1; 
      MCode.MCondJmp jmpop; 
      Absyn.Exp e1,e2; 
      Absyn.RelOp relop; 
   /* 
    * Use a simple code pattern (the first rule), when expr2 is  a simple 
    * identifier or constant: 
    *   code for expr1 
    *   SUB operand2 
    *   conditional jump to lab 
    * 
    * or a general code pattern (second rule), which is needed when expr2 
    * is more complicated than a simple identifier or constant: 
    *   code for expr1 
    *   STO temp1 
    *   code for expr2 
    *   SUB temp1 
    *   conditional jump to lab 
    */ 
    case (Absyn.RELATION(e1,relop,e2),lab)   "Simple case, expr1 relop expr2" 
      equation  
        cod1 = trans_expr(e1); 
        list(MCode.MLOAD(operand2)) = trans_expr(e2); 
        jmpop = trans_relop(relop); 
        cod3 = list_append3(cod1, {MCode.MB(MCode.MSUB(),operand2)}, 
                                  {MCode.MJ(jmpop,lab)} );  then cod3; 
 
    case (Absyn.RELATION(e1,relop,e2),lab)   "Complicated, expr1 relop expr2 " 
      equation  
        cod1 = trans_expr(e1); 
        cod2 = trans_expr(e2); 
        jmpop = trans_relop(relop); 
        t1 = gentemp(); 
        cod3 = list_append5(cod1, {MCode.MSTO(t1)}, cod2, 
          {MCode.MB(MCode.MSUB(),t1)}, {MCode.MJ(jmpop,lab)} ); 
          then cod3; 
  end matchcontinue; 
end trans_comparison; 
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function trans_relop  "Translate comparison relation operator" 
/* Note that for these relational operators, the selected jump 
 * instruction is logically opposite. For example, if equality to zero 
 * is true, we should should just continue, otherwise jump (MJNP) 
 */ 
  input Absyn.RelOp in_relop; 
  output MCode.MCondJmp out_mcondjmp; 
algorithm  
  out_mcondjmp:= 
  match (in_relop) 
    case Absyn.EQ() then MCode.MJNP();  " Jump on Negative or Positive " 
    case Absyn.LE() then MCode.MJP();   " Jump on Positive " 
    case Absyn.LT() then MCode.MJPZ();  " Jump on Positive or Zero " 
    case Absyn.GT() then MCode.MJNZ();  " Jump on Negative or Zero " 
    case Absyn.GE() then MCode.MJN();   " Jump on Negative " 
    case Absyn.NE() then MCode.MJZ();   " Jump on Zero " 
  end match; 
end trans_relop; 

3.1.6.3 Statement Translation 

We now turn to the translational semantics of the different statement types of PAM, which is described 
by the rules of the function trans_stmt.  

The first rule specifies translation of an assignment statement id := e1; which is particularly 
simple. Just compute the value of e1 and store in variable id, according to the following code pattern: 
 <code for e1> 
 STO id 

and the rule: 
    case Absyn.ASSIGN(id,e1)     /* Assignment Statement translation:  
                                    map the current state into a new state */ 
      equation  
        cod1 = trans_expr(e1); 
        cod2 = list_append(cod1, {MCode.MSTO(MCode.I(id))} ); then cod2; 
 

Translation of an empty statement, represented as a SKIP node, is very simple since only an empty 
instruction sequence is produced as in the axiom below: 
    case Absyn.SKIP  then {};                          /* ; empty statement */ 

 

Translation of if-statements is more complicated. There are two rules, the first valid for if-then 
statements in the form if comparison then s1 using the code pattern: 
 <code for comparison with conditional jump to L1> 
 <code for s1> 
 LABEL L1 

and the rule: 
    case Absyn.IF(comp,s1,Absyn.SKIP)                 /* if comp then s1 */ 
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      equation  
        s1cod = trans_stmt(s1); 
        l1 = genlabel(); 
        compcod = trans_comparison(comp, l1); 
        cod3 = list_append3(compcod, s1cod, {MCode.MLABEL(l1)} ); then cod3; 

Note that if-then statements are represented as if-then-else statement nodes with an empty statement 
(SKIP) in the else-part. 

General if-then-else statements of the form if comparison then s1 else s2 are using the code 
pattern: 
 <code for comparison with conditional jump to L1> 
 <code for s1> 
 J L2 
 LABEL L1 
 <code for s2> 
 LABEL L2 

and the rule: 
    case Absyn.IF(comp,s1,s2)             /* if comp then s1 else s2 */ 
      equation  
        s1cod = trans_stmt(s1); 
        s2cod = trans_stmt(s2); 
        l1 = genlabel(); 
        l2 = genlabel(); 
        compcod = trans_comparison(comp, l1); 
        cod3 = list_append6( 
           compcod, s1cod,  
           {MCode.MJMP(l2)}, 
           {MCode.MLABEL(l1)},  
           s2cod,  
           {MCode.MLABEL(l2)} );  then cod3; 
 

This second rule also specifies correct semantics for if-then statements, although one unnecessary jump 
instruction would be produced. Avoiding this jump is the only reason for keeping the first rule. 

We now turn to while-statements of the form while comparison do s1. This is an iterative 
statement and thus contain a backward jump in its code-pattern below: 
 LABEL L1 
 <code for comparison, including conditional jump to L2> 
 <code for s1> 
 J   L1 
 LABEL L2 

with the rule: 
    case Absyn.WHILE(comp,s1)          " while ... " 
      equation  
        bodycod = trans_stmt(s1); 
        l1 = genlabel(); 
        l2 = genlabel(); 
        compcod = trans_comparison(comp, l2); 
        cod3 = list_append5( 
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          {MCode.MLABEL(l1)},  
          compcod, bodycod, 

           {MCode.MJMP(l1)}, 
           {MCode.MLABEL(l2)} ); then cod3; 

The definite loop statement of the form to e1 do s1 is a kind of for-statement that found in many other 
languages. The statement s1 is executed the number of times specified by evaluating expression e1 once 
at the beginning of its execution. The value of e1 initializes a temporary counter variable which is 
decremented before each iteration. The loop is exited when the counter becomes negative. The code 
pattern follows below: 
 <code for e1> 
 STO T1  /* T1 is the counter */ 
 LABEL L1 
 LOAD T1 
 SUB 1  /* Decrement T1 */ 
 JN L2  /* Exit the loop */ 
 STO T1 
 <code for s1> 
 J L1 
 LABEL L2 

and the rule:  
    case Absyn.TODO(e1,s1)             " to e1 do s1 ... " 
      equation  
        tocod = trans_expr(e1); 
        bodycod = trans_stmt(s1); 
        t1 = gentemp(); 
        l1 = genlabel(); 
        l2 = genlabel(); 
        cod3 = list_append10( 
          tocod,  
          {MCode.MSTO(t1)},  
          {MCode.MLABEL(l1)}, 
          {MCode.MLOAD(t1)}, 
          {MCode.MB(MCode.MSUB(),MCode.N(1))}, 
          {MCode.MJ(MCode.MJN,l2)},  
          {MCode.MSTO(t1)},  
          bodycod, 
          {MCode.MJMP(l1)},  
          {MCode.MLABEL(l2)} ); then cod3; 
 

Next we turn to the input/output statements of PAM. A read-statement of the form read 
id1,id2,id3... will input values to the variables id1, id2, id3 etc. in that order. This is 
accomplished  by generating code according to the following pattern: 
 GET id1 
 GET id2 
 GET id3 
 ... 
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The translation is specified by the following axiom and rule, stating that reading an empty list of 
variables produces an empty sequence of GET instructions, whereas the rule specifies emission of one 
GET instruction for the first identifier in the non-empty list, and then recursively invokes trans_stmt 
for the rest of the identifiers in the list. The axiom and the rule follows below: 
    case Absyn.READ({})  then {};           " read {} " 
 
    case Absyn.READ(id :: idlist_rest)      " read id1,id2,... " 
      equation  
        cod2 = trans_stmt(Absyn.READ(idlist_rest));  
          then MCode.MGET(MCode.I(id) :: cod2); 
 

The translation of write-statements of form write id1,id2,id3,... is analogous to that of read-
statements, but produces PUT instructions as in: 
 PUT id1 
 PUT id2 
 PUT id3 
 ... 

The translation is specified by the following axiom and rule: 
    case Absyn.WRITE({})then {};                " write {} " 

    case Absyn.WRITE(id :: idlist_rest)         " write id1,id2,... " 
      equation  
        cod2 = trans_stmt(Absyn.WRITE(idlist_rest));  
          then MCode.MPUT(MCode.I(id) :: cod2); 

A sequence of two statements, of the form stmt1; stmt2 is represented by the abstract syntax node 
SEQ. Since one or both statements can be a statement sequence itself, sequences of arbitrary length can 
be represented. The instructions from translating two statements in a sequence are simply concatenated 
as in the rule below: 
    case Absyn.SEQ(stmt1,stmt2)                 " stmt1 ; stmt2 " 
      equation  
        cod1 = trans_stmt(stmt1); 
        cod2 = trans_stmt(stmt2); 
        cod3 = list_append(cod1, cod2); then cod3; 

The semantics of translating a whole PAM program is described by a translation of the program body, 
which is a statement, followed by the HALT instruction. This is clear from the function trans_program 
below: 
function trans_program   "Translate a whole program" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Stmt progbody; 
  output MCode_MCodeList programcode; 
protected  
  MCode_MCodeList cod1; 
algorithm  
  cod1 := trans_stmt(progbody); 
  programcode := list_append(cod1, {MCode.MHALT()}); 
end trans_program; 
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Finally, the complete translational semantics of PAM statements is presented below as the rules and 
axioms of the function trans_stmt. 
 

/*************** Statement translation **************/ 

function trans_stmt         "Statement translation" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Stmt in_stmt; 
  output MCode_MCodeList out_MCode_MCodeList; 
algorithm  
  out_MCode_MCodeList:= 
  match (in_stmt) 
    local 
      type StringList = list<String>; 
      MCode_MCodeList cod1,cod2,s1cod,compcod,cod3,s2cod,bodycod,tocod; 
      String id; 
      Absyn.Exp e1,comp; 
      MCode.MOperand l1,l2,t1; 
      Absyn.Stmt s1,s2,stmt1,stmt2; 
      StringList idlist_rest; 

    case Absyn.ASSIGN(id,e1)     /* Assignment Statement translation:  
                                    map the current state into a new state */ 
      equation  
        cod1 = trans_expr(e1); 
        cod2 = list_append(cod1, {MCode.MSTO(MCode.I(id))} ); then cod2; 

    case Absyn.SKIP  then {};                          /* ; empty statement */ 

    case Absyn.IF(comp,s1,Absyn.SKIP)                  /* if comp then s1 */ 
      equation  
        s1cod = trans_stmt(s1); 
        l1 = genlabel(); 
        compcod = trans_comparison(comp, l1); 
        cod3 = list_append3(compcod, s1cod, {MCode.MLABEL(l1)} ); then cod3; 

    case Absyn.IF(comp,s1,s2)             /* if comp then s1 else s2 */ 
      equation  
        s1cod = trans_stmt(s1); 
        s2cod = trans_stmt(s2); 
        l1 = genlabel(); 
        l2 = genlabel(); 
        compcod = trans_comparison(comp, l1); 
        cod3 = list_append6( 
           compcod, s1cod,  
           {MCode.MJMP(l2)}, 
           {MCode.MLABEL(l1)},  
           s2cod,  
           {MCode.MLABEL(l2)} );  then cod3; 

    case Absyn.WHILE(comp,s1)          " while ... " 
      equation  
        bodycod = trans_stmt(s1); 
        l1 = genlabel(); 
        l2 = genlabel(); 
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        compcod = trans_comparison(comp, l2); 
        cod3 = list_append5( 
          {MCode.MLABEL(l1)},  
          compcod, bodycod, 

           {MCode.MJMP(l1)}, 
           {MCode.MLABEL(l2)} ); then cod3; 

    case Absyn.TODO(e1,s1)             " to e1 do s1 ... " 
      equation  
        tocod = trans_expr(e1); 
        bodycod = trans_stmt(s1); 
        t1 = gentemp(); 
        l1 = genlabel(); 
        l2 = genlabel(); 
        cod3 = list_append10( 
          tocod,  
          {MCode.MSTO(t1)},  
          {MCode.MLABEL(l1)}, 
          {MCode.MLOAD(t1)}, 
          {MCode.MB(MCode.MSUB(),MCode.N(1))}, 
          {MCode.MJ(MCode.MJN,l2)},  
          {MCode.MSTO(t1)},  
          bodycod, 
          {MCode.MJMP(l1)},  
          {MCode.MLABEL(l2)} ); then cod3; 
 

    case Absyn.READ({})  then {};           " read {} " 
 
    case Absyn.READ(id :: idlist_rest)      " read id1,id2,... " 
      equation  
        cod2 = trans_stmt(Absyn.READ(idlist_rest));  
          then MCode.MGET(MCode.I(id) :: cod2); 
 
    case Absyn.WRITE({})then {};                " write {} " 

    case Absyn.WRITE(id :: idlist_rest)         " write id1,id2,... " 
 
      equation  
        cod2 = trans_stmt(Absyn.WRITE(idlist_rest));  
          then MCode.MPUT(MCode.I(id) :: cod2); 

    case Absyn.SEQ(stmt1,stmt2)                 " stmt1 ; stmt2 " 
      equation  
        cod1 = trans_stmt(stmt1); 
        cod2 = trans_stmt(stmt2); 
  end match; 
 
end trans_stmt; 

3.1.6.4 Emission of Textual Assembly Code 

The translational semantics of PAM is specified as a translation from abstract syntax to a sequence of 
machine instructions in the structured MCode representation. However, we would like to emit the 
machine instructions in a textual assembly form. The conversion from the MCode representation to the 
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textual assembly form is accomplished by the emit_assembly function and associated functions 
below. This is not really part of the translational semantics. Here, Meta-Modelica is used as a semi-
functional programming language, to implement the desired conversion. The print primitive has been 
included in the standard Meta-Modelica library for such purposes. 
package Emit 
/* Print out the MCode in textual assembly format 
 * Note: this is not really part of the specification of PAM semantics 
 */ 
import MCode; 
 
function emit_assembly  "Print an MCode instruction" 
  input MCodeList in_mcodelist; 
  output Boolean dummy; 
protected 
  type MCodeList = list<MCode.Mcode>; 
algorithm  
  dummy:= 
  match (in_mcodelist) 
    local 
      MCode.Mcode instr; 
      MCodeList rest; 
    case ({}) then true;  
    case (instr :: rest) 
      equation 
        emit_instr(instr); 
        emit_assembly(rest); then true; 
  end match; 
end emit_assembly; 
 
function emit_instr 
  input MCode.Mcode in_MCode; 
  output Boolean dummy; 
algorithm  
  dummy:= 
  match (in_MCode) 
    local 
      String op; 
      MCode.MBinOp mbinop; 
      MCode.MOperand mopr,mlab; 
      MCode.MCondJmp jmpop; 
    case (MCode.MB(mbinop,mopr)) " Print an MCode instruction " 
      equation 
        op = mbinop_to_str(mbinop); 
        emit_op_operand(op, mopr); then true; 
    case (MCode.MJ(jmpop,mlab)) 
      equation 
        op = mjmpop_to_str(jmpop); 
        emit_op_operand(op, mlab); then true; 
    case (MCode.MJMP(mlab)) 
      equation 
        emit_op_operand("J", mlab); then true; 
    case (MCode.MLOAD(mopr)) 
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      equation 
        emit_op_operand("LOAD", mopr); then true; 
    case (MCode.MSTO(mopr)) 
      equation 
        emit_op_operand("STO", mopr); then true; 
    case (MCode.MGET(mopr)) 
      equation 
        emit_op_operand("GET", mopr); then true; 
    case (MCode.MPUT(mopr)) 
      equation 
        emit_op_operand("PUT", mopr); then true; 
    case (MCode.MLABEL(mlab)) 
      equation 
        emit_moperand(mlab); 
        print("\tLAB\n"); then true; 
    case (MCode.MHALT()) 
      equation 
        print("\tHALT\n"); then true; 
  end match; 
end emit_instr; 
 
function emit_op_operand 
  input String opstr; 
  input MCode.MOperand mopr; 
algorithm  
  print("\t"); 
  print(opstr); 
  print("\t"); 
  emit_moperand(mopr); 
  print("\n"); 
end emit_op_operand; 
 
function emit_int 
  input Integer i; 
protected 
  String s; 
algorithm  
  s := int_string(i); 
  print(s); 
end emit_int; 
 
function emit_moperand 
  input MCode.MOperand in_moperand; 
  output Boolean dummy; 
algorithm  
  dummy:= 
  match (in_moperand) 
    local 
      String id; 
      Integer number,labno,tempnr; 
    case (MCode.I(id)) 
      equation 
        print(id); then true; 
    case (MCode.N(number)) 
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      equation 
        emit_int(number); then true; 
    case (MCode.L(labno)) 
      equation 
        print("L"); 
        emit_int(labno); then true; 
    case (MCode.T(tempnr)) 
      equation 
        print("T"); 
        emit_int(tempnr); then true; 
  end match; 
end emit_moperand; 
 
function mbinop_to_str 
  input MCode.MBinOp in_mbinop; 
  output String out_string; 
algorithm  
  out_string:= 
  match (in_mbinop) 
    case (MCode.MADD()) then "ADD";  
    case (MCode.MSUB()) then "SUB";  
    case (MCode.MMULT()) then "MULT";  
    case (MCode.MDIV()) then "DIV";  
  end match; 
end mbinop_to_str; 
 
function mjmpop_to_str 
  input MCode.MCondJmp in_mcondjmp; 
  output String out_string; 
algorithm  
  out_string:= 
  match (in_mcondjmp) 
    case (MCode.MJNP()) then "JNP";  
    case (MCode.MJP()) then "JP";  
    case (MCode.MJN()) then "JN";  
    case (MCode.MJNZ()) then "JNZ";  
    case (MCode.MJPZ()) then "JPZ";  
    case (MCode.MJZ()) then "JZ";  
  end match;  
end mjmpop_to_str; 
 
end Emit; 
 

3.1.6.5 Translate a PAM Program and Emit Assembly Code 

The main function below performs the full process of translating a PAM program to textual assembly 
code, emitted on the standard output file. First, the PAM program is parsed, then translated to MCode, 
which subsequently is converted to textual form. 
package Main 
import Parse; 
import Trans; 
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import Emit; 
 
function main 
  "Parse and translate a PAM program into MCode, 
   then emit it as textual assembly code." 
protected  
  type MCodeList = list<MCode.Mcode>; 
  Absyn.Stmt program; 
  MCodeList mcode; 
algorithm  
  program := Parse.parse(); 
  mcode := Trans.trans_program(program); 
  Emit.emit_assembly(mcode); 
end main; 
 
end Main; 

3.2 The Semantics of MCode 

In order to have a complete translational semantics of PAM, the meaning of each MCode instruction 
must also be specified. This can be accomplished by an interpretive semantic definition of MCode in 
Meta-Modelica. 

However, we abstain from giving semantic definitions of machine code instruction sets for now since 
the current focus is the translation process, but may return to this topic later. 

(?? a good idea to define such an abstract machine here, in the style of a small steps semantics). 

3.3 Building and Running the PAM Translator 

3.3.1 Building the PAM Translator 

The following files are needed for building the PAM translator: Absyn.mo, Trans.mo, MCode.mo, 
Emit.mo, lexer.l, gram.y, Main.mo, Parse.mo, parse.c, yacclib.c, yacclib.h and 
makefile. 

The files can be copied from (??update) /home/pelab/pub/pkg/rml/current/bookexamples/ 
examples/pamtrans. 

The executable is built by typing: 
sen20%12 make pamtrans 
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3.3.2 Source Files for PAM Translator 

3.3.2.1 lexer.l 

%{ 
#include "gram.h" 
#include "yacclib.h" 
#include "rml.h" 
#include "absyn.h" 
 
typedef void *rml_t; 
extern rml_t yylval; 
 
int absyn_integer(char *s); 
int absyn_ident_or_keyword(char *s); 
 
%} 
 
whitespace   [ \t\n]+ 
letter       [a-zA-Z] 
ident           {letter}({letter}|{digit})* 
digit        [0-9] 
digits       {digit}+ 
icon       {digits} 
/* Lex style lexical syntax of tokens in the PAM language */ 
 
%% 
{whitespace} ; 
{ident}         return absyn_ident_or_keyword(yytext); /* T_IDENT */ 
{digits}     return absyn_integer(yytext);  /* T_INTCONST */ 
":="         return T_ASSIGN; 
"+"          return T_ADD; 
"-"          return T_SUB; 
"*"          return T_MUL; 
"/"          return T_DIV; 
"("          return T_LPAREN; 
")"          return T_RPAREN; 
"<"          return T_LT; 
"<="         return T_LE; 
"="          return T_EQ; 
"<>"         return T_NE; 
">="         return T_GE; 
">"          return T_GT; 
";"          return T_SEMIC; 
 
  
%% 
 
/* Make an Modelica integer from a C string representation (decimal), 
   box it for our abstract syntax, put in yylval and return constant token. */ 
  
int absyn_integer(char *s) 
{ 
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  yylval=(rml_t) Absyn__INT(mk_icon(atoi(s))); 
  return T_INTCONST; 
} 
  
/* Make an Modelica Ident or a keyword token from a C string */ 
/* Reserved words: if,then,else,endif,while,do,end,to,read,write */ 
  
static struct keyword_s 
{ 
  char *name; 
  int token; 
} kw[] = 
{ 
  {"do",        T_DO}, 
  {"else",      T_ELSE}, 
  {"end",       T_END}, 
  {"if",        T_IF}, 
  {"read",      T_READ}, 
  {"then",      T_THEN}, 
  {"while",     T_WHILE}, 
  {"write",     T_WRITE}, 
}; 
 
int absyn_ident_or_keyword(char *s) 
{ 
        int low = 0; 
        int high = (sizeof kw) / sizeof(struct keyword_s) - 1; 
 
        while( low <= high ) { 
                int mid = (low + high) / 2; 
                int cmp = strcmp(kw[mid].name, yytext); 
                if( cmp == 0 ) 
                { 
                        return kw[mid].token; 
                } 
                else if( cmp < 0 ) 
                        low = mid + 1; 
                else 
                        high = mid - 1; 
        } 
        yylval = (rml_t) mk_scon(s); 
        return T_IDENT; 
} 
gram.y 
%{ 
#include <stdio.h> 
#include "yacclib.h" 
#include "rml.h" 
#include "absyn.h" 
 
typedef void *rml_t; 
#define YYSTYPE rml_t 
  
extern rml_t absyntree; 
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%} 
 
%token T_READ 
%token T_WRITE 
%token T_ASSIGN 
%token T_IF 
%token T_THEN 
%token T_ENDIF 
%token T_ELSE 
%token T_TO 
%token T_DO 
%token T_END 
%token T_WHILE 
%token T_LPAREN 
%token T_RPAREN 
%token T_IDENT 
%token T_INTCONST 
%token T_EQ 
%token T_LE 
%token T_LT 
%token T_GT 
%token T_GE 
%token T_NE 
%token T_ADD 
%token T_SUB 
%token T_MUL 
%token T_DIV 
%token T_SEMIC 
 
%% 
 
/* Yacc BNF grammar of the PAM language */ 
 
program               :  series 
                                { absyntree = $1; } 
series                :  statement 
                                { $$ = Absyn__SEQ($1, Absyn__SKIP); } 
                      |  statement series 
                                { $$ = Absyn__SEQ($1, $2); } 
 
statement             :  input_statement T_SEMIC 
                                { $$ = $1; } 
                      |  output_statement T_SEMIC 
                                { $$ = $1; } 
                      |  assignment_statement T_SEMIC 
                                { $$ = $1; } 
                      |  conditional_statement 
                                { $$ = $1; } 
                      |  definite_loop 
                                { $$ = $1; } 
                      |  while_loop 
                                { $$ = $1; } 
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input_statement       :  T_READ  variable_list 
                                { $$ = Absyn__READ($2); } 
 
output_statement      :  T_WRITE  variable_list 
                                { $$ = Absyn__WRITE($2); } 
 
  
variable_list         :  variable 
                                { $$ = mk_cons($1, mk_nil()); } 
                      |  variable variable_list 
                                { $$ = mk_cons($1, $2); } 
 
assignment_statement  :  variable  T_ASSIGN  expression 
                                { $$ = Absyn__ASSIGN($1, $3); } 
 
conditional_statement :  T_IF comparison T_THEN series T_ENDIF 
                                { $$ = Absyn__IF($2, $4, Absyn__SKIP); } 
                      |  T_IF comparison T_THEN series  
                                         T_ELSE series T_ENDIF 
                                { $$ = Absyn__IF($2, $4, $6); } 
 
definite_loop         :  T_TO expression T_DO series T_END 
                                { $$ = Absyn__TODO($2, $4); } 
 
while_loop            :  T_WHILE comparison T_DO series T_END 
                                { $$ = Absyn__WHILE($2, $4); } 
 
expression       :  term 
                                { $$ = $1; } 
                 |  expression  weak_operator  term 
                                { $$ = Absyn__BINARY($1, $2, $3); } 
 
term             :  element 
                                { $$ = $1; } 
                 |  term  strong_operator  element 
                                { $$ = Absyn__BINARY($1, $2, $3); } 
 
element          :  constant 
                                { $$ = $1; } 
                 |  variable 
                                { $$ = Absyn__IDENT($1); } 
                 |  T_LPAREN  expression  T_RPAREN 
                                { $$ = $2; } 
 
comparison       :  expression  relation  expression 
                                { $$ = Absyn__RELATION($1, $2, $3); } 
 
variable         :  T_IDENT 
                                { $$ = $1; } 
constant         :  T_INTCONST 
                                { $$ = $1; } 
 
relation         : T_EQ { $$ = Absyn__EQ;} 
                 | T_LE { $$ = Absyn__LE;} 
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                 | T_LT { $$ = Absyn__LT;} 
                 | T_GT { $$ = Absyn__GT;} 
                 | T_GE { $$ = Absyn__GE;} 
                 | T_NE { $$ = Absyn__NE;} 
 
weak_operator    : T_ADD { $$ = Absyn__ADD;} 
                 | T_SUB { $$ = Absyn__SUB;} 
 
strong_operator  : T_MUL { $$ = Absyn__MUL;} 
                 | T_DIV { $$ = Absyn__DIV;} 
 
%% 
 
void yyerror(char *str) { 
  
} 

3.3.2.2 Absyn.mo 

package Absyn  "Parameterized abstract syntax for the PAM language" 
 
type Ident = String; 
 
uniontype BinOp 
  record ADD  end ADD; 
  record SUB  end SUB; 
  record MUL  end MUL; 
  record DIV  end DIV; 
end BinOp; 
 
uniontype RelOp 
  record EQ  end EQ; 
  record GT  end GT; 
  record LT  end LT; 
  record LE  end LE; 
  record GE  end GE; 
  record NE  end NE; 
end RelOp; 
 
uniontype Exp 
  record INT     Integer x1;  end INT; 
  record IDENT   Ident id;    end IDENT; 
  record BINARY  Exp x1; BinOp op;  Exp x2;  end BINARY; 
  record RELATION  Exp x1;  RelOp op;  Exp x3;  end RELATION; 
end Exp; 
 
type IdentList = list<Ident>; 
uniontype Stmt 
  record ASSIGN Ident id; Exp x2; end ASSIGN;      "Id := Exp" 
  record IF     Exp x1; Stmt x2; Stmt x3; end IF;  "if Exp then Stmt.." 
  record WHILE  Exp x1; Stmt x2;  end WHILE;       " while Exp do Stmt" 
  record TODO   Exp x1;  Stmt x2; end TODO;        " to Exp do Stmt..." 
  record READ   IdentList x1;  end READ;           "read id1,id2,..." 
  record WRITE  IdentList x1;  end WRITE;          "write id1,id2,.." 
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  record SEQ    Stmt x1;  Stmt x2;  end SEQ;       "Stmt1; Stmt2" 
  record SKIP  end SKIP;                           " ; empty stmt" 
end Stmt; 

 
end Absyn; 

3.3.2.3 Trans.mo 

package Trans 
 
import Absyn; 
import MCode; 

 

function trans_program   "Translate a whole program" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Stmt progbody; 
  output MCode_MCodeList programcode; 
protected  
  MCode_MCodeList cod1; 
algorithm  
  cod1 := trans_stmt(progbody); 
  programcode := list_append(cod1, {MCode.MHALT()}); 
end trans_program; 

 

/*************** Statement translation **************/ 

function trans_stmt         "Statement translation" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Stmt in_stmt; 
  output MCode_MCodeList out_MCode_MCodeList; 
algorithm  
  out_MCode_MCodeList:= 
  match (in_stmt) 
    local 
      type StringList = list<String>; 
      MCode_MCodeList cod1,cod2,s1cod,compcod,cod3,s2cod,bodycod,tocod; 
      String id; 
      Absyn.Exp e1,comp; 
      MCode.MOperand l1,l2,t1; 
      Absyn.Stmt s1,s2,stmt1,stmt2; 
      StringList idlist_rest; 

    case Absyn.ASSIGN(id,e1)     /* Assignment Statement translation:  
                                    map the current state into a new state */ 
      equation  
        cod1 = trans_expr(e1); 
        cod2 = list_append(cod1, {MCode.MSTO(MCode.I(id))} ); then cod2; 

    case Absyn.SKIP  then {};                          /* ; empty statement */ 

    case Absyn.IF(comp,s1,Absyn.SKIP)                  /* if comp then s1 */ 
      equation  
        s1cod = trans_stmt(s1); 
        l1 = genlabel(); 
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        compcod = trans_comparison(comp, l1); 
        cod3 = list_append3(compcod, s1cod, {MCode.MLABEL(l1)} ); then cod3; 

    case Absyn.IF(comp,s1,s2)             /* if comp then s1 else s2 */ 
      equation  
        s1cod = trans_stmt(s1); 
        s2cod = trans_stmt(s2); 
        l1 = genlabel(); 
        l2 = genlabel(); 
        compcod = trans_comparison(comp, l1); 
        cod3 = list_append6( 
           compcod, s1cod,  
           {MCode.MJMP(l2)}, 
           {MCode.MLABEL(l1)},  
           s2cod,  
           {MCode.MLABEL(l2)} );  then cod3; 

    case Absyn.WHILE(comp,s1)          " while ... " 
      equation  
        bodycod = trans_stmt(s1); 
        l1 = genlabel(); 
        l2 = genlabel(); 
        compcod = trans_comparison(comp, l2); 
        cod3 = list_append5( 
          {MCode.MLABEL(l1)},  
          compcod, bodycod, 

           {MCode.MJMP(l1)}, 
           {MCode.MLABEL(l2)} ); then cod3; 

    case Absyn.TODO(e1,s1)             " to e1 do s1 ... " 
      equation  
        tocod = trans_expr(e1); 
        bodycod = trans_stmt(s1); 
        t1 = gentemp(); 
        l1 = genlabel(); 
        l2 = genlabel(); 
        cod3 = list_append10( 
          tocod,  
          {MCode.MSTO(t1)},  
          {MCode.MLABEL(l1)}, 
          {MCode.MLOAD(t1)}, 
          {MCode.MB(MCode.MSUB(),MCode.N(1))}, 
          {MCode.MJ(MCode.MJN,l2)},  
          {MCode.MSTO(t1)},  
          bodycod, 
          {MCode.MJMP(l1)},  
          {MCode.MLABEL(l2)} ); then cod3; 
 

    case Absyn.READ({})  then {};           " read {} " 
 
    case Absyn.READ(id :: idlist_rest)      " read id1,id2,... " 
      equation  
        cod2 = trans_stmt(Absyn.READ(idlist_rest));  
          then MCode.MGET(MCode.I(id) :: cod2); 
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    case Absyn.WRITE({})then {};                " write {} " 

    case Absyn.WRITE(id :: idlist_rest)         " write id1,id2,... " 
 
      equation  
        cod2 = trans_stmt(Absyn.WRITE(idlist_rest));  
          then MCode.MPUT(MCode.I(id) :: cod2); 

    case Absyn.SEQ(stmt1,stmt2)                 " stmt1 ; stmt2 " 
      equation  
        cod1 = trans_stmt(stmt1); 
        cod2 = trans_stmt(stmt2); 
  end match; 
 
end trans_stmt; 
 

function trans_expr  "Arithmetic expression translation" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Exp in_exp; 
  output MCode_MCodeList out_MCode_MCodeList; 
algorithm  
  out_MCode_MCodeList:= 
  match (in_exp) 
    local 
      Integer v; 
      String id; 
      MCode_MCodeList cod1,cod3,cod2; 
      MCode.MOperand operand2,t1,t2; 
      MCode.MBinOp opcode; 
      Absyn.Exp e1,e2; 
      Absyn.BinOp binop; 
    case Absyn.INT(v) then list(MCode.MLOAD(MCode.N(v)));  " integer constant " 
    case Absyn.IDENT(id) then list(MCode.MLOAD(MCode.I(id))); " identifier id " 
 
    case Absyn.BINARY(e1,binop,e2) " Arith binop: simple case, expr2 is just an 
                                   identifier or constant:   expr1 binop expr2 " 
      equation  
        cod1 = trans_expr(e1); 
        list(MCode.MLOAD(operand2)) = trans_expr(e2); 
        opcode = trans_binop(binop)   " expr2 simple "; 
        cod3 = list_append(cod1, list(MCode.MB(opcode,operand2))); then cod3; 
 

    case Absyn.BINARY(e1,binop,e2) "Arith binop: general case, expr2 is a more 
                                    complicated expr:   expr1 binop expr2" 
      equation  
        cod1 = trans_expr(e1); 
        cod2 = trans_expr(e2); 
        opcode = trans_binop(binop); 
        t1 = gentemp(); 
        t2 = gentemp(); 
        cod3 = list_append6(cod1, // code for expr1 
          {MCode.MSTO(t1)},       // store expr1 
          cod2,                   // code for expr2 
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          {MCode.MSTO(t2)},       // store expr2 
          (MCode.MLOAD(t1)},      // load expr1 value into Acc 
          {MCode.MB(opcode,t2)}   // Do arith operation 
        );  
    then cod3; 
  end match; 
end trans_expr; 
 
function trans_binop  "Translate binary operator from Absyn to MCode" 
  input Absyn.BinOp in_binop; 
  output MCode.MBinOp out_mbinop; 
algorithm  
  out_mbinop:= 
  match (in_binop) 
    case Absyn.ADD() then MCode.MADD(); 
    case Absyn.SUB() then MCode.MSUB(); 
    case Absyn.MUL() then MCode.MMULT(); 
    case Absyn.DIV() then MCode.MDIV(); 
  end match; 
end trans_binop; 
 
function gentemp  "Generate temporary" 
  output MCode.MOperand out_moperand; 
protected 
  Integer no; 
algorithm  
  no = tick(); 
  out_moperand := MCode.T(no); 
end gentemp; 

 
function list_append3 
  replaceable type Type_a; 
  type Type_aList = list<Type_a>; 
  input Type_aList l1; 
  input Type_aList l2; 
  input Type_aList l3; 
  output Type_aList l13; 
protected  
  Type_aList l12; 
algorithm  
  l12 := list_append(l1, l2); 
  l13 := list_append(l12, l3); 
end list_append3; 
 
function list_append5 
  replaceable type Type_a; 
  type Type_aList = list<Type_a>; 
  input Type_aList l1; 
  input Type_aList l2; 
  input Type_aList l3; 
  input Type_aList l4; 
  input Type_aList l5; 
  output Type_aList l15; 
protected  
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  Type_aList l13; 
algorithm  
  l13 := list_append3(l1, l2, l3); 
  l15 := list_append3(l13, l4, l5); 
end list_append5; 
 
function list_append6 
  output Boolean dummy; 
algorithm  
  dummy:= 
  match (true) 
    local 
      replaceable type Type_a; 
      type Type_aList = list<Type_a>; 
      Type_aList l13,l46,l16,l1,l2,l3,l4,l5,l6; 
    case (l1,l2,l3,l4,l5,l6) 
      equation  
        l13 = list_append3(l1, l2, l3); 
        l46 = list_append3(l4, l5, l6); 
        l16 = list_append(l13, l46); then l16; 
  end match; 
end list_append6; 
 
function list_append10 
  replaceable type Type_a; 
  type Type_aList = list<Type_a>; 
  input Type_aList l1; 
  input Type_aList l2; 
  input Type_aList l3; 
  input Type_aList l4; 
  input Type_aList l5; 
  input Type_aList l6; 
  input Type_aList l7; 
  input Type_aList l8; 
  input Type_aList l9; 
  input Type_aList l10; 
  output Type_aList l110; 
protected  
  Type_aList l15; 
algorithm  
  l15 := list_append5(l1, l2, l3, l4, l5); 
  l110 := list_append6(l15, l6, l7, l8, l9, l10); 
end list_append10; 
 
 
relation trans_binop:  Absyn.BinOp => MCode.MBinOp  = 
  axiom  trans_binop(Absyn.ADD) =>  MCode.MADD 
  axiom  trans_binop(Absyn.SUB)  =>  MCode.MSUB 
  axiom  trans_binop(Absyn.MUL)  =>  MCode.MMULT 
  axiom  trans_binop(Absyn.DIV)  =>  MCode.MDIV 
end 
 

/*************** Comparison expression translation **************/ 
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function trans_comparison   "translation of a comparison: expr1 relop expr2 
    Example call:  trans_comparison(RELATION(INDENT(x), GT, INT(5)), L(10))" 
  type MCode_MCodeList = list<MCode.Mcode>; 
  input Absyn.Comparison in_comparison; 
  input MCode.MLab in_mlab; 
  output MCode_MCodeList out_MCode_MCodeList; 
algorithm  
  out_MCode_MCodeList := 
  matchcontinue (in_comparison,in_mlab) 
    local 
      MCode_MCodeList cod1,cod3,cod2; 
      MCode.MOperand operand2,lab,t1; 
      MCode.MCondJmp jmpop; 
      Absyn.Exp e1,e2; 
      Absyn.RelOp relop; 
   /* 
    * Use a simple code pattern (the first rule), when expr2 is  a simple 
    * identifier or constant: 
    *   code for expr1 
    *   SUB operand2 
    *   conditional jump to lab 
    * 
    * or a general code pattern (second rule), which is needed when expr2 
    * is more complicated than a simple identifier or constant: 
    *   code for expr1 
    *   STO temp1 
    *   code for expr2 
    *   SUB temp1 
    *   conditional jump to lab 
    */ 
    case (Absyn.RELATION(e1,relop,e2),lab)   "Simple case, expr1 relop expr2" 
      equation  
        cod1 = trans_expr(e1); 
        list(MCode.MLOAD(operand2)) = trans_expr(e2); 
        jmpop = trans_relop(relop); 
        cod3 = list_append3(cod1, {MCode.MB(MCode.MSUB(),operand2)}, 
                                  {MCode.MJ(jmpop,lab)} );  then cod3; 
 
    case (Absyn.RELATION(e1,relop,e2),lab)   "Complicated, expr1 relop expr2 " 
      equation  
        cod1 = trans_expr(e1); 
        cod2 = trans_expr(e2); 
        jmpop = trans_relop(relop); 
        t1 = gentemp(); 
        cod3 = list_append5(cod1, {MCode.MSTO(t1)}, cod2, 
          {MCode.MB(MCode.MSUB(),t1)}, {MCode.MJ(jmpop,lab)} ); 
          then cod3; 
  end matchcontinue; 
end trans_comparison; 
 

function trans_relop  "Translate comparison relation operator" 
/* Note that for these relational operators, the selected jump 
 * instruction is logically opposite. For example, if equality to zero 
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 * is true, we should should just continue, otherwise jump (MJNP) 
 */ 
  input Absyn.RelOp in_relop; 
  output MCode.MCondJmp out_mcondjmp; 
algorithm  
  out_mcondjmp:= 
  match (in_relop) 
    case Absyn.EQ() then MCode.MJNP();  " Jump on Negative or Positive " 
    case Absyn.LE() then MCode.MJP();   " Jump on Positive " 
    case Absyn.LT() then MCode.MJPZ();  " Jump on Positive or Zero " 
    case Absyn.GT() then MCode.MJNZ();  " Jump on Negative or Zero " 
    case Absyn.GE() then MCode.MJN();   " Jump on Negative " 
    case Absyn.NE() then MCode.MJZ();   " Jump on Zero " 
  end match; 
 
end trans_relop; 
 

3.3.2.4 MCode.mo 

package MCode 

uniontype MBinOp 
  record MADD  end MADD; 
  record MSUB  end MSUB; 
  record MMULT end MMULT; 
  record MDIV  end MDIV; 
end MBinOp; 
 
uniontype MCondJmp 
  record MJNP  end MJNP; 
  record MJP   end MJP; 
  record MJN   end MJN; 
  record MJNZ  end MJNZ; 
  record MJPZ  end MJPZ; 
  record MJZ   end MJZ; 
end MCondJmp; 
 
uniontype MOperand 
  record I  Id x1;  end I; 
  record N  Integer x1;  end N; 
  record T  Integer x1;  end T; 
end MOperand; 
 
type MLab =  MOperand;    // Label 
type MTemp = MOperand;    // Temporary 
type MIdent = MOperand;   // Identifier 
type MIdTemp = MOperand;  // Id or Temporary 
 
uniontype MCode  
  record MB     MBinOp x1;  Moperand x2;  end MB;    /* Binary arith ops */ 
  record MJ     MCondJmp x1; MLab x2;  end MJ;       /* Conditional jumps */ 
  record MJMP   Mlab x1;     end MJMP; 
  record MLOAD  MIdTemp x1;  end MLOAD; 
  record MSTO   MIdTemp x1;  end MSTO; 
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  record MGET   MIdent x1;  end MGET; 
  record MPUT   MIdent x1;  end MPUT; 
  record MLABEL MLab x1;  end MLABEL; 
  record MHALT  end MHALT; 
end MCode; 
 
end MCode; 

3.3.2.5 Emit.mo 

package Emit 
/* Print out the MCode in textual assembly format 
 * Note: this is not really part of the specification of PAM semantics, 
 * rather it is low-level code generation. 
 */ 
import MCode; 
 
function emit_assembly  "Print an MCode instruction" 
  input MCodeList in_mcodelist; 
  output Boolean dummy; 
  type MCodeList = list<MCode.Mcode>; 
algorithm  
  dummy:= 
  match (in_mcodelist) 
    local 
      MCode.Mcode instr; 
      MCodeList rest; 
    case ({}) then true;  
    case (instr :: rest) 
      equation 
        emit_instr(instr); 
        emit_assembly(rest); then true; 
  end match; 
end emit_assembly; 
 
function emit_instr 
  input MCode.Mcode in_MCode; 
  output Boolean dummy; 
algorithm  
  dummy:= 
  match (in_MCode) 
    local 
      String op; 
      MCode.MBinOp mbinop; 
      MCode.MOperand mopr,mlab; 
      MCode.MCondJmp jmpop; 
    case (MCode.MB(mbinop,mopr)) " Print an MCode instruction " 
      equation 
        op = mbinop_to_str(mbinop); 
        emit_op_operand(op, mopr); then true; 
    case (MCode.MJ(jmpop,mlab)) 
      equation 
        op = mjmpop_to_str(jmpop); 
        emit_op_operand(op, mlab); then true; 
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    case (MCode.MJMP(mlab)) 
      equation 
        emit_op_operand("J", mlab); then true; 
    case (MCode.MLOAD(mopr)) 
      equation 
        emit_op_operand("LOAD", mopr); then true; 
    case (MCode.MSTO(mopr)) 
      equation 
        emit_op_operand("STO", mopr); then true; 
    case (MCode.MGET(mopr)) 
      equation 
        emit_op_operand("GET", mopr); then true; 
    case (MCode.MPUT(mopr)) 
      equation 
        emit_op_operand("PUT", mopr); then true; 
    case (MCode.MLABEL(mlab)) 
      equation 
        emit_moperand(mlab); 
        print("\tLAB\n"); then true; 
    case (MCode.MHALT()) 
      equation 
        print("\tHALT\n"); then true; 
  end match; 
end emit_instr; 
 
function emit_op_operand 
  input String opstr; 
  input MCode.MOperand mopr; 
algorithm  
  print("\t"); 
  print(opstr); 
  print("\t"); 
  emit_moperand(mopr); 
  print("\n"); 
end emit_op_operand; 
 
function emit_int 
  input Integer i; 
protected 
  String s; 
algorithm  
  s := int_string(i); 
  print(s); 
end emit_int; 
 
function emit_moperand 
  input MCode.MOperand in_moperand; 
  output Boolean dummy; 
algorithm  
  dummy:= 
  match (in_moperand) 
    local 
      String id; 
      Integer number,labno,tempnr; 
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    case (MCode.I(id)) 
      equation 
        print(id); then true; 
    case (MCode.N(number)) 
      equation 
        emit_int(number); then true; 
    case (MCode.L(labno)) 
      equation 
        print("L"); 
        emit_int(labno); then true; 
    case (MCode.T(tempnr)) 
      equation 
        print("T"); 
        emit_int(tempnr); then true; 
  end match; 
end emit_moperand; 
 
function mbinop_to_str 
  input MCode.MBinOp in_mbinop; 
  output String out_string; 
algorithm  
  out_string:= 
  match (in_mbinop) 
    case (MCode.MADD()) then "ADD";  
    case (MCode.MSUB()) then "SUB";  
    case (MCode.MMULT()) then "MULT";  
    case (MCode.MDIV()) then "DIV";  
  end match; 
end mbinop_to_str; 
 
function mjmpop_to_str 
  input MCode.MCondJmp in_mcondjmp; 
  output String out_string; 
algorithm  
  out_string:= 
  match (in_mcondjmp) 
    case (MCode.MJNP()) then "JNP";  
    case (MCode.MJP()) then "JP";  
    case (MCode.MJN()) then "JN";  
    case (MCode.MJNZ()) then "JNZ";  
    case (MCode.MJPZ()) then "JPZ";  
    case (MCode.MJZ()) then "JZ";  
  end match;  
end mjmpop_to_str; 
 
end Emit; 

3.3.2.6 Main.mo 

package Main 
  import Parse; 
  import Trans; 
  import Emit; 
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function main 
  "Parse and translate a PAM program into MCode, 
   then emit it as textual assembly code." 
protected  
  type MCodeList = list<MCode.Mcode>; 
  Absyn.Stmt program; 
  MCodeList mcode; 
algorithm  
  program := Parse.parse(); 
  mcode := Trans.trans_program(program); 
  Emit.emit_assembly(mcode); 
end main; 
 
end Main; 

3.3.2.7 Parse.mo 

package Parse 
  import Absyn; 
 
function parse 
  output Absyn.Stmt out_stmt; 
 
  external "C" ; 
end parse; 
 
end Parse; 
 

3.3.2.8 parse.c 

#include <stdio.h> 
#include <errno.h> 
#include <string.h> 
#include "rml.h" 
 
#ifndef RML_INSPECTBOX 
#define RML_INSPECTBOX(d,h,p) 
(RML_ISIMM((d)=(p))?0:(((h)=(void*/RML_GETHDR((p))),0)) 
  
#define rml_prim_deref_imm(x) x 
#endif 
 
void Parse_5finit(void) {} 
 
void *absyntree; 
 
RML_BEGIN_LABEL(Parse__parse) { 
    void *a0, *a0hdr; 
    RML_INSPECTBOX(a0, a0hdr, rmlA0); 
    if( a0hdr == RML_IMMEDIATE(RML_UNBOUNDHDR) ) 
        RML_TAILCALLK(rmlFC); 
    else { 
        if(yyparse()==0) { 
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            rmlA0 = absyntree; 
            RML_TAILCALLK(rmlSC); 
        } 
        else RML_TAILCALLK(rmlFC); 
    } 
} 
makefile 
# Makefile for building translational version of PAM 
# 
# ??Note: LDFLAGS, CFLAGS are non-portable for some Unix systems 
  
# VARIABLES 
  
SHELL = /bin/sh 
LDLIBS = -lrml -ll # Order is essential; we want librml main, not libll! 
LDFLAGS = -L$(RMLRUNTIME)/lib/plain/ 
CC = gcc 
CFLAGS = -I$(RMLRUNTIME)/include/plain/ -g -I.. 
MOMC = $(RMLRUNTIME)/bin/momc 
  
# EVERYTHING 
all:    pamtrans 
  
# EXECUTABLE 
  
COMMONOBJS=yacclib.o 
VSLOBJS=main.o lexer.o gram.o parse.o absyn.o mcode.o trans.o emit.o 
  
pamtrans: $(VSLOBJS) $(COMMONOBJS) 
 $(CC) $(LDFLAGS) $(VSLOBJS) $(COMMONOBJS) $(LDLIBS) -o pamtrans 
  
# MAIN ROUTINE WRITTEN IN Modelica NOW 
  
main.o: main.c 
main.c main.h: main.rml 
 $(MOMC) -c main.rml 
  
# YACCLIB 
  
yacclib.o:  yacclib.c 
 $(CC) $(CFLAGS) -c -o yacclib.o yacclib.c 
  
# LEXER 
  
lexer.o:  lexer.c gram.h absyn.h 
lexer.c:  lexer.l 
  
 lex -t lexer.l >lexer.c 
  
# PARSER 
  
gram.o:  gram.c gram.h 
gram.c gram.h:  gram.y 
 yacc -d gram.y 
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 mv y.tab.c gram.c 
 mv y.tab.h gram.h 
 
# INTERFACE TO SCANNER/PARSER (Modelica CALLING C) 
  
parse.o:  parse.c absyn.h 
  
# ABSTRACT SYNTAX 
  
absyn.o:  absyn.c 
absyn.c absyn.h:  absyn.rml 
 $(MOMC) -c absyn.rml 
  
# TRANSLATION 
  
trans.o:  trans.c  
trans.c trans.h:  trans.rml absyn.h  
 $(MOMC) -c trans.rml 
 
# EMISSION 
  
emit.o:  emit.c  
emit.c emit.h:  emit.rml 
 $(MOMC) -c emit.rml 
 
# INTERMEDIATE FORM 
  
mcode.o:  mcode.c  
mcode.c mcode.h:  mcode.rml 
 $(MOMC) -c mcode.rml 
 
  
# AUX 
  
clean: 
 $(RM) pamtrans $(COMMONOBJS) $(VSLOBJS) main.c main.h lexer.c parser.c 
parser.h absyn.c absyn.h env.c env.h eval.c eval.h *~#include <stdlib.h> 

3.4 Translational Semantics for Symbolic Differentiation 

Symbolic differentiation of expressions is a translational mapping that transforms expressions into 
differentiated expressions. 
uniontype Exp 
  record RCONST Real x1; end RCONST; 
  record PLUS  Exp x1; Exp x2; end PLUS; 
  record SUB   Exp x1; Exp x2; end SUB; 
  record MUL   Exp x1; Exp x2; end MUL; 
  record DIV   Exp x1; Exp x2; end DIV; 
  record NEG   Exp x1;         end NEG; 
  record IDENT String name; end IDENT; 
  record CALL  Exp id; list<Exp> args;  end CALL; 
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  record AND   Exp x1; Exp x2; end AND; 
  record OR    Exp x1; Exp x2; end OR; 
  record LESS  Exp x1; Exp x2; end LESS; 
  record GREATER Exp x1; Exp x2;  end GREATER; 
end Exp; 
 

An example function difft performs symbolic differentiation of the expression expr with respect to 
the variable time, returning a differentiated expression. In the patterns, _ underscore is a reserved word 
that can be used as a placeholder instead of a pattern variable when the particular value in that place is 
not needed later as a variable value. The as-construct: id as IDENT(_) in the third of-branch is used 
to bind the additional identifier id to the relevant expression. 

We can recognize the following well-known derivative rules represented in the match-expression 
code: 

• The time-derivative of a constant (RCONST()) is zero. 
• The time-derivative of the time variable is one. 
• The time-derivative of a time dependent variable id is der(id), but is zero if the variable is not 

time dependent, i.e., not in the list tvars/timevars. 
• The time-derivative of the sum (add(e1,e2)) of two expressions is the sum of the expression 

derivatives. 
• The time-derivative of sin(x) is cos(x)*x' if x is a function of time, and x' its time derivative. 
• etc... 

We have excluded some operators in the difft example. 
 
function difft "Symbolic differentiation of expression with respect to time" 
  input  Exp expr; 
  input  list<IDENT> timevars; 
  output Exp diffexpr; 
algorithm 
 diffexpr := 
  match (expr, timevars) 
    local Exp e1prim,e2prim,tvars; 
          Exp e1,e2,id; 
    case(RCONST(_), _) then RCONST(0.0);      // der of constant 
    case(IDENT("time"), _) then RCONST(1.0);  // der of time variable 
    case difft(id as IDENT(_), tvars) then    // der of any variable id 
      if list_member(id,tvars) then 
        CALL(IDENT("der"),list(id)) 
      else 
        RCONST(0.0); 

     case (ADD(e1,e2),tvars)                   // (e1+e2)’ => e1'+e2' 
      equation  
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars);  then ADD(e1prim,e2prim); 
    case (SUB(e1,e2),tvars)  
      equation   
       e1prim = difft(e1,tvars); 
       e2prim = difft(e2,tvars);  
      then SUB(e1prim,e2prim); 
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    case (MUL(e1,e2),tvars)                   // (e1*e2)’ => e1'*e2 + e1*e2' 
      equation 
       e1prim = difft(e1,tvars); 
       e2prim = difft(e2,tvars);  
      then PLUS(MUL(e1prim,e2),MUL(e1,e2prim)); 

    case (DIV(e1,e2),tvars)            // (e1/e2)’ => (e1'*e2 - e1*e2')/e2*e2 
      equation 
        e1prim = difft(e1,tvars); 
        e2prim = difft(e2,tvars);  
      then DIV(SUB(MUL(e1prim,e2),MUL(e1,e2prim)), MUL(e2,e2)); 

    case (NEG(e1),tvars)                       // (-e1)' => -e1' 
      equation 
        e1prim = difft(e1,tvars);  then NEG(e1prim); 
   case CALL(IDENT("sin"),list(e1)),tvars)    // sin(e1)' => cos(e1)*e1' 
      equation  
        e1prim = difft(e1,tvars); 
     then MUL(CALL(IDENT("cos"),list(e1)),e1prim); 

    case (AND(e1,e2),tvars)                    // (e1 and e2)’ => e1'and e2'  
      equation 
        e1prim = difft(e1,tvars); 
        e2prim = difft(e2,tvars); 
      then AND(e1prim,e2prim); 
    case (OR(e1,e2),tvars)                    // (e1 or e2)’ => e1' or e2' 
      equation 
        e1prim = difft(e1,tvars); 
        e2prim = difft(e2,tvars); 
      then OR(e1prim,e2prim); 

    case (LESS(e1,e2),tvars)                   // (e1<e2)’ => e1'<e2'  
      equation 
        e1prim = difft(e1,tvars); 
        e2prim = difft(e2,tvars); 
      then LESS(e1prim,e2prim); 

    case (GREATER(e1,e2),tvars)                // (e1>e2)’ => e1'>e2'  
      equation 
        e1prim = difft(e1,tvars); 
        e2prim = difft(e2,tvars); 
      then GREATER(e1prim,e2prim); 

// etc... 
  end match; 
 
end difft; 

3.5 Summary 

This chapter introduced the concept of translational semantics, which was applied to the small PAM 
language. A translational semantics for translating PAM to a simple machine language was developed. 
The machine has only one register, and includes arithmetic instructions and conditional and 
unconditional jump instructions. A structured representation of the instruction set, called MCode, was 
defined. Much of the translation is expressed through parameterized code templates within some of the 
Meta-Modelica rules. 
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The reader may have noted that we used many append instructions in the semantics, since the 
sequence of output code instructions is represented as a linked list. This can be avoided by an alternative 
way of representing the output code as an ordered sequence of instructions. For example, we can use a 
binary tree built by a binary sequencing operator (e.g. MSEQ), which can be obtained by for example 
adding an MSEQ of MCode * MCode operator declaration to the MCode union type. 

We have also shown a small set of translation rules for symbolic differentiation of mathematical 
expressions. 

 
(BRK) 
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Chapter 4  
 
Getting Started – Practical Details  
(Needs Update) 

  

This chapter provides information about a number of technical details that the reader will need to know 
in order to get started using the Meta-Modelica momc generator system. This includes information about 
where the momc system resides, how to invoke the momc program generator, how to compile and link 
generated code, how to run the Meta-Modelica debugger, etc.  

In order to keep the presentation concise, we return to the simplest of all language examples 
described so far—the expression language Exp1 presented at the beginning of Chapter 2. We will show 
how to build and run a working calculator that can evaluate constant arithmetic expressions expressed in 
the Exp1 language. We will also describe how to build an interpreter for a larger language—the 
PAMDECL language described in Section 2.7. 

4.1 Path and Locations of Needed Files 

Before one can use the Meta-Modelica system a few changes in the environment need to be done. Note 
that these changes are non portable and will only work at the Department of Computer and Information 
Science at Linköping University, Sweden. 

In order to get the correct settings for the Meta-Modelica environment one need to add some 
modules. 
module initadd labs/pelab pelab-before pelab-pub-before rml   (?? Sun Solaris 
only) 

The module labs/pelab sets up the module path. In order to run an emacs that supports the Modelica-
mode ??? is added. The module momc??? sets up the Modelica environment. Two environment variables 
are set by the rml module: the variable ???RMLHOME, which is set to the directory where the complete 
system of Meta-Modelica resides and RMLRUNTIME which is set to the directory of the Meta-Modelica 
runtime files (bin, lib and include) for sparc solaris2 is located. 
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To set import the Meta-Modelica emacs mode rml-mode write the following as the first thing in your 
.emacs file:  (?? Sun Solaris??) 
(setq load-path (cons 
   (expand-file-name (concat (getenv "RMLHOME") "/elisp")) 
   load-path)) 

The tools lex and yacc can be found in /user/ccs/bin, but if the paths have been set up correctly one 
need not worry about this. 

The reader may copy the example files from the /home/pelab/pub/pkg/rml/current/ 
bookexamples directory or type them in from the examples in this chapter. Preferrably copy the whole 
directory with the command: 
cp -r /home/pelab/pub/pkg/rml/current/bookexamples/ ./myrmlexamples 

4.2 The Exp1 Calculator Again 

4.2.1 Running the Exp1 Calculator 

Before building the Exp1 calculator it is instructive to show how it can be used. The executable has been 
named calc, and is invoked by just typing calc at the Unix command prompt (sen20%10). Input typed by 
the user is shown in boldface. 

First type calc to invoke the calculator, which responds with some trace printout to show that it has 
initialized and has started parsing text read from the command line. 

Then type the expression to be evaluated (here: -5+10-2), followed by pushing the Enter key and 
typing ctrl-D (^D). The ctrl-D is needed to close the input file (which here is a “terminal”), since 
the Yacc-generated parser currently expects to read a whole input file before completing the parsing. 
Finally a trace printout ([Calc]) from the evaluator is printed, together with the result (3) of evaluating 
the expression. (?? this description is only valid for a Unix or Linux shell??) 
sen20%10 calc 
[Init] 
[Parse] 
-5+10-2  
^D[Eval] 

Result: 3 

The following example shows how the calculator reacts when it is fed an expression which does not 
belong to the Exp1 expression language. Remember that this language only allows simple arithmetic 
expressions not including variables or symbolic constants. 
sen20%11 calc 
[Init] 
[Parse] 
hej+5 
Syntax error at or near line 1. 
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Parsing failed! 

4.2.2 Building the Exp1 Calculator 

Before building the Exp1 calculator, we need to locate the Meta-Modelica, Lex and Yacc tools. It is 
useful for the reader who wishes to test building and running the calculator to create his/her own work 
directory (e.g. called myexp1).  

4.2.2.1 Source Files to be Provided 

Three files are needed to specify all properties (syntax and semantics) of the Exp1 language. One 
additional file defines the main program. 

• The file exp1.rml contains an interpretive style Meta-Modelica specification and abstract 
syntax of the Exp1 language in Meta-Modelica form, here within the single Meta-Modelica 
package Exp1. 

• The file parser.y contains the grammar of the Exp1 language in Yacc-style BNF form. 
• The file lexer.l specifies the lexical syntax of tokens in the Exp1 language in Lex-style regular 

expression form. 
• In addition, a file main.c defines the C main program that calls initialization routines, the  

generated scanner, parser and evaluator, and prints the evaluated result. 

4.2.2.2 Generated Source Files 

The following five files are generated by the Meta-Modelica system and the Yacc and Lex tools, 
respectively: 

• The files exp1.c and exp1.h are generated by the momc translator. The generated C code that 
performs evaluation of Exp1 expressions can be found in exp1.c, whereas exp1.h contains 
tree-building macros to be called by the parser to build abstract syntax trees of input expressions 
that are passed to the evaluator. 

• The files parser.c and parser.h are generated by Yacc, and contain a parser for Exp1 and 
token definitions, respectively. 

• The file lexer.c is generated by Lex, and contains a scanner for Exp1. 

4.2.2.3 Library File(s) 

The following system specific library files and header files are also needed. (?? Unix only??) 

• The files yacclib.c and yacclib.h contain some basic primitive routines needed in the 
course of building abstract syntax tree nodes during parsing. Most of these routines are not called 
directly by the user. Instead they are typically invoked via the tree building macros defined in 
exp1.h. Some routines (e.g. mk_icon, mk_rcon, mk_scon, mk_nil) for building Modelica-
type integer, real and string constants (and nil), are also defined in yacclib.c. 
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• The file rml.h contains definitions and macros for calling the Meta-Modelica runtime system 
and predefined functions (located in $RMLRUNTIME/include/plain). 

• The file librml.a is a library of all Meta-Modelica runtime system routines and predefined 
functions (located in $RMLRUNTIME/lib/plain). 

4.2.2.4 Makefile for Building the Exp1 Calculator 

Building the Exp1 calculator from the needed components is conveniently described by a Makefile, 
such as the one below. The gnu C compiler (gcc) is used here. Library files and header files are found in 
$RMLRUNTIME/{include,lib} if not available in the current directory. The usual make dependencies 
are specified. The command: 
make calc 

will build the binary executable of the calculator (called calc) whereas the command: 
make clean 

will remove all generated files, object files and the binary executable file. 
# Makefile for building the Exp1 calculator 
# 
# ??Note: LDFLAGS, CFLAGS are non-portable for some Unix systems 
 
# VARIABLES 
 
SHELL = /bin/sh 
LDLIBS = -ll -lrml 
LDFLAGS = -L$(RMLRUNTIME)/lib/plain/ 
CC = gcc 
CFLAGS = -I$(RMLRUNTIME)/include/plain/ -g 
 
  
 
# EVERYTHING 
all: calc 
 
 
# MAIN PROGRAM 
 
CALCOBJS= main.o lexer.o parser.o yacclib.o exp1.o 
calc: $(CALCOBJS) 
 $(CC) $(LDFLAGS) $(CALCOBJS) $(LDLIBS) -o calc 
 
main.o:  main.c exp1.h 
 
# LEXER 
 
lexer.o:  lexer.c parser.h exp1.h 
lexer.c:  lexer.l 
 lex -t lexer.l >lexer.c 
 
# PARSER 
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parser.o:  parser.c exp1.h 
parser.c parser.h:  parser.y 
 yacc -d parser.y 
 mv y.tab.c parser.c 
 mv y.tab.h parser.h 
 
 
# ABSTRACT SYNTAX and EVALUATION 
 
exp1.o:  exp1.c 
exp1.c exp1.h: exp1.rml 
 momc -c exp1.rml 
 
# AUX 
 
clean: 
 -rm calc $(CALCOBJS) lexer.c parser.c parser.h exp1.c exp1.h 

4.2.3 Source Files for the Exp1 Calculator 

Below we present the three source files lexer.l, parser.y, and exp1.rml, needed to specify the 
syntax and semantics of the Exp1 language, as well as the main program file main.c. 

4.2.3.1 Lexical Syntax: lexer.l 

The file lexer.l defines the lexical syntax of the Exp1 language, identical to what was presented in 
Section 2.1.1, but augmented by mentioning necessary include files.  

The global variable yylval is used to transmit the values of tokens that have values—such as integer 
constants (T_INTCONST)—to the parser. 

Character sequences including new line (\n) which cannot give rise to legal tokens in Exp1 are taken 
care of by junk, which is just skipped. 

The routine exp1__INTconst in exp1.h builds abstract syntax integer leaf nodes and is generated 
by momc when processing the abstract syntax definitions in exp1.rml.  

The routine mk_icon (from yacclib.h) builds Meta-Modelica compatible integer constants that 
can be passed to Meta-Modelica constructors such as exp1.INTconst, here callable as 
exp1__INTconst. 
/* file lexer.l */ 
%{ 
#include "parser.h" 
#include "yacclib.h" 
#include "rml.h" 
#include "exp1.h" 
  
typedef void *rml_t; 
extern rml_t yylval; 
  
rml_t absyn_integer(char *s); 
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%} 
  
digit           ("0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9") 
digits          {digit}+ 
junk            .|\n 
  
%% 
  
{digits}     { yylval=absyn_integer(yytext); return T_INTCONST;} 
"+"          return T_ADD; 
"-"          return T_SUB; 
"*"          return T_MUL; 
"/"          return T_DIV; 
"("          return T_LPAREN; 
")"          return T_RPAREN; 
{junk}+         ; 
  
%% 
  
rml_t absyn_integer(char *s) 
{ 
  return (rml_t) exp1__INTconst(mk_icon(atoi(s))); 
} 

4.2.3.2 Grammar: parser.y 

The grammar file parser.y follows below. The grammar rules are identical to those presented in 
Section 2.1.1. However, some include files are mentioned here and tree-building calls have been inserted 
at the parser rules in order to build the abstract syntax tree during parsing. 

The tree building routines exp1__ADDop, exp1__SUBop, exp1__MULop, exp1__DIVop, 
exp1__NEGop, and exp1__INTconst are generated by momc from the definition of the Exp1 abstract 
syntax in the module exp1 that can be found in the file exp1.rml. The definition of these can be found 
in exp1.h. Leaf nodes such as INTconst are returned by the scanner. 
/* file  parser.y */ 
%{ 
#include <stdio.h> 
#include "yacclib.h" 
#include "rml.h" 
#include "exp1.h" 
  
typedef void *rml_t; 
#define YYSTYPE rml_t 
extern rml_t absyntree; 
  
%} 
  
%token T_INTCONST 
  
%token T_LPAREN T_RPAREN 
%token T_ADD 
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%token T_SUB 
%token T_MUL 
%token T_DIV 
%token T_GARBAGE 
  
%% 
  
/* Yacc BNF Syntax of the expression language Exp1 */ 
 
program 
                 :  expression 
                    { absyntree = $1; } 
 
expression       :  term 
                 |  expression  T_ADD  term 
                    { $$ = exp1__ADDop($1,$3);} 
                 |  expression  T_SUB  term 
                    { $$ = exp1__SUBop($1,$3);} 
 
term             :  u_element 
                 |  term  T_MUL  u_element 
                    { $$ = exp1__MULop($1,$3);} 
                 |  term  T_DIV  u_element 
                    { $$ = exp1__DIVop($1,$3);} 
 
u_element        :  element 
                 |  T_SUB  element 
                    { $$ = exp1__NEGop($2);} 
 
element          :  T_INTCONST 
                 |  T_LPAREN  expression  T_RPAREN 
                    { $$ = $2;} 

4.2.3.3 Semantics: exp1.rml 

The abstract syntax and semantics of the small expression language Exp1 appears below, identical to the 
definitions in Section 2.1.2 and Section 2.1.4. Both have been placed in the Meta-Modelica package 
Exp1. For larger specifications it is customary to place the definition of abstract syntax in a module of its 
own. Note that the abstract syntax specification has been placed in the interface sections since the 
constructors need to be exported to be callable by the parser. 
/* file Exp1.mo */ 
 
package Exp1 
  

/* Abstract syntax of the language Exp1 as defined using Modelica */ 

uniontype Exp   
  record  INTconst Integer x1;     end INTconst; 
  record  ADDop  Exp x1;  Exp x2;  end ADDop; 
  record  SUBop  Exp x1;  Exp x2;  end SUBop; 
  record  MULop  Exp x1;  Exp x2;  end MULop; 
  record  DIVop  Exp x1;  Exp x2;  end DIVop; 
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  record  NEGop  Exp x1;           end NEGop; 
end Exp; 
  

 
 /* Evaluation semantics  of Exp1 */ 
  

function eval 
  input  Exp     in_value1; 
  output Integer out_value1; 
algorithm 
 out_value1 := 
  match in_value1 
    local Integer v1,v2; 
          Exp     e1,e2; 
    case INTconst(v1) then v1; 
 
    case ADDop(e1,e2) equation  
      v1 = eval(e1;  v2 = eval(e2; then v1+v2; 

 
    case SUBop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); then v1-v2; 
 
    case MULop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); then v1*v2; 
 
    case DIVop(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); then v1/v2; 
 
    case NEGop(e1) equation 
      v1 = eval(e1);  then -v1; 
   end match; 
 
end eval; 

4.2.3.4 main.c 

See Section 4.2.4 for more information. 

4.2.4 Calling Meta-Modelica from C — main.c (?? To be updated) 

The main program in a Meta-Modelica-based application can be written either in C or in Meta-Modelica 
itself. Here we present an example where the main program is in C. 

The main program ties the different modules together and initializes the Meta-Modelica runtime 
system. It may also take care of possible command line arguments if the generated application needs 
those. 

In this particular program, the procedure exp1_5finit is first called to in order to initialize the 
Meta-Modelica runtime system. In fact, for each module M written in Meta-Modelica, the C main 
program must call M_5finit(); for initialization. Then the printouts [Init] and [Parse] are 
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produced, after which the user is expected to type in an expression, which is parsed and scanned by 
yyparse. The abstract syntax tree is built by the parser and placed into the global variable absyntree. 

The parameter passing facilities between C code and Meta-Modelica functions are still a bit 
primitive. The abstract syntax tree need to be passed to the Modelica function Exp1.eval for 
evaluation, which is the main functionality in our calculator. To do this, the tree is placed into the global 
location rml_state_ARGS[0] which transfers the first argument to Exp1.eval through the call 
rml_prim_once(RML_LABPTR(exp1__eval)) which returns a non-zero value if the evaluation is 
successful. The integer result of the evaluation is placed in the global variable rml_state_ARGS[0]. 
Note that the result must be converted from the Meta-Modelica tagged integer representation to the 
ordinary C integer representation before being printed. This conversion is handled by 
RML_UNTAGFIXNUM. 

The special Meta-Modelica runtime system procedures and locations referred to, such as 
rml_prim_once, rml_state_ARGS, RML_LABPTR, etc., are all declared in the include file rml.h. The 
file main.c follows below. 
/* file main.c */  
/* Main program for the small exp1 evaluator */ 
  
#include <stdio.h> 
#include <rml.h> 
#include "exp1.h" 
  
typedef void * rml_t; 
rml_t absyntree; 
  
yyerror(char *s) 
{ 
  extern int yylineno; 
  fprintf(stderr,"Syntax error at or near line %d.\n",yylineno); 
} 
  
main() 
{ 
  int res; 
  
  /* Initialize the Modelica modules */ 
  
  printf("[Init]\n"); 
  exp1_5finit(); 
  
  /* Parse the input into an abstract syntax tree (in Modelica form) 
     using yacc and lex */ 
  
  printf("[Parse]\n"); 
  if (yyparse() !=0) 
  { 
    fprintf(stderr,"Parsing failed!\n"); 
    exit(1); 
  } 
  
  /* Evalute it using the Modelica relation "eval" */ 
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  printf("[Eval]\n"); 
  rml_state_ARGS[0]= absyntree; 
  if (!rml_prim_once(RML_LABPTR(exp1__eval)) ) 
  { 
    fprintf(stderr,"Evaluation failed!\n"); 
    exit(2); 
  } 
  
  /* Present result */ 
  
  res=RML_UNTAGFIXNUM(rml_state_ARGS[0]); 
  printf("Result: %d\n", res); 
} 

4.2.5 Generated Files and Library Files 

We have already mentioned the five generated files scanner.c, parser.h, parser.c, exp1.h, and 
exp1.c in Section 4.2.2.2. The Meta-Modelica system generates exp1.h and exp1.c. Here we will 
present the header file exp1.h in more detail. The file exp1.c contains optimized C implementations of 
the Exp1 Meta-Modelica functions, which is rather unreadable C code that is not so interesting to look 
at.  

Additionally, we describe the header file yacclib.h of the library file yacclib.c, which contains 
low level routines necessary for building and printing abstract syntax trees. 

4.2.5.1 Exp1.h 

The header file exp1.h contains declarations that makes it possible to call entities declared in the 
interface section of the Exp1 Modelica module. These include the Exp1.eval function referred to 
through the label exp1__eval, and abstract syntax tree constructors Exp1.NEGop, exp1.DIVop, etc. 
which can be called through the macros exp1__NEGop, exp1__DIVop, etc. respectively. 
/* interface exp1 */ 
extern void exp1_5finit(); 
extern RML_FORWARD_LABEL(exp1__eval); 
#define exp1__NEGop_3dBOX1 5 
#define exp1__NEGop(X1) (mk_box1(5,(X1))) 
#define exp1__DIVop_3dBOX2 4 
#define exp1__DIVop(X1,X2) (mk_box2(4,(X1),(X2))) 
#define exp1__MULop_3dBOX2 3 
#define exp1__MULop(X1,X2) (mk_box2(3,(X1),(X2))) 
#define exp1__SUBop_3dBOX2 2 
#define exp1__SUBop(X1,X2) (mk_box2(2,(X1),(X2))) 
#define exp1__ADDop_3dBOX2 1 
#define exp1__ADDop(X1,X2) (mk_box2(1,(X1),(X2))) 
#define exp1__INTconst_3dBOX1 0 
#define exp1__INTconst(X1) (mk_box1(0,(X1))) 
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4.2.5.2 Yacclib.h 

The header file yacclib.h declares a number of primitive routines which are primarily used in the 
course of building abstract syntax trees during parsing.  

The routines mk_icon, mk_rcon, mk_scon create Meta-Modelica representations for integers, real 
numbers and strings, respectively, whereas print_icon, print_rcon, and print_scon can print 
Modelica integers, real numbers and strings.  

List construction is provided by mk_cons which creates a list cell and mk_nil which creates a nil 
pointer to represent the end of a list. The mk_none and mk_some constructors are used for the builtin 
Meta-Modelica Option type which is convenient for representing optional syntactic constructs. 

Finally, the routines mk_box0 to mk_box5 construct abstract syntax tree nodes of arity 0 to 5. These 
should not be called directly, however. Instead use the abstract syntax building routines, one for each 
node type, which are declared in the file exp1.h. 
/* yacclib.h */ 
  
extern int yylineno;                    /* generated by lex */ 
  
extern char *yytok2str(int token);      /* uses yytoks[] from yacc + -DYYDEBUG * 
/ 
  
extern void error(const char *fmt, ...); 
  
extern void *alloc_bytes(unsigned nbytes); 
extern void *alloc_words(unsigned nwords); 
  
extern void print_icon(FILE*, void*/; 
extern void print_rcon(FILE*, void*/; 
extern void print_scon(FILE*, void*/; 
  
extern void *mk_icon(int); 
  
extern void *mk_rcon(double); 
extern void *mk_scon(char*/; 
extern void *mk_nil(void); 
extern void *mk_cons(void*, void*/; 
extern void *mk_none(void); 
extern void *mk_some(void*/; 
extern void *mk_box0(unsigned ctor); 
extern void *mk_box1(unsigned ctor, void*/; 
extern void *mk_box2(unsigned ctor, void*, void*/; 
extern void *mk_box3(unsigned ctor, void*, void*, void*/; 
extern void *mk_box4(unsigned ctor, void*, void*, void*, void*/; 
extern void *mk_box5(unsigned ctor, void*, void*, void*, void*, void*/; 
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4.3 An Evaluator for PAMDECL 

4.3.1 Running the PAMDECL Evaluator 

The executable is named pamdecl, and is invoked by typing pamdecl at the Unix prompt (sen20%10). 
Input typed by the user is shown in boldface. 
sen20%10 cat|pamdecl 

program 
  a: integer; 
  foo: real; 
body 
  a:=17; 
  foo:=a*2+8; 
  write foo; 
end program 
^D 42.0 

Supplied with PAMDECL are a number of test programs located in subdirectory prg/. To run prg5 
type the following: (??only for Unix) 
sen20%11 pamdecl > prg/prg5 

1.01 
1.0201 
1.04060401 
1.08285670562808 
1.1725786449237 
1.3749406785311 
1.89046186947955 
3.57384607995613 
12.7723758032178 
163.133583658624 
26612.5661173053 
708228675.347948 

4.3.2 Building the PAMDECL Evaluator 

The following files are needed for building PAMDECL: absyn.rml (page 55), env.rml (page 55), 
eval.rml (page 56), lexer.l, parser.y, main.rml, scanparse.rml, scanparse.c, yacclib.c, 
yacclib.h and makefile. 

The files can be copied from /home/pelab/pub/pkg/rml/current/bookexamples/ 
examples/pamdecl (??update location) or typed from the above pages and Section 4.3.3 below. 

The executable is built by typing: 
sen20%12 make pamdecl 
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4.3.3 Source Files for PAMDECL Evaluator 

For Absyn.mo, Env.mo, and Eval.mo see Section 2.7. 

4.3.3.1 lexer.l 

%{ 
#include <stdlib.h> 
#include "parser.h" 
#include "rml.h" 
#include "yacclib.h" 
  
#include "absyn.h" 
  
typedef void *rml_t; 
extern rml_t yylval; 
  
int absyn_integer(char *s); 
int absyn_ident_or_keyword(char *s); 
  
%} 
  
digit           [0-9] 
digits          {digit}+ 
letter          [A-Za-z_] 
  
intcon          {digits} 
  
dot             "." 
sign            [+-] 
exponent        ([eE]{sign}?{digits}) 
realcondot      {digits}{dot}{digits}{exponent}? 
realconexp      {digits}({dot}{digits})?{exponent} 
realcon         {realcondot}|{realconexp} 
  
ident           {letter}({letter}|{digit})* 
ws              [ \t\n] 
junk            .|\n 
  
%% 
  
"("             return T_LPAREN; 
")"             return T_RPAREN; 
"+"             return T_PLUS; 
"-"             return T_MINUS; 
"*"             return T_TIMES; 
"/"             return T_DIVIDE; 
":="            return T_ASSIGN; 
";"             return T_SEMICOLON; 
":"             return T_COLON; 
"<"             return T_LT; 
"<="            return T_LE; 
">"             return T_GT; 
">="            return T_GE; 
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"<>"            return T_NE; 
"="             return T_EQ; 
  
{intcon}        { return absyn_integer(yytext);} 
{realcon}       { return absyn_real(yytext);} 
{ident}         { return absyn_ident_or_keyword(yytext); } 
  
{ws}+           ; 
{junk}+         return T_GARBAGE; 
  
%% 
  
/* Make an Modelica integer from a C string representation (decimal), 
   box it for our abstract syntax, put in yylval and return constant token. */ 
  
int absyn_integer(char *s) 
{ 
  yylval=(rml_t) Absyn__INTCONST(mk_icon(atoi(s))); 
  return T_CONST_INT; 
  
} 
  
/* Make an Modelica real from a C string representation, 
   box it for our abstract syntax, put in yylval and return constant token. */ 
  
int absyn_real(char *s) 
{ 
  yylval=(rml_t) Absyn__REALCONST(mk_rcon(atof(s))); 
  return T_CONST_REAL; 
} 
  
/* Make an Modelica Ident or a keyword token from a C string */ 
  
static struct keyword_s 
{ 
  char *name; 
  int token; 
} kw[] = 
{ 
  {"body",      T_BODY}, 
  {"do",        T_DO}, 
  {"else",      T_ELSE}, 
  {"end",       T_END}, 
  {"if",        T_IF}, 
  {"program",   T_PROGRAM}, 
  {"then",      T_THEN}, 
  {"while",     T_WHILE}, 
  {"write",     T_WRITE}, 
}; 
  
int absyn_ident_or_keyword(char *s) 
{ 
  int low = 0; 
  int high = (sizeof kw) / sizeof(struct keyword_s) - 1; 
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  while( low <= high ) { 
    int mid = (low + high) / 2; 
    int cmp = strcmp(kw[mid].name, yytext); 
    if( cmp == 0 ) 
    { 
      return kw[mid].token; 
    } 
    else if( cmp < 0 ) 
      low = mid + 1; 
    else 
      high = mid - 1; 
  } 
  yylval = (rml_t) mk_scon(s); 
  return T_IDENT; 
} 

4.3.3.2 parser.y 

%{ 
#include <stdio.h> 
#include "yacclib.h" 
#include "absyn.h" 
  
typedef void *rml_t; 
#define YYSTYPE rml_t 
extern rml_t absyntree; 
  
  
%} 
  
%token T_PROGRAM 
%token T_BODY 
%token T_END 
%token T_IF 
%token T_THEN 
%token T_ELSE 
%token T_WHILE 
%token T_DO 
  
%token T_WRITE 
%token T_ASSIGN 
%token T_SEMICOLON 
%token T_COLON 
  
%token T_CONST_INT 
%token T_CONST_REAL 
%token T_CONST_BOOL 
%token T_IDENT 
  
%token T_LPAREN T_RPAREN 
  
%nonassoc T_LT T_LE T_GT T_GE T_NE T_EQ 
%left T_PLUS  T_MINUS 
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%left T_TIMES T_DIVIDE 
%left T_UMINUS 
  
%token T_GARBAGE 
  
%% 
  
program 
        : T_PROGRAM decl_list T_BODY stmt_list T_END T_PROGRAM 
        { absyntree = Absyn__PROG($2,$4); } 
  
decl_list 
        :  
            { $$ = mk_nil();} 
        | decl decl_list 
            { $$ = mk_cons($1,$2); } 
  
decl 
        : T_IDENT T_COLON T_IDENT T_SEMICOLON 
        { $$ = Absyn__NAMEDECL($1,$3);} 
  
stmt_list 
        :  
            { $$ = mk_nil();} 
        | stmt stmt_list 
            { $$ = mk_cons($1,$2); } 
  
stmt 
        : simple_stmt T_SEMICOLON 
        | combined_stmt 
  
simple_stmt 
        : assign_stmt 
        | write_stmt 
        | noop_stmt 
  
  
combined_stmt 
        : if_stmt 
        | while_stmt 
  
assign_stmt 
: T_IDENT T_ASSIGN expr 
            { $$ = Absyn__ASSIGN($1,$3);} 
  
write_stmt 
        : T_WRITE expr 
            { $$ = Absyn__WRITE($2);} 
  
noop_stmt 
        : 
            { $$ = Absyn__NOOP;} 
  
if_stmt 
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        : T_IF expr T_THEN stmt_list T_ELSE stmt_list T_END T_IF 
            { $$ = Absyn__IF($2,$4,$6); } 
        | T_IF expr T_THEN stmt_list T_END T_IF 
            { $$ = Absyn__IF($2,$4,mk_cons(Absyn__NOOP,mk_nil())); } 
  
while_stmt 
        : T_WHILE expr T_DO stmt_list T_END T_WHILE 
            { $$ = Absyn__WHILE($2,$4); } 
  
expr 
        : T_CONST_INT 
        | T_CONST_REAL 
        | T_CONST_BOOL 
        | T_LPAREN expr T_RPAREN 
            { $$ = $2;} 
        | T_IDENT 
            { $$ = Absyn__VARIABLE($1);} 
        | expr_bin 
        | expr_un 
        | expr_rel 
  
expr_bin 
        : expr T_PLUS expr 
            { $$ = Absyn__BINARY($1, Absyn__ADD,$3);} 
        | expr T_MINUS expr 
            { $$ = Absyn__BINARY($1, Absyn__SUB,$3);} 
        | expr T_TIMES expr 
            { $$ = Absyn__BINARY($1, Absyn__MUL,$3);} 
        | expr T_DIVIDE expr 
            { $$ = Absyn__BINARY($1, Absyn__DIV,$3);} 
         
expr_un 
        : T_MINUS expr %prec T_UMINUS 
            { $$ = Absyn__UNARY(Absyn__ADD,$2);} 
  
expr_rel 
        : expr T_LT expr 
            { $$ = Absyn__RELATION($1,Absyn__LT,$3);} 
        | expr T_LE expr 
            { $$ = Absyn__RELATION($1,Absyn__LE,$3);} 
        | expr T_GT expr 
            { $$ = Absyn__RELATION($1,Absyn__GT,$3);} 
        | expr T_GE expr 
  
            { $$ = Absyn__RELATION($1,Absyn__GE,$3);} 
        | expr T_NE expr 
            { $$ = Absyn__RELATION($1,Absyn__NE,$3);} 
        | expr T_EQ expr 
            { $$ = Absyn__RELATION($1,Absyn__EQ,$3);} 
  
%% 
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4.3.3.3 Main 

package Main 
  import PamDecl.ScanParse; 
  import PamDecl.Eval; 
 
type StringList = list<String>; 
 
function mainprogram 
  input StringList; 
  output Boolean dummy; 
algorithm 
  ast := ScanParse.scanparse(); 
  ast := Eval.evalprog(ast); 
  dummy := true; //?? should really call mainprogram recursively to have a loop 
end mainprogram; 
 
end Main; 

4.3.3.4 ScanParse 

package ScanParse 
  import PamDecl.Absyn; 
 
function scanparse 
  output Absyn.Prog ast; 
external "C"; 
 
end ScanParse; 
 

4.3.3.5 scanparse.c 

/* Glue to call parser (and thus scanner) from Modelica */ 
  
#include <stdio.h> 
#include "rml.h" 
  
/* Provide error reporting function for yacc */ 
  
yyerror(char *s) 
{ 
  extern int yylineno; 
  fprintf(stderr,"Error: bad syntax on line %d.\n",yylineno); 
} 
  
/* The yacc parser will deposit the syntax tree here */ 
  
void *absyntree; 
  
/* No init for this module */ 
  
void ScanParse_5finit(void) {} 
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/* The glue function */ 
  
RML_BEGIN_LABEL(ScanParse__scanparse) 
{ 
  if (yyparse() !=0) 
  
  { 
    fprintf(stderr,"Fatal: parsing failed!\n"); 
    RML_TAILCALLK(rmlFC); 
  } 
  
  rmlA0=absyntree; 
  RML_TAILCALLK(rmlSC); 
} 
RML_END_LABEL 

4.3.3.6 makefile 

# Makefile for building PAMDECL 
# 
# ??Note: LDFLAGS, CFLAGS are non-portable for some Unix systems 
  
# VARIABLES 
  
SHELL = /bin/sh 
LDLIBS = -lrml -ll # Order is essential; we want librml main, not libll! 
LDFLAGS = -L$(RMLRUNTIME)/lib/plain/ 
CC = gcc 
CFLAGS = -I$(RMLRUNTIME)/include/plain/ -g -I.. 
  
# EVERYTHING 
all:    pamdecl 
  
# EXECUTABLE 
  
COMMONOBJS=yacclib.o 
VSLOBJS=main.o lexer.o parser.o scanparse.o absyn.o env.o eval.o 
  
pamdecl: $(VSLOBJS) $(COMMONOBJS) 
        $(CC) $(LDFLAGS) $(VSLOBJS) $(COMMONOBJS) $(LDLIBS) -o pamdecl 
  
# MAIN ROUTINE WRITTEN IN Modelica NOW 
  
main.o: main.c 
main.c main.h: main.rml 
        momc -c main.rml 
  
# YACCLIB 
  
yacclib.o:  yacclib.c 
        $(CC) $(CFLAGS) -c -o yacclib.o yacclib.c 
  
# LEXER 
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lexer.o:  lexer.c parser.h absyn.h 
lexer.c:  lexer.l 
        lex -t lexer.l >lexer.c 
  
# PARSER 
  
parser.o:  parser.c absyn.h 
parser.c parser.h:  parser.y 
        yacc -d parser.y 
        mv y.tab.c parser.c 
        mv y.tab.h parser.h 
  
# INTERFACE TO SCANNER/PARSER (Modelica CALLING C) 
  
  
scanparse.o:  scanparse.c absyn.h 
  
# ABSTRACT SYNTAX 
  
absyn.o:  absyn.c 
absyn.c absyn.h:  absyn.rml 
        momc -c absyn.rml 
  
# ENVIRONMENTS 
  
env.o:  env.c 
env.c env.h:  env.rml 
        momc -c env.rml 
  
# EVALUATION 
  
eval.o:  eval.c  
eval.c eval.h:  eval.rml absyn.h env.h 
        momc -c eval.rml 
  
# AUX 
  
clean: 
        $(RM) pamdecl $(COMMONOBJS) $(VSLOBJS) main.c main.h lexer.c parser.c pa 
rser.h absyn.c absyn.h env.c env.h eval.c eval.h *~ 

4.3.4 Calling C from Meta-Modelica 

The file scanparse.rml looks somewhat weird. It does not contain the usual module implementation 
section. In the makefile one also notices that it is not compiled using momc. Instead we supply the body 
for scanparse.rml through the file scanparse.c, which in turn is compiled in a regular way. This is 
the trick to use when wanting to call C from Meta-Modelica. 

This is how you do it in PAMDECL: 

• In ScanParse.mo specify the functions (C functions) that are to be implemented in C. In this 
case it is a function (function) that takes no arguments and returns an Absyn.prog. 
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• In scanparse.c we need to implement the functions (functions) specified in ScanParse.mo. 
This is done by typing the code for the function between RML_BEGIN_LABEL( 

ScanpParse__relationname) and RML_END_LABEL. 
• One also needs to add the constructor ScanParse_5finit(void) for scanparse.rml, 

which in this case does nothing. 

If one want the function to fail call RML_TAILCALLK(rmlFC) or call RML_TAILCALLK(rmlSC) if one 
want it to succeed. 

Values are returned through the variable rmlA0. Values submitted to the function (function) can be 
retrieved from rmlA0 through rmlA9. Before the values can be retrieved or returned they have to be 
untagged or tagged, e.g. get a string parameter. 
char *first_param = RML_STRINGDATA(rmlA0); 

or return a string constant 
rmlA0 = (void */ mk_scon("Hello, world!"); 

4.4 Debugging Modelica Specifications 

Even though Meta-Modelica is a specification language, it is common that specifications are erronous 
and therefore need to be debugged. 

This section presents the interactive Meta-Modelica debugger functionality by showing a debugging 
session on a short Meta-Modelica example, together with a short overview of the debugger commands. 
The functionality of the debugger is illustrated using pictures from the Emacs debugging mode for Meta-
Modelica (Modelicadebug-mode).  

4.4.1 The Debugger Commands 

The Emacs Modelica debug mode is implemented as a specialization of the Grand Unified Debugger 
(GUD) interface (gud-mode) from Emacs [??ref]. Because the Modelica debug mode is based on the 
GUD interface, some of the commands have the same familiar key bindings.  

The actual commands sent to the debugger are also presented together with GUD commands 
preceded by the Modelica debugger prompt: mdb@>.  

If the debugger commands have several alternatives these are presented using the notation: 
alternative1|alternative2|....   

The optional command components are shown within square brackets: [optional]. 
In the Emacs interface: M-x stands for holding down the Meta key (mapped to Alt in general) and 

pressing the key after the dash, here x,  C-x stands for holding down the Control (Ctrl) key and 
pressing x, <RET> is equivalent with pressing the Enter key and <SPC> with pressing Space key. 

4.4.1.1 Starting the Modelica Debugging Subprocess 

The command for starting the Modelica debugger under Emacs is the following: 
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M-x Modelicadebug <RET> executable <RET> 

4.4.1.2 Setting/Deleting Breakpoints 

A part of a session using this type of commands is shown in Figure 4-1. The presentation of the 
commands follows later. 

       
Figure 4-1. Using breakpoints.  

To set a breakpoint on the line the cursor (point) is at: 
C-x <SPC> 
mdb@> break on file:lineno|string <RET> 

To delete a breakpoint placed on the current source code line (gud-remove): 
C-c C-d  
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C-x C-a C-d 
mdb@> break off file:lineno|string <RET> 

Instead of writing break one can use alternatives: br|break|breakpoint. 
Alternatively one can delete all breakpoints using: 

mdb@> cl|clear <RET> 

Showing all breakpoints: 
mdb@> sh|show <RET> 

4.4.1.3 Stepping and Running 

To perform one step (gud-step) in the Modelica code: 
C-c C-s  
C-x C-a C-s 
mdb@> st|step <RET> 

To continue after a step or a breakpoint (gud-cont) in the Modelica code: 
C-c C-r  
C-x C-a C-r 
mdb@> ru|run <RET>  

Examples of using these commands are shown in Figure 4-2. The example is the Exp1 calculator briefly 
described in Section 2.1. 
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Figure 4-2. Stepping and running in the debugger.  

4.4.1.4 Examining Data 

There are no GUD keybindings for these commands but they are inspired from the GNU Project 
debugger (GDB) [ref??].  

To print the contents/size of a variable one can write: 
mdb@> pr|print variable_name <RET> 
mdb@> sz|sizeof variable_name <RET> 

at the debugger prompt. The size is displayed in bytes. 
Variable values to be printed can be of a complex type and very large. One can restrict the depth of 

printing using: 
mdb@> [set] de|depth integer <RET> 

Moreover, we have implemented an external viewer written in Java called DataViewer to browse the 
contents of such a large variable. To send the contents of a variable to the external viewer for inspection 
one can use the command: 
mdb@> bw|browse|gr|graph var_name <RET> 
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at the debugger prompt. The debugger will try to connect to the DataViewer and send the contents of 
the variable. The external data browser has to be started a priori. If the debugger cannot connect to the 
external viewer within a specified timeout a warning message will be displayed. A picture with the 
external DataViewer tool is presented in Figure 4-3: 

       
Figure 4-3. External browser/viewer for complicated data structures.  

If the variable which one tries to print does not exist in the current scope (not a live variable) a notifying 
warning message will be displayed. 

Automatic printing of variables at every step or breakpoint can be specified by adding a variable to a 
display list: 
mdb@> di|display variable_name <RET> 

To print the entire display list: 
mdb@> di|display <RET> 

Removing a display variable from the display list: 
mdb@> un|undisplay variable_name <RET> 

Removing all variables from the display list: 
mdb@> undisplay <RET> 
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Printing the current live variables: 
mdb@> li|live|livevars <RET> 

Instructing the debugger to print or to disable the print of the live variable names at each step/breapoint: 
mdb@> [set] li|live|livevars [on|off]<RET> 

Figure 4-4 shows examples of some of these data examination commands within a debugging session: 

        
Figure 4-4. Examining data in the debugger command window.  

4.4.1.5 Additional commands  

The stack contents (backtrace) can be displayed using: 
mdb@> bt|backtrace <RET> 

Because the contents of the stack can be quite large, one can print a filtered view of it: 
mdb@> fbt|fbacktrace filter_string <RET> 

Also, one can restrict the numbers of entries the debugger is storing using: 
mdb@> maxbt|maxbacktrace integer <RET> 
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For displaying the status of the Modelica runtime: 
mdb@> sts|stat|status <RET> 

The status of the Meta-Modelica runtime comprises information regarding the garbage collector, 
allocated memory, stack usage, etc. 

The current debugging settings can be displayed using: 
mdb@> stg|settings <RET> 

The settings printed are: the maximum remembered backtrace entries, the depth of variable printing, the 
current breakpoints, the live variables, the list of the display variables and the status of the runtime 
system. 

One can invoke the debugging help by issuing: 
mdb@> he|help <RET> 

For leaving the debugger one can use the command: 
mdb@> qu|quit|ex|exit|by|bye <RET> 

A session using these commands is presented in Figure 4-5 below: 

        
Figure 4-5. Additional debugger commands.  
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Chapter 5  
 
Comprehensive Overview of the Current Meta-
Modelica Subset 

This chapter describes all the basic building blocks of Meta-Modelica such as characters and lexical 
units including identifiers, literals, and operators. Without question, the smallest building blocks in 
Meta-Modelica are single characters belonging to a character set. Characters are combined to form 
lexical units, also called tokens. These tokens are detected by the lexical analysis part of the Meta-
Modelica translator. Examples of tokens are literal constants, identifiers, and operators. Comments are 
not really lexical units since they are eventually discarded. On the other hand, comments are detected by 
the lexical analyzer before being thrown away. 

The lexical units are combined to form even larger building blocks such as expressions according to 
the rules given by the expression part of the Meta-Modelica grammar. 

5.1 Meta-Modelica Constructs to be Depreciated 

The current Meta-Modelica subset contains several constructs which will eventually be depreciated, i.e. 
removed, from the Meta-Modelica language. They are needed right now, before compiler support for 
better alternatives has been implemented. The constructs to be depreciated are the following: 

• matchcontinue-expressions will be replaced by match-expressions with guards. 
• Real number arithmetic operators containing a dot (+., -., *., /., etc.) will be replaced by ordinary 

overloaded arithmetic operators (+, - ,* , /, etc.) 
• The equality(...) operator will be removed. 
• etc... 

5.2 Meta-Modelica Constructs not yet Fully Supported 

The following constructs are not yet fully implemented: 

• match-expressions currently work the same way as matchcontinue-expressions. 
• Guards with the guard keyword are not yet supported in match/matchcontinue-expresions. 
• Named argument to functions and constructors are not yet supported. 
• Named arguments in constructor-calls in patterns are not yet supported. 
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• etc... 

5.3 Character Set 

The character set of the Modelica language is not yet completely specified. However, in practice the 
currently available Modelica tools work well for code written in the 8-bit Latin-1 character set, which 
corresponds to the first 256 characters of the 16-bit Unicode character set. Most of the first 128 
characters of Latin-1 are equivalent to the 7-bit ASCII character set. 

5.4 Comments 

There are three kinds of comments in Modelica which are not lexical units in the language and therefore 
are ignored by a Modelica translator. The comment syntax is identical to that of Java. The following 
comment variants are available: 

 
// comment Characters from // to the end of the line are ignored. 
/* comment */ Characters between /* and */ are ignored, including line terminators. 
/** comment */ Characters between /** and */ are ignored, including line terminators. 

These are documentation comments that come immediately before 
declarations and can be included in automatically generated 
documentation. However, currently available Modelica tools primarily 
support another mechanism for documentation, so-called documentation 
strings described below, which can be attached after each declaration.  

Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is 
invalid: 
/* Commented out - erroneous comment, invalid nesting of comments! 
  /* This is a interesting model */ 
  function interesting 
  ... 
  end interesting; 
*/ 

There is also a kind of “documentation comment,” really a documentation string, that is part of the 
Modelica language and therefore not ignored by the Modelica translator. Such “comments” may occur at 
the ends of declarations, at the beginnings of function definitions, or immediately after any equation. For 
example: 
funtion foo  "This is a function comment" 
  ... 
  Real x  "the variable x is used for ..."; 
  ... 
oo 
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5.5 Identifiers, Names, and Keywords 

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for 
naming various items in the language. Certain combinations of letters are keywords represented as 
reserved words in the Modelica grammar and are therefore not available as identifiers. 

5.5.1 Identifiers 

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms. 
The first form always start with a letter or underscore (_), followed by any number of letters, digits, or 
underscores. Case is significant, i.e., the names Inductor and inductor are different. The following 
BNF-like rules define Meta-Modelica identifiers, where curly brackets {} indicate repetition zero or 
more times, and vertical bar | indicates alternatives. 
IDENT    = NONDIGIT { DIGIT | NONDIGIT }  |  Q-IDENT 
NONDIGIT = "_" | letters "a" to "z" | letters "A" to "Z" 
DIGIT    = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
S-ESCAPE = "\’" | "\"" | "\?" | "\\" | 
           "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v" 

5.5.2 Names 

A name is an identifier with a certain interpretation or meaning. For example, a name may denote an 
Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in 
different parts of the code, i.e., different scopes. Package names are described in more detail in  ??. 

5.5.3 Meta-Modelica Keywords 

The following Meta-Modelica keywords are reserved words and may not be used as identifiers: 
 
_  and  annotation  block 
  case constant  
else     end 
equality equation   external  false  
failure   function  if  
input  list local match matchcontinue
not  or   output  package  
  protected  public  record  
   then  true  
tuple type uniontype   
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5.6 Predefined Types 

The predefined built-in based types of Meta-Modelica are Real, Integer, Boolean, and String. The 
machine representations of the values of these predefined types have the following properties: 

 
Real IEC 60559:1989 (ANSI/IEEE 754-1985) double format, at least 64-bit precision. 
Integer typically two’s-complement 32-bit integer. (But here 31 bit integer) 
Boolean true or false. 
String string of 8-bit characters. 
list<eltype> list of element type 

Note that for argument passing of values when calling external functions in C from Meta-Modelica, 
Real corresponds to double and Integer corresponds to int.  

5.6.1 Literal Constants 

Literal constants are unnamed constants that have different forms depending on their type. Each of the 
predefined types in Meta-Modelica has a way of expressing unnamed constants of the corresponding 
type, which is presented in the ensuing subsections. Additionally, array literals and record literals can be 
expressed. 

5.6.2 Floating Point Numbers 

A floating point number is expressed as a decimal number in the form of an optional sign (+ or −), a 
sequence of decimal digits optionally followed by a decimal point, optionally followed by an exponent. 
At least one digit must be present. The exponent is indicated by an E or e, followed by an optional sign         
(+ or −) and one or more decimal digits. The range is that of IEEE double precision floating point 
numbers, for which the largest representable positive number is 1.7976931348623157E+308 and the 
smallest positive number is 2.2250738585072014E−308. For example, the following are floating point 
number literal constants: 
22.5,  3.141592653589793, 1.2E-35, -56.08 

The same floating point number can be represented by different literals. For example, all of the 
following literals denote the same number: 
13.,  13E0,  1.3e1,  .13E2 

5.6.3 Integers 

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100, 
30030044, or negative numbers such as –998. The range depends on the C compiler implementation of 
integers (Modelica compiles to C), but typically is from −2,147,483,648 to +2,147,483,647 for a two’s-
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complement 32-bit integer implementation. Currently only 31-bit integers are supported as the Integer 
type in Meta-Modelica. However, the Long builtin type supports 64-bit 2-complement integers. 

5.6.4 Booleans 

The two Boolean literal values are true and false. 

5.6.5 Strings 

String literals appear between double quotes as in "between". Any character in the Meta-Modelica 
language character set apart from double quote (") and backslash (\), but including nonprintable 
characters like new-line, backspace, null, etc., can be directly included in a string without using an 
escape code. Certain characters in string literals are represented using escape codes, i.e., the character is 
preceded by a backslash (\) within the string. Those characters are: 

 
\' single quote⎯may also appear without backslash in string constants. 
\" double quote 
\? question-mark⎯may also appear without backslash in string constants. 
\\ backslash itself 
\a alert (bell, code 7, ctrl-G) 
\b backspace (code 8, ctrl-H) 
\f form feed (code 12, ctrl-L) 
\n new-line (code 10, ctrl-J) 
\r return (code 13, ctrl-M) 
\t horizontal tab (code 9, ctrl-I) 
\v vertical tab (code 11, ctrl-K) 
 

For example, a string literal containing a tab, the words: This is, double quote, space, the word: 
between, double quote, space, the word: us, and new-line, would appear as follows: 
"\tThis is\" between\" us\n" 

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the + 
operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals 
that need to be written on several lines. 

5.6.6 Array Literals 

Array literals can be expressed using the array constructor { } or array(...). For example, the following 
are one-dimensional array constants, i.e., vector literals: 
{1,2,3},     {3.14, 58E-6} 
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Two-dimensional array constants, i.e., matrix literals, may occur as arrays of arrays: 
{{1,2},{3,4}} 

5.6.7 List Literals 

List literals can be expressed using the list or array constructor { }, or by list(...). For example, the 
following are one-dimensional list constants: 
{1,2,3},     {3.14, 58E-6} 

The { } constructor can be used construct either arrays or lists. The type context determines which 
interpretation is chosen. It is possible to unambigously specifiy the creating of a list value by using the 
list(...) builtin function: 
list(1,2,3),     list(3.14, 58E-6) 

5.6.8 Record Literals 

Record literals can be expressed using the record constructor functions automatically defined as a 
consequence of record declarations. Below is an example record literal of a complex number based on 
the record Complex: 
Complex(1.3, 4.56) 

5.7 Operator Precedence and Associativity 

Operator precedence determines the order of evaluation of operators in an expression. An operator with 
higher precedence is evaluated before an operator with lower precedence in the same expression. For 
example, relational operators have higher precedence than logical operators, e.g.: 
Xwithin := x>35.3 and x<=999.6; 

Assuming x has the value 55.0, then both relational terms are first evaluated to true, eventually giving 
the value true to be assigned to the variable Xwithin. The multiplication operator * has higher 
precedence than the subtraction operator, causing the following expression to have the value 45, not 
zero: 
10 * 5 – 5 

Parentheses can be used to override precedence, e.g. causing the expression below to evaluate to zero: 
10 * (5 – 5) 

The associativity determines what happens when operators with the same precedence appear next to each 
other. Left-associative operators evaluate the leftmost part first, e.g. the expression: 
x + y + w 
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is equivalent to 
(x + y) + w 

The following table presents all the operators in order of precedence from highest to lowest. All 
operators are binary except the postfix operators and those shown as unary together with expr, the 
conditional operator, the array construction operator {} and . Operators with the same precedence occur 
at the same line of the table: 

Table 5-1. Operators. 

Operator Group Operator Syntax Examples 
postfix index operator [] arr[index] 
name dot notation .  a.b 
postfix function call (function-arguments) sin(4.36) 
array or list construction {expressions}  array(expressions)

 list(expressions)  
{2,3} 

integer or real 
multiplicative 

*  /  *.  /. 2*3   2/3  2.1 *. 3.2 

integer  or real additive +  -  +expr  -expr 
+. -.  +. expr  -. expr 

a+b,  a-b, +a, -a 
a+.b,  a-.b, +.a, -.a 

integer or real relational <  <=  >  >=  ==  <> 

<.  <=.  >. >=.  ==.  <>. 

a<b,  a<=b, a>b, ... 
a<.b, a<=.b, a>.b, ... 

...   
unary negation not expr not b1 
logical and and b1 and b2 
logical or or b1 or  b2 
conditional expression if  expr  then  expr  else  expr if b then 3 else x 
list element concatenation "a"::{"b","c"}  =>  

{"a","b","c"} 

"a"::{"b","c"}  =>  
{"a","b","c"} 

named argument ident  =  expr   x = 2.26 

Equality = and assignment := are not expression operators since they are allowed only in equations and 
in assignment statements respectively. All binary expression operators are left associative. There is also 
a generic equality operator, equality(expr1 = expr2), which can be applied to values of primitive data 
types as well as to values of structured types such as arrays, lists, and trees. 

The above operators correspond to and can be called using the following function names, which are 
mentioned below together with a few additional builtin functions: 

The following are built-in common mathematical functions: 
 
sin(u)         sine 
cos(u)         cosine 
tan(u)         tangent     (u shall not be: ... ,2/3  ,2/  ,2/  ..., πππ− ) 
asin(u) inverse sine  )11( ≤≤− u  
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acos(u)        inverse cosine  )11( ≤≤− u  
atan(u) inverse tangent 
atan2(u1,u2) four quadrant inverse tangent 
sinh(u) hyperbolic sine 
cosh(u)        hyperbolic cosine 
tanh(u)        hyperbolic tangent 
exp(u)         exponential, base e 
log(u)         natural (base e) logarithm )0( >u  
log10(u)       base 10 logarithm )0( >u  
 

Boolean operations: 
bool_and, bool_or, bool_not 

Integer operations: 
int_add, int_sub, int_mul, int_div 

int_mod, int_abs, int_neg, int_max, int_min 

int_lt, int_le, int_eq, int_ne, int_ge, int_gt, int_real, int_string 

Real number operations: 
real_add, real_sub, real_mul, real_div 

real_mod, real_abs, real_neg, real_max, real_min 

real_lt, real_le, real_eq, real_ne, real_ge, real_gt, real_int, real_string 

real_cos, real_sin, real_atan, real_exp, real_ln, real_floor, real_int, real_pow 

String operations: 
string_length, string_nth, string_append 

string_int, string_list, list_string 

5.8   Arithmetic Operators 

Meta-Modelica supports five binary arithmetic operators in both integer and real variants. The real 
number operators currently contain a dot. 

 
^. Exponentiation 
*   *. Multiplication 
/   /. Division 
+   +. Addition 
-   -. Subtraction 
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Some of these operators can also be applied to a combination of a scalar type and an array type, which 
means an operation between the scalar and each element of the array..  

Unary versions of the addition and subtraction operators are available, e.g. as in –35 and +84. 

5.8.1   Integer Arithmetic 

Integer arithmetic in Modelica is the same as in the ISO C language standard, since Modelica is 
compiled into C. The most common representation of integers is 32-bit two’s complement (e.g. see a 
definition in C⎯A Reference Manual, Section 5.1.1 (Harbison and Steele 1991)). This representation is 
used on widespread modern microprocessors such as Pentium, Sparc, etc., with a minimum 
representable value of −2,147,483,648 and a maximum value of 2,147,483,647. Note, however, that 
other representations are also allowed according to the ISO C standard. Note that currently, only 31-bit 
integer arithemtic is supported by the Meta-Modelica compilers. 

For certain arithmetic operations, regarding both integer and floating point numbers, it can be the 
case that the true mathematical result of the operation cannot be represented as a value of the expected 
result type. This condition is called overflow, or in some cases underflow. 

In general, neither the Meta-Modelica language nor the C language specify the consequences of 
overflow of an arithmetic operation. One possibility is that an incorrect value (of the correct type) is 
produced. Another possibility is that program execution is terminated. A third possibility is that some 
kind of exception or trap is generated that could be detected by the program in some implementation-
dependent way. 

For the common case of two’s complement representation, integer arithmetic is modular⎯meaning 
that integer operations are performed using a two’s-complement integer representation, but if the result 
exceeds the range of the type it is reduced modulo the range. Thus, such integer arithmetic never 
overflows or underflows but only wraps around.  

Integer division, i.e., division of two integer values, truncates toward zero with any fractional part 
discarded (e.g. div(5,2) becomes 2, div(-5,2) becomes –2). This is the same as in the C language 
according to the C99 standard. According to the earlier C89 standard, integer division for negative 
numbers was implementation dependent.  

Division by zero in Modelica causes unpredictable effects, i.e., the behavior is undefined. 

5.8.1.1 Long Integers 

?? fill in 

5.8.2   Floating Point Arithmetic 

Analogous to the case for integer arithmetic, floating point arithmetic in Modelica is specified as floating 
point arithmetic in the ISO C language. Values of the Modelica Real type are represented as values of 
the double type in ISO C, and floating point operations in Modelica are compiled into corresponding 
doubleprecision floating point operations in C. Even if not strictly required by the ISO C standard, most 
C implementations have adopted the IEEE standard for binary floating point arithmetic (ISO/IEEE Std 
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754-1985), which completely dominates the scene regarding C implementations as well as floating point 
instructions provided by modern microprocessors. Thus, we can for practical purposes assume that 
Modelica follows ISO/IEEE Std 754-1985. Real values are then represented as 64-bit IEEE floating 
point numbers. The largest representable positive number in that representation is 
1.7976931348623157E+308 whereas the smallest positive number is 2.2250738585072014E−308. 

The effects of arithmetic overflow, underflow, or division by zero in Modelica are implementation 
dependent, depending on the C compiler and the Modelica tool in use. Either some value is produced 
and execution continues, or some kind of trap or exception is generated which can terminate execution if 
it is not handled by the application or the Modelica run-time system. 

5.9   Equality, Relational, and Logical Operators 

Meta-Modelica supports the standard set of relational and logical operators, all of which produce the 
standard boolean values true or false. 

 
> greater than 
>= greater than or equal 
< less than 
<= less than or equal to 
== equality within expressions 
<> Inequality 

The equality and relational operators apply only to scalar arguments. Relational operators are typically 
used within if-expressions, or to compute the value of a Boolean variable, e.g.: 
x = if v1<v2 then ...  ; 
boolvar2 := v3 >= v35; 

A single equals sign = is never used in relational expressions, only in equations and in function calls 
using named parameter passing. 

 
= equality within equations 
= assignment of named arguments at function call 

The following logical operators are defined: 
 
not negation, unary operator 
and logical and 
or logical or 

 

Standard Modelica is free to use any order in evaluation of expression parts as long as the evaluation 
rules for the operators in the expression are fulfilled. 



Chapter 6  Declarative Programming     161 

Concerning the logical operators and, or in boolean expressions, one possibility is short-circuit 
evaluation, i.e., the expression is evaluated from left to right and the evaluation is stopped if evaluation 
of further arguments is not necessary to determine the result of the boolean expression. Thus, if the 
variable b1 in the expression below has the value true, then evaluation of b2 and b3 would not be 
necessary since the result will be true independent of their values. On the other hand, we cannot rely on 
this order⎯evaluation might start with b3 and involve all three variables. However, this does not really 
matter for the user since Modelica is a declarative language, and the result of evaluation is the same in 
all these cases. See also Section Error! Reference source not found., page Error! Bookmark not 
defined., for guarding evaluation. 
boolvar   :=  true and false; 
boolvar2  :=  not boolvar; 
boolvar3  :=  b1 or b2 or b3; 

5.9.1   String Concatenation 

The + operator is also a built-in string concatenation operator in Standard Modelica, both for string 
variables and literal string constants. For example, long comment strings can be constructed using the + 
operator for concatenation of string constants, e.g.: 
Real longval = 1.35E+300  "This is" + " a " + "rather " + " long comment";  

Another example using string variables and string literals in expressions returning string values: 
String val1 = "This is";  
String val2 = " a ";  
String concatvalue = val1 + val2 +"rather " + " long string";  
// The value becomes: "This is a rather long string" 

5.9.2   The Conditional Operator⎯if-expressions 

The conditional operator in Meta-Modelica provides a single expression that computes one out of two 
expressions dependent on the value of the condition. The general syntactic form is shown below: 

if condition then expression1 else expression2 

Both the then-part and the else-part of the conditional expression must be present. Conditional 
expressions can be nested, i.e., expression2 can itself be an if-expression. 

A conditional expression is evaluated as follows:  

• First the condition is evaluated, which must be a boolean expression. If condition is true, then 
expression1 is evaluated and becomes the value of the if-expression. Otherwise expression2 is 
evaluated and becomes the value of the if-expression. 

• The result expressions, i.e., expression1 and expression2, must have assignment-compatible 
types. This means that the type of one result expression must be assignable to the type of the 
other result expression, which defines the type of the conditional expression.  
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The following equation contains a conditional expression with a conditional operator on the right-hand 
side: 
value = (if a+b<5 then firstvalue else secondvalue); 

if (a+b<5) then 
  value = firstvalue; 
else 
  value = secondvalue; 
end if; 

5.10 Built-in Special Operators and Functions 

The following built-in special operators in Modelica have the same syntax as a function call. However, 
they do not behave as mathematical functions since the result depends not only on the input arguments 
but also on the status of the simulation. The following operators are supported:   
 

failure(...) Fill in 

equality(...) Fill in?? 

bool_success(...) Fill in 

list() Fill in 

array(...) ??Fill in 
  

5.11 Order of Evaluation 

Evaluation order is currently left-to-right, but will become unspecified in the future when the Meta-
Modelica compiler is upgraded to also support full Modelica. 

5.12 Expression Type and Conversions 

All expressions have a type. The expression type is obtained from the types of its constituent parts, e.g. 
variables, constants, operators, and function calls in an expression.  
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5.12.1 Type Conversions 

Meta-Modelica is a strongly typed language. This means that type compatibility is checked at compile 
time in almost all cases, and at run-time in the remaining cases. Meta-Modelica prevents incompatible 
left-hand and right-hand sides in equations as well as incompatible assignments by not allowing anything 
questionable.  

The language also provides a few checking and type conversion operations for cases when the 
compatibility of a type can be determined only at run-time, e.g. to check the size of a variable-length 
array, or when we want to explicitly convert a type, for example, when assigning a Real value to an 
Integer variable. We discuss these conversions in terms of assignment, sometimes called assignment 
conversion, but what is said here is also applicable to conversions between left-hand sides and right-hand 
sides of equations, and conversions when passing actual arguments to formal parameters at function 
calls. 

5.12.1.1 Implicit Type Conversions 

Sometimes a type can be converted without any explicit action from the Modelica programmer. The only 
case in full Modelica when this happens is implicit conversion of integer operands when used together 
with floating point operands in an expression. However, in the current Meta-Modelica, all type 
conversions must by explicit.. 

5.12.1.2 Explicit Type Conversions 

Explicit type conversions are needed when implicit conversions are not enough or are not available, for 
example, when converting from a Real to an Integer. (?? add stuff) 

5.13 Global Constant Variables 

Global constants can be declared in Meta-Modelica through the constant keyword, e.g. as below 
where the init_env variable is set to the empty list: 
constant init_env = {} 

5.14 Types 

The Meta-Modelica language supports a builtin set of primitive data types as well as means of declaring 
more complex types and structures such as tuples and tree structures. First we will take a look at the 
primitive data types. 
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5.14.1 Primitive Data Types 

The Meta-Modelica language provides a basic set of primitive types found in most programming 
languages:  

• Boolean—booleans, e.g. true/false. 
• Integer—integers, e.g. -123. (?? 31-bit integers in the current Meta-Modelica version; Long 

integers are also available ?) 
• Real—double-precision IEEE floating point numbers, e.g. 3.2E5. 
• String—strings of characters, e.g. "Linköping". 

5.14.2 Type Name Declarations 

Alternate names for types in Meta-Modelica can be introduced through the type declaration, e.g.: 
type  Identifier    = String; 
type  IntConstant   = Integer; 
type  MyValue       = Real; 

5.14.3 Tuples 

Tuples are represented by parenthesized, comma-separated sequences of items each of which may have a 
different type, e.g.: 

• (55,66)— a 2-tuple of integers.  
• (55,"Hello",INTconst(77))— a 3-tuple of integer, string, and Exp.  

Named tuple types can be declared explicitly through the type declaration using the tuple type 
constructor: 
type  TwoInt     = tuple<Integer,Integer>; 
type  Threetuple = tuple<Integer,String,Exp>; 

5.14.4 Tagged Union Types for Records, Trees, and Graphs 

The uniontype declaration in Meta-Modelica is used to introduce union types, for example the type 
Number below, which can be used to represent several kinds of number types such as integers, rational 
numbers, real, and complex within the same type: 
uniontype Number 
  record INT       Integer x1;  end INT; 
  record RATIONAL  Integer x1;  Integer x2;  end RATIONAL; 
  record REAL      Real x1;  end REAL; 
  record COMPLEX   Real x1;  Real x2;  end COMPLEX; 
end Number; 
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The different names, INT, RATIONAL, REAL and COMPLEX, are called constructors, as they are used to 
construct tagged instances of the type. For example, we can construct a Number instance REAL(3.14) 
to hold a real number or another instance COMPLEX(2.1,3.5) to hold a complex number.  

Each variant of such a union type is actually a record type with one or more fields that (currently) can 
only be referred to by their position in the record. The type Number can be viewed as the union of the 
record types INT, RATIONAL, REAL and COMPLEX. 

The most frequent use of union types in Meta-Modelica is to specify abstract syntax tree 
representations used in language specifications as we have seen many examples of in earlier chapters of 
this text, e.g. Exp below, first presented in Section 2.1.2: 
uniontype Exp   
  record  INTconst Integer x1;     end INTconst; 
  record  ADDop  Exp x1;  Exp x2;  end ADDop; 
  record  SUBop  Exp x1;  Exp x2;  end SUBop; 
  record  MULop  Exp x1;  Exp x2;  end MULop; 
  record  DIVop  Exp x1;  Exp x2;  end DIVop; 
  record  NEGop  Exp x1;           end NEGop; 
end Exp; 

The constructors INTconst, ADDop, SUBop, etc. are can be used to construct nodes in abstract syntax 
trees such as INTconst(55) and ADDop(INTconst(6),INTconst(44)), etc.  

Representing DAG (Directed Acyclic Graph) structures is no problem. Just pass the same argument 
twice or more and the child node will be shared, e.g. when building an addition node using the ADDop 
constructor below: 
ADDop(x, x) 

However, building circular structures is not possible because of the declarative side-effect free nature of 
Meta-Modelica. Once a node has been constructed it cannot be modified to point to itself. Recursive 
dependencies such as recursive types have to be represented with the aid of some intermediate node. 

5.14.5 Parameterized Data Types 

A parameterized data type in Meta-Modelica is a type that may have another type as a parameter. A 
parameterized type available in most programming languages is the array type which is usually 
parameterized in terms of its array element type. For example, we can have integer arrays, string arrays, 
or real arrays, etc. depending on the type of the array elements. The size of an array may also be 
regarded as a parameter of the array. 

The Meta-Modelica language provides three kinds of parameterized types: 

• Lists – the list identifier, parameterized in terms of the list element type. 
• Vectors – the array identifier, parameterized in terms of the vector element type. 
• Option types – the Option builtin predefined type constructor, parameterized in terms of the 

type of the optional value. 
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Note that all parameterized types in Meta-Modelica are monomorphic: all elements have to have the 
same type, i.e., you cannot mix elements of type Real and type String within the same array or list. 
Certain languages provide polymorphic arrays, i.e., array elements may have different types.  

However, arrays of elements of “different” types in Meta-Modelica can be represented by arrays of 
elements of tagged union types, where each “type” in the union type is denoted by a different tag. 

5.14.5.1 Lists 

Lists are common data structures in declarative languages since they conveniently allow representation 
and manipulation of sequences of elements. Elements can be efficiently (in constant time) added to 
beginning of lists in a declarative way. The following basic list construction operators are available: 

• The list constructor: {el1,el2,el3,...} and list(el1,el2,el3,...) create a list of 
elements el1, el2, ... of identical type. Examples:{} and list() denote the empty list; 
{2,3,4} and list(2,3,4) are a list of integers, etc.  

• The empty list is denoted by {}. 
• The list element concatenation operation cons(element, lst) or using the equivalent :: 

operator syntax as in element :: lst, adds an element in front of the list lst and returns the 
resulting list. For example:  
cons("a", {"b"})   =>  {"a", "b"};  
cons("a",{})        =>  {"a"}  
"a"::"b"::"c"::{}  =>  {"a","b","c"};  
"a"::{"b","c"}  =>  {"a","b","c"} 

Additional builtin Meta-Modelica list operations are briefly described by the following examples; see 
Appendix ??B for type signatures of these functions: 

• list_append({2,3},{4,5})  => {2,3,4,5}    
• list_reverse({2,3,4,5})   => {5,4,3,2} 

• list_length({2,3,4,5})    => 4 

• list_member(3, {2,3,4,5}) => true 

• list_get({2,3,4,5}, 4)    => 5     // First list element is numbered 1 
• list_delete({2,3,4,5},2)  => {2,4,5} 

The most readable and convenient way of accessing elements in an existing list or constructing new lists 
is through pattern matching operations, see Section 6.1.1. 

The types of lists often need to be specified. Named list types can be declared using Meta-Modelica 
type declarations: 
type IntegerList  = list<Integer>; 

An example of a list type for lists of real elements: 
type RealList     = list<Real>; 
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The following is a parameterized Meta-Modelica list type with an unspecified element type 
TYpe_elemtype which is a type parameter (type variable) of the list. Type variable names in Meta-
Modelica are declared as replaceable types. 
replaceable type Type_elemtype; 

type ElemList = list<Type_elemtype>; 

Lists in the Meta-Modelica language are monomorphic, i.e., all elements must have the same type. Lists 
of elements with “different” types can be represented by lists of elements of tagged union types, where 
each type in the union type has a different tag. 

5.14.5.2 Arrays and Vectors 

An Meta-Modelica vector is a sequence of elements, all of the same type. The main advantage of a 
vector compared to a list is that an arbitrary element of a vector can be accessed in constant time by a 
vector indexing operation on a vector and an integer denoting the ordinal position of the element. 

Constructing vectors is rather clumsy in Meta-Modelica. First a list has to be constructed which then 
is converted to a vector, e.g.: (?? update) 
list_vector({2,4,6,8}) => vec 

Accessing the third element of the vector vec using the vector indexing operation vector_get, where 
the first element has index 1: 
vector_get(vec,3) => 6 

It is also possible to use the more concise square bracket indexing notation: 
vec[3] => 6 

Getting the length of vector vec: 
vector_length(vec) => 4 

Named array types can of course be declared using the type construct, e.g. as in the declaration of a 
one-dimensional vector of boolean values: 
type OneDimBooleanVector = Boolean[:]; 

Multi-dimensional arrays are represented by arrays of arrays, e.g. as in the following declaration of a 
two-dimensional matrix of real elements. 
type OneDimRealVector = Real[:]; 

type TwoDimRealMatrix = OneDimRealVector[:]; 

Parameterized vector types can be expressed using a type parameter declared as a replaceable type, such 
as Type_ElemType in the following example: 
replaceable type Type_ElemType; 

type Type_ElemVector = Type_ElemType[:]; 
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Below we give the type signatures, i.e., the types, of input parameters and output results, for a few 
builtin vector operations, also presented in Appendix B??. The following are the length and indexing 
signatures: 
function vector_length  "Compute the length of a vector" 
  input Type_a[:]  in_vec; 
  output Integer   out_length; 
protected 
  replaceable type Type_a; 
end vector_length; 

function vector_get  "Extract (indexed access) a vector element from the vector" 
  input Type_a[:]  in_vec; 
  output Type_a    out_element; 
protected 
  replaceable type Type_a; 
end vector_get; 

The following are signatures of the conversion operations between vectors and lists: 
function vector_list  "convert from vector to list" 
  input Type_a[:]      in_vec; 
  output list<Type_a>  out_lst; 
protected 
  replaceable type Type_a; 
end vector_list; 
 
function list_vector  "Convert from list to vector" 
  input list<Type_a>  in_lst; 
  output Type_a[:]    out_vec; 
protected 
  replaceable type Type_a; 
end list_vector; 

5.14.5.3 Option Types 

Option types have been introduced in Meta-Modelica to provide a type-safe way of representing the 
common situation where a data item is optionally present in a data structure – which in language 
specification applications typically is an abstract syntax tree. 

The Option type is a predefined parameterized Meta-Modelica union type with the two constructors 
NONE() and SOME(): 
uniontype Option 
  replaceable type Type_a; 
  record NONE  end NONE; 
  record SOME  Type_a x1;  end SOME; 
end Option; 

The constant NONE() with no arguments automatically belongs to any option type. A constructor call 
such as SOME(x1) where x1 has the type Type_a, has the type Option<Type_a>. 

The constructor NONE() is used to represent the case where the optional data item (of type Type_a in 
the above example) is not present, whereas the constructor SOME() is used when the data item is present 
in the data structure. One example is the optional return value in return statements, represented as 
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abstract syntax trees, where the NONE() constructor is used for the return; variant without value, and 
SOME(...) for the return(valueexpression); variant. 

5.15 Meta-Modelica Functions 

We have already used Meta-Modelica functions extensively to express the semantics of a number of 
small languages, as well as small declarative programs. This section gives a more complete presentation 
of the Meta-Modelica function construct, its properties, and its usage. 

Modelica functions are declarative mathematical functions, i.e., a Modelica function always returns 
the same results given the same argument values. Thus a function call is referentially transparent, which 
means that it keeps the same semantics or meaning independently of from where the function is 
referenced or called. 

The declarative behavior of function calls implies that functions have no memory (not being able to 
store values that can be retrieved in subsequent calls) and no side effects (e.g. no update of global 
variables and no input/output operations). However, it is possible that external functions could have side 
effects or input/output operations. Moreover, there are built-in functions such as print and tick with side-
effects. See Section ??? for a discussion of these functions. 

5.15.1   Function Declaration 

The body of a Meta-Modelica function is a kind of algorithm section that contains procedural 
algorithmic code to be executed when the function is called. Formal parameters are specified using the 
input keyword, whereas results are denoted using the output keyword. This makes the syntax of 
function definitions quite close to Modelica class definitions. 

The structure of a typical function declaration is sketched by the following schematic function 
example: 

function <functionname> 
  input  TypeI1 in1; 
  input  TypeI2 in2; 

  input  TypeI3 in3 := <default expr> "Comment" annotation(...); 
  ... 
  output TypeO1 out1; 

  output TypeO2 out2 := <default expr>; 
  ... 
protected 
  <local variables> 
  ... 
algorithm 
  ... 

  <statements> 
  ... 

end <functionname>; 
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Optional explicit default values can be associated with any input or output formal parameter through 
declaration assignments. Such defaults are shown for the third input parameter and the second output 
parameter in our example. Comment strings and annotations can be given for any formal parameter 
declaration, as usual in Meta-Modelica declarations. 

All internal parts of a function are optional; i.e., the following is also a legal function: 

function <functionname> 
end <functionname>; 

5.15.2 Current Restrictions of Meta-Modelica Functions 

Only two supported forms of functions are supported by the current version of the Meta-Modelica 
compiler: 

• A function with a body consisting of an assignment statement with output variable(s) on the left 
hand side and a match- or matchcontinue-expression on the right hand side. 

• A function with a body consisting of simple assignment statements. 

An example of the first kind: 
function eval_stmt_list "Evaluate a list of statements in an environment. 
                         Pass environment forward" 
  input Env.Env in_env; 
  input Absyn.StmtList in_stmtlist; 
  output Env.Env out_env; 
algorithm  
  out_env := 
  match (in_env,in_stmtlist) 
    local 
      type Env_BindList = list<Env.Bind>; 
      Env_BindList env; 
    case (env,{}) then env; 
    case (env, s :: ss) 
      equation  
        env1 = eval_stmt(env, s); 
        env2 = eval_stmt_list(env1, ss); then env2; 
  end match; 
end eval_stmt_list; 

An example of the second kind: 
function input_item  "Read an integer item from the input stream" 
  input Stream istream; 
  output Stream istream2; 
  output Integer i; 
algorithm  
  print("input: "); 
  i := Input.read(); 
  print("\n"); 
  istream2 := istream; 
end input_item; 
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There are also additional restrictions: 

• Function formal input and output parameter default values and corresponding assignments are 
not supported. 

• In a function body consisting of a match- or match-continue expression, formal input parameters 
may only be referenced directly after the match/matchcontinue keyword, e.g. match 
(in_x, in_y)... or match in_z ..., and then only in the order declared in the function 
header. Formal output parameters may only be referenced on the left hand side of the assignment 
comprising the function body. 

5.15.3 Returning Single or Multiple Function Results 

A function with one output formal parameter always returns a single result. Our previously presented 
example functions polynomialEvaluator and realToString are single result functions. 

However, a function with more than one output formal parameter has multiple results. An example is 
the function pointOnCircle below, which computes the cartesian coordinates of a point located at a 
certain angle on a circle with a specific radius. The Cartesian coordinates are returned via the two result 
variables x and y. 
function pointOnCircle  "Computes cartesian coordinates of a point" 
  input  Real angle  "angle in radians"; 
  input  Real radius; 
  output Real x;    // 1:st result formal parameter 
  output Real y;    // 2:nd result formal parameter 
algorithm 
  x := radius*cos(phi); 
  y := radius*sin(phi); 
end pointOnCircle; 

If we call a function with just one result we can put the call anywhere within an expression. This is also 
the case when calling a function with multiple results if we only want to access its first result.  

On the other hand, if we wish to call a Modelica function with multiple results and want to obtain 
more than the first result, there are just two syntactic forms to choose from depending on whether the 
function call should occur in an equation section or in an algorithm section: one equation form and one 
statement form, as specified below: 
(out1,out2,out3,...) = function_name(in1, in2, in3, in4, ...);  // Equation 
(out1,out2,out3,...) := function_name(in1, in2, in3, in4, ...); // Statement 

The left-hand side of both the equation and the assignment statement contains a parenthesized, comma-
separated list of variables receiving the results from the function call. A called function with n results 
can have at most n receiving variables on the left-hand side. Fewer than n receiving variables means that 
some function results are discarded. 

For example, when calling our example function pointOnCircle with two receiving variables px 
and py on the left-hand side, such calls can appear as follows: 
(px,py)  = pointOnCircle(1.2, 2);    // Equation form 
(px,py) := pointOnCircle(1.2, 2);    // Statement form 
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Any kind of variable of compatible type is allowed in the list on the left-hand side, e.g. array elements: 
(arr[1],arr[2]) := pointOnCircle(1.2, 2); 

To summarize, the following rules apply when returning results from a multiple-result function: 

• The variables in the list on the left-hand side of the equation or assignment containing the call are 
associated with the returned function results according to the order of the variables in the list and 
the corresponding declaration order of the output result variables in the function.  

• As in any standard equation or assignment, the type of each variable on the left-hand side must 
be compatible with the type of the corresponding function result on the right-hand side, with or 
without type coercion. 

5.15.4 Builtin Functions 

A number of “standard” builtin primitives are provided by the Modelica standard library—in a module 
called ???. Examples are int_add, int_sub, string_append, list_append, etc. A complete list of 
these primitives can be found in ??Appendix B.  

5.15.5 Special Properties of Modelica Match Expressions 

Two important properties of Meta-Modelica functions are however absent for ordinary functions: 

• Functions in Meta-Modelica can fail or succeed. 
• Retry is supported between rules in a matchcontinue expression. 

A call to a function can fail instead of always returning a result which is the case for functions. This is 
convenient for the specification writer when expressing semantics, since other possibly matching rules in 
the function will be applied without needing “try-again” mechanisms to be directly encoded into 
specifications. The failure handling mechanism can also be used in general declarative programming, 
e.g. the factorial example previously presented in Section 2.3.1.1. 

This brings us into the topic of rule retry. If there is a failure in rule, or in one of the functions 
directly or indirectly called via the local equations of the rule, and a matchcontinue-expression is used, 
Meta-Modelica will backtrack (i.e., undo) the part of the “execution” which started from this rule, and 
automatically continue with the next rule (if there is one) in top-down, left-to-right order. If no rule in 
the function matches and succeeds, then the call to this function will fail. Correct back-tracking is 
however dependent on avoidance of side-effects in the rules of the specification. 

5.15.6 Argument Passing and Result Values 

Any kind of data structure, as well as functions, can be passed as actual arguments in a call to an Meta-
Modelica function. One or more results can be returned from such a call. The issues are discussed in 
some detail in the following sections. 
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5.15.6.1 Multiple Arguments and Results 

A Meta-Modelica function may be specified with multiple arguments, multiple results, or both. The 
syntax is simple, the argument and result formal parameters are just listed, preceded by the input and 
output keywords respectively. 

5.15.6.2 Tuple Arguments and Results from Relations 

We just noted that a Meta-Modelica function can have multiple arguments and results. This should not 
be confused with the case where a Modelica tuple type (see Section 5.14.3) consisting of several 
constituent types is part of the signature of a function. For example, the function incrementpair 
below accepts a single tuple of two integers and returns a tuple where both integers have been 
incremented by one.. 
function incrementpair 
  input tuple<Integer,Integer>  in_val; 
  output tuple<Integer,Integer> out_val; 
algorithm 
  out_val := 
  match in_val 
    local Integer x1,x2; 
    case (x1,x2) then (x1+1,x2+1); 
  end match; 
end incrementpair; 

For example, the call: 
incrementpair((2,3)) 

gives the result: 
(3,4) 

5.15.6.3 Passing Functions as Arguments 

Functions can be passed as parameters, i.e., as a kind of function parameters. In the example below, the 
function add1 is passed as a parameter to the function map, which applies its formal parameter func to 
each element of the parameter list.   

For example, applying the function add1 to each element in the list {0,1,2}, e.g. map(add1, 
{0,1,2}), will give the result list {1,2,3}. 
function add1  "Add 1 to integer input argument" 
  input Integer x; 
  output Integer y; 
algorithm 
  y := x+1; 
end add1; 
 
function list_map /* 
 ** Takes a list and a function over the elements of the lists, which is applied 
 ** for each element, producing a new list. 
 ** For example  list_map({1,2,3}, int_string) => { "1", "2", "3"} 
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 */ 
  input list<Type_a> in_aList; 
  input FuncType     in_func; 
  output list<Type_b> out_bList; 
protected 
  replaceable type Type_a; 
  replaceable type Type_b; 
  function FuncType 
    replaceable type Type_b; 
    input Type_a in_a; 
    output Type_b out_b; 
  end FuncType; 
algorithm  
  out_bList:= 
  match (in_aList,in_func) 
    local 
      Type_b first_1; 
      list<Type_b> rest_1; 
      Type_a first; 
      list<Type_a> rest; 
      FuncType fn; 
    case ({},_) then {}; 
    case (first :: rest,fn) 
      equation  
        first_1 = fn(first); 
        rest_1 = list_map(rest, fn); then first_1 :: rest_1; 
  end match; 
end list_map; 
 
 
function main 
  ... 
  res := list_map({0,1,2}, add1);  /* Pass add1 as a parameter to map */ 
                                   /* In this example res will be {1,2,3}  */ 
  ... 
end main; 

5.16 Variables and Types in Functions 

Except for global constants, Meta-Modelica variables only occur in functions. Types, including 
parameterized types, can be explicitly declared in Meta-Modelica function type signatures.  

5.16.1.1 Type Variables and Parameterized Types in Relations 

We have already presented the notion of parameterized list, vector, and option types in Section 5.14.5. 
Type variables in Meta-Modelica can only appear in function signatures. 

For example, the tuple2_get_field1 function takes a tuple of two values having arbitrary types 
specified by the type variables Type_a and Type_b, which in the example below will be bound to the 
types String and Integer, and returns the first value, e.g.: 
tuple2_get_field1(("x",33)) => "x" 
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The function is parameterized in terms of the types of the first and second fields in the argument tuple, 
which is apparent from the type signature in its definition: 
 
function tuple2_get_field1 " 
 ** Takes a tuple of two values and returns the first value. 
 ** For example, 
 ** tuple get_field1((true,1)) => true 
 *" 
  input tuple<Type_a,Type_b> in_tuple; 
  output Type_a out_Type_a; 
protected 
  replaceable type Type_a; 
  replaceable type Type_b; 
algorithm  
  out_Type_a := 
  match (in_tuple) 
    local Type_a a; 
    case (a,_) then a; 
  end match; 
end tuple2_get_field1; 

5.16.1.2 Local Variables in Match-Expressions in Functions 

Variables in Meta-Modelica functions consisting of match-expressions are normally introduced at the 
beginning of a match-expression or in math-expression rules and have a scope throughout the rule. The 
only exception are global constants. There are three kinds of local variables for values, as well as type 
variables which are introduced through replaceable type declarations: 

• Pattern local variables, which are given values in patterns to be matched. 
• Ordnary local variables, which occur on the left hand side of equality signs, e.g.: variable = 

expression. Result variables can be regarded as a special case of pattern variables, for the trivial 
pattern consisting of the variable itself. 

• Type variables, which are declared using replaceable type and introduced in the function 
protected section. 

For example, in the function list_thread below, Type_a is a type variable for the type of elements in 
the list, fa, rest_a, fb, rest_b are pattern variables in the pattern list_thread(fa::rest_a, 
fb::rest_b): 
 
function list_thread  
 "Takes two lists of the same type and threads them together. 
  For example,  list_thread({1,2,3},{4,5,6}) => {4,1,5,2,6,3} 
 " 
  input list<Type_a> in_List1; 
  input list<Type_a> in_List2; 
  output list<Type_a> out_List; 
protected 
  replaceable type Type_a; 
algorithm  
  out_List:= 
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  match (in_List1,in_List2) 
    local 
      list<Type_a> rest_a,rest_b;  Type_a fa,fb; 
    case ({},{}) then {}; 
    case (fa :: rest_a, fb :: rest_b)  
      then fa :: fb :: list_thread(rest_a, rest_b); 
  end match; 
end list_thread; 

5.16.2 Function Failure Versus Boolean Negation 

We have previously mentioned that Meta-Modelica functions can fail or succeed, whereas conventional 
functions always succeed in returning some value. The most common cause for an Modelica function to 
fail is the absence of a rule that matches and/or have local equations that succeed. Another cause of 
failure is the use of the builtin Modelica command fail, which causes a rule in a match-expression to 
fail immediately. (?? A better semantics would be to cause the whole match-expression to fail 
immediately). 

It is important to note that fail is quite different from the logical value false. A function returning 
false would still succeed since it returns a value. The builtin operator not operates on the logical 
values true and false according to the following definition: 
function bool_not 
  input  Boolean in_bool; 
  output Boolean out_bool; 
algorithm 
  out_bool := if in_bool == true then false else true; 
end bool_not; 

However, failure can in a logical sense be regarded as a kind of negation—similar to negation by failure 
in the Prolog programming language. A local equation that fails will certainly cause the containing rule 
to fail. The Modelica failure() operator can however invert the logical sense of a proposition. The 
following local equation is logically successful since it succeeds (but it does not return the predefined 
value true): 
failure(function_that_fails(x)) 

The two operators not and failure() thus represent different forms of “negation”—negating the 
boolean value true, or negating the failure of a call to a function. 

5.16.3 Forms of Equations in Rules 

The local equations in a Meta-Modelica rule are currently restricted to having the following forms, 
where func_name is the name of a function; see also the Meta-Modelica grammar in ??Appendix ??, 
and expr may contain constants, variables, constructor calls, and operators, but currently not functions: 

• expr = func_name(...) 

• func_name(...) 
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• var = expr 

• equality(expr1 = expr2) 

• failure(var = expr) 

• failure(func_name(...)) 

• failure(expr = func_name(...)) 

• failure(equality(expr1 = expr2)) 

The failure() operator succeeds if the local equation it operates on fails. The equality operator (=) 
succeeds if the data values are identical. Each of these forms can also be parenthesized. 

5.17 Pattern-Matching 

Pattern-matching on instances of structured data types is one of the central facilities provided by Meta-
Modelica, which significantly contributes to the elegance and ease with which many language aspects 
may be specified. The pattern matching in Meta-Modelica is very close to similar facilities in many 
functional languages. 

Patterns can occur after the case keyword, and on the left- and right-hand side of the equality sign in 
equations, in matching or constructive contexts, with somewhat different meanings.  

5.17.1 Patterns in Matching Context 

The most common usage of patterns is in a matching context after the case keyword, or at the left hand 
side of = in a local equation, sometimes on the right-hand side. 

For example, regard the pattern INT(x) on the left-hand side of a conclusion in the rule below: 
match argument 
  local Integer x; 
case  INT(x) ... 

This means that argument is matched using the pattern INT(x). If there is a match, the rule is invoked 
and the local variable x is bound to the argument of INT, e.g. x will be bound to 55 if argument is 
INT(55).  

For cases where the value of the pattern variable is not referenced in the rest of the rule, an 
anonymous pattern can be used instead. The pattern variable x is then replaced by an underscore in the 
pattern, as in INT(_), to indicate matching of an anonymous value.  

Patterns can be nested to arbitrarily complexity and may contain several pattern variables, e.g. 
ADD(INT(x), ADD(y,NEG(INT(77)))). Patterns may also be pure constants, e.g. 55, false, 
INT(55). 

Patterns in matching context may also occur on right-hand sides of local equations. For example: 
match ...  
    local  Integer u;  String w; 
  case ... 
    equation 
      (u,w) = ...; 
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If the right-hand side of the local equation produces the tuple (55,"Test), and u and w are unbound, 
then the match to the pattern (u,w) will succeed by binding u to 55 and w to "Test". 

5.17.2 Patterns in Constructive Context 

The pattern examples presented so far have been in a matching context, where an existing data item is 
matched against a pattern possibly containing unbound pattern variables. Patterns can also be used in a 
constructive context, where a pattern that contains bound pattern variables indicates the construction of a 
structured data item. For example, regard the pattern in the rule below after the then keyword: 
case  ... then (x, {5,y}, INT(z)) 

If the rule matches and succeeds and x is already bound to 44, y to "Hello" and z to 77, respectively, 
then the following tuple term is constructed and returned as the value of the function to which the rule 
belongs: 
(44, {5,"Hello"}, INT(77)) 
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Chapter 6  
 
Declarative Programming Hints 

  

The focus of this chapter is to present a few special issues and give examples of declarative 
programming style. 

6.1.1 Last Call Optimization – Tail Recursion Removal 

A typical problem in declarative programming is the cost of recursion instead of iteration, caused by 
recursive function calls, where the implementation of each call typically needs a separate allocation of an 
activation record for local variables, etc. This is costly both in terms of execution time and memory 
usage. 

There is however a special form of declarative recursive formulation called tail-recursion. This form 
allows the compiler to avoid this performance problem by automatically transforming the recursion to an 
iterative loop that does not need any stack allocation and thereby be as efficient as iteration in imperative 
programs. This is called the last call optimization or tail-recursion removal, and is dependent on the 
following: 

• A tail-recursive formulation of a function (or function) calls itself as its last action before 
returning. 

In the following we give several recursive formulations of the summation function sum, both with and 
without tail-recursion. This function sums integers from i to n according to the following definition: 
sum(i,n) = i + (i+1) + ... + (n-1) + n 

This can be stated as a recursive function: 
sum(i,n) = if i>n then 0 else i+sum(i+1,n) 

A recursive Meta-Modelica function for computing the sum of integers can be expressed as follows: 
function sum 
  input Integer in_i; 
  input Integer in_n; 
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  output Integer out_res; 
algorithm 
  out_res := 
  matchcontinue (in_i,in_n) 
    local Integer i,n,i1,res1; 
  case (i,n) 
    equation 
      true = (i>n);  then true; 
  case (i,n) 
    equation 
      false = (i>n); 
      i1 = i+1;   
      res1 = sum(i1,n); then i+res1; 
  end matchcontinue; 
end sum; 

The above function sum is recursive but not tail-recursive since its last action is adding the result res1 
of the sum call to i, i.e., the recursive call to sum is not the last action that occurs before returning from 
the function. 

Fortunately, it is possible to reformulate the function into tail-recursive form using the method of 
accumulating parameters, which we will show in the next section. 

Note that when the full Meta-Modelica language is available, the above sum function can be 
expressed more concisely: 
function sum 
  input Integer i; 
  input Integer n; 
  output Integer out_res; 
algorithm 
  out_res := if i>n then 0 else i+sum(i+1,n) 
end sum; 

 

6.1.1.1 The Method of Accumulating Parameters for Collecting Results 

The method of accumulating parameters is a general method for expressing declarative recursive 
computations in a way that allows collecting intermediate results during the computation and makes it 
easier to achieve an efficient tail-recursive formulation. 

We reformulate the sum function by adding an accumulating input parameter sumSoFar to a help 
function sumTail, keeping the counter i. When the terminating condition i>n occurs the accumulated 
sum sumSoFar is returned. The function sumTail is tail-recursive since the call to sumTail is the last 
action that occurs before returning from the function body, i.e.: 
sum(i,n) = sumTail(i,j,0) 

sumTail(i,n,sumSoFar) = if i>n then sumSoFar else sumTail(i+1,n,i+sumSoFar) 

The functions sum and sumTail expressed as Meta-Modelica functions: 
function sum 
  input Integer i; 
  input Integer n; 
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  output Integer out_res; 
algorithm 
  out_res := sumTail(i,n,0); 
end sum; 

function sumTail 
  input Integer in_i; 
  input Integer in_n; 
  input Integer in_sumSoFar; 
  output Integer out_res; 
algorithm 
  out_res := 
  matchcontinue (in_i, in_n, in_sumSoFar) 
    local Integer i,n,i1,res1; 
  case (i,n,_) 
    equation 
      true = (i>n);  then sumSoFar; 
  case (i,n,sumSoFar) 
    equation 
      false = (i>n); 
      i1 = i+1;   
      res1 = i+sumSoFar; then sumTail(i1,n,res1); 
  end matchcontinue; 
end sumTail; 

It is easy to see that the function sumTail is tail-recursive since the call to sumTail is the last 
computation in the last local equation of the second rule. 

A more concise formulation of the above sumTail function using if-then-else expressions: 
function sumTail 
  input Integer i; 
  input Integer n; 
  input Integer sumSoFar; 
  output Integer out_res; 
algorithm 
  out_res := if i>n then sumSoFar else sumTail(i+1,n,i+sumSoFar); 
end sumTail; 

Another example of a tail-recursive formulation is a revised version of the previous list_thread 
function from Section 5.16.1.2, called list_thread_tail: 
list_thread(a,b) = list_thread_tail(a,b,{}) 

We have introduced an accumulating parameter as the third argument of list_thread_tail, e.g.: 
list_thread_tail({1,2,3},{4,5,6},{}) => {4,1,5,2,6,3} 

Its definition follows below:  
function list_thread_tail 
 "Takes two lists of the same type and threads them togheter. 
  For example,  list_thread({1,2,3},{4,5,6}) => {4,1,5,2,6,3} 
 " 
  input list<Type_a> in_List1; 
  input list<Type_a> in_List2; 
  input list<Type_a> in_accumlst; 
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  output list<Type_a> out_List; 
protected 
  replaceable type Type_a; 
algorithm  
  out_List:= 
  match (in_List1,in_List2,in_accumlst) 
    local 
      list<Type_a> rest_a,rest_b,accumlst;  Type_a fa,fb; 
    case ({},{},{}) then {}; 
    case (fa :: rest_a, fb :: rest_b, accumlst)  
      then list_thread_tail(rest_a, rest_b, fa :: fb :: accumlst); 
  end match; 
end list_thread_tail; 

6.1.2 Using Side Effects 

Can side effects such as updating of global data or input/output be used in specifications? Consider the 
following contrived example: 
function foo 
  input  Real in_x; 
  output Real out_y; 
algorithm 
  out_y := 
  matchcontinue in_x 
      local Real x,y; 
    case x equation  
      print "A"; y = condition_A(x); then y; 
    case x equation  
      print "A"; y = condition_A(x); then y; 
  end matchcontinue; 
end foo; 

The builtin function print is called in both rules, giving rise to the side effect of updating the output 
stream. The intent is that if condition_A is fulfilled, "A" should be printed and a value returned. On 
the other hand, if condition_B is fulfilled, "B" should be printed and some other value returned. The 
problem occurs if condition_A fails. Then backtracking will occur, and the next rule (which has the 
same matching pattern) will be tried. However, the printing of "A" has already occurred and cannot be 
undone. 

Such problems can be avoided if the code is completely determinate—at most one rule in a function 
matches and backtracking never occurs. Thus we may formulate the following usage rule: 

• Only use side-effects in completely deterministic functions for which at most one rule matches 
and backtracking may never occur. 

The problem can be avoided by separating the print side effect from the locally non-determinate 
choice, which is put into a side-effect free function choose_foo. 
function choose_foo 
  input  Real in_x; 
  output Real out_y; 
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algorithm 
  out_y := 
  matchcontinue x 
      local Real x,y; 
    case x equation 
      y = condition_A(x); then ("A",y); 
    case x equation 
      y = condition_B(x); then ("B",y); 
  end matchcontinue 
end choose_foo; 
 
function foo 
  input  Real in_x; 
  output Real out_y; 
protected 
  Real x,y,z; 
algorithm 
  (z,y) := choose_foo(x); 
  print(z); 
end foo; 

In the above contrived example, the problem can also be avoided in an even simpler way by just putting 
print after the condition using the fact that the evaluation of the local equations stops after the first 
local equation that fails: 
function foo2 
  input Real in_x; 
  output Real out_y; 
algorithm 
  out_y :=  
  matchcontinue in_x  
      local Real x,y; 
    case x equation 
      y = condition_A(x); print "A"; then y; 
    case x equation 
      y = condition_B(x); print "B"; then y; 
  end matchcontinue; 
end foo2; 

A natural question concerns the circumstances when side effects may occur, since Meta-Modelica is 
basically a side-effect free specification language. The following two cases can however give rise to side 
effects: 

• The print primitive causes side effects by updating the output stream. 
• External C functions which may contain side effects can be called from Meta-Modelica. 

There is also a builtin function tick, that generates a new unique (integer) “identifier” at each call— 
analogous to a random number generator. In order to ensure that each new integer is unique, some global 
state (e.g. a counter) has to be updated, which is a side effect. However, from the point of view of a 
semantics specification the actual value from tick is irrelevant—only the uniqueness is important. It 
does not matter if tick is called a few extra times and some values are thrown away during 
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backtracking. Thus, from a practical semantics point of view tick may be treated as a side effect free 
primitive if used in an appropriate way. 

6.2 More on the Semantics and Usage of Meta-Modelica Rules 

Below we present a number of issues  regarding the semantics and usage of Meta-Modelica rules. 

6.2.1 Logically Overlapping Rules 

A programming language specification in Meta-Modelica are often written in such a way that the local 
equations of different rules in a function are logically overlapping. For example, the predicates x<5 and 
3 x<10 are logically overlapping since there are values of x, in the interval [3,5) that satisfy both 
predicates.  

Below we specify a function func, which is specified to return x+10 when x<5, and x+20 for 
3 ≤ x<10. This is logically ambiguous in the interval 3 ≤  x < 5 where both alternatives are valid. 
function func 
  input Real in_x; 
  output Real out_y; 
algorithm 
  out_y := 
  matchcontinue in_x 
      local Real x,y; 
    case x                // x < 5 
      equation 
        true = x<5; then x+10; 
    case x  
      equation            // x>=3 and x<10 
        true = (x>=3); 
        true = (x<10);  then x+20; 
  end matchcontinue; 
end func; 

The determinate search rule of match-expressions in Meta-Modelica will resolve such ambiguities since 
the first matching rule will always return in the interval 3 ≤  x < 5. Thus, the first rule giving the value 
x+10 will be selected.  

There is one rather common case where logically overlapping rules together with Meta-Modelica’s 
search rule  of rule matching top-down, left-to-right, can be used to advantage, to allow more concise 
and easily readable specifications. The rules can be ordered such that rules with more specific conditions 
appear first, and more general rules which may logically overlap some previous rules appear later.  

However, from a strictly logical point of view, from classical Natural Semantics style, ambiguous 
rules in specifications are inconsistent and should be avoided.. 

Anyway, the style of specification with more specific conditions first and more general rules later 
makes sense from a logical point of view when interpreted together with Meta-Modelica’s top-down left-
to-right search rule— but is regarded as logically incorrect by purists because of the overlap. It also has 
the disadvantage that local referential transparency is destroyed, i.e., the semantics of the function is 
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changed if the ordering of the rules is changed. Such a set of rules can be converted to a semantically 
equivalent set of clumsier non-overlapping rules. Negated conjunctions must then be added to 
overlapping rules. 

6.2.2 Using else Default Rule in Match-Expressions 

There is a common situation in specifications where a large number of cases are handled similarly, 
except a few special cases which need to be treated specially. For example in the function isunfold 
below, where only the UNFOLD node returns true. All other nodes—which here are mentioned explicitly 
as separate rules—return false. 
function isunfold 
  input  Ty      in_node; 
  output Boolean out_res; 
algorithm 
  out_res := 
    match in_node 
      case UNFOLD(_) then true; 
      case ARITH(_) then false; 
      case PTR(_) then false; 
      case ARR(_,_) then false; 
      case REC(_) then false; 
    end match; 
end function; 

A more concise specification of this function can be obtained by adding a default rule at the end of the 
match-expression with a general pattern that matches all cases returning the same default result. The top-
down, left-to-right search rule in match-expressions ensures that the special cases will match if they 
occur—before the default case which always matches. The logical specification purist will unfortunately 
regard such a specification as logically incorrect because of the overlap. Meta-Modelica solves this 
problem by providing an explicit default else-rule in match-expressions, as in the example below: 
function isunfold 
  input  Ty      in_node; 
  output Boolean out_res; 
algorithm 
  out_res := 
    match in_node 
      case UNFOLD(_) then true; 
      else then false; 
    end match; 
end function; 
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6.3 Examples of Higher-Order Programming with Functions 

The idea of higher-order functions in declarative/functional programming languages is that functions 
should be treated as any data object: passed as arguments, assigned to variables, returned as function 
values, etc. 

Meta-Modelica supports a limited form of higher-order programming: functions can be passed as 
arguments to other functions, but cannot be returned as values or directly assigned as values.  

We give three examples of higher-order Meta-Modelica functions that take another function as a 
parameter, and a function that can be used as a conditional expression (if) construct within a single 
Meta-Modelica rule. The functions are the following: 

• if_ 

• list_reduce 

• list_map 

• list_fold 

The if_ function makes it possible in many cases to avoid having the then-part and the else-part as 
separate rules.  

The function takes a boolean and two values. Returns the first value (second argument) if the 
Boolean value is true, otherwise the second value (third argument) is returned. 
if(true,"a","b") => "a" 
 
function if_  
  input Boolean in_boolean1; 
  input Type_a in_type_a2; 
  input Type_a in_type_a3; 
  output Type_a out_type_a; 
protected  
  replaceable type Type_a; 
algorithm  
  out_type_a:= 
  match (in_boolean1,in_type_a2,in_type_a3) 
    local Type_a r; 
    case (true,r,_) then r;  
    case (false,_,r) then r;  
  end match; 
end if_; 

The list_reduce function takes a list and a function argument operating on two elements of the list. 
The function performs a reduction of the list to a single value using the function passed as an argument. 
list_reduce({1,2,3},int_add) => 6 
 
function list_reduce  
  input VType_aList in_vtype_alist; 
  input FuncType in_func; 
  output Type_a out_type_a; 
protected  
  replaceable type Type_a; 
  type VType_aList = list<Type_a>; 
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  function FuncTyp 
    input Type_a in_type_a1; 
    input Type_a in_type_a2; 
    output Type_a out_type_a; 
  end FuncType; 
algorithm  
  out_type_a:= 
  match (in_vtype_alist,in_func) 
    local 
      Type_a e,res,a,b,res1,res2; 
      FuncType r; 
      VType_aList xs; 
    case (list(e),r) then e;  
    case (list(a,b),r) 
      equation  
        res = r(a, b); then res; 
    case (a :: b :: (xs = _ :: _),r) 
      equation  
        res1 = r(a, b); 
        res2 = list_reduce(xs, r); 
        res = r(res1, res2); then res; 
  end match; 
end list_reduce; 

The list_map function takes a list and a function over the elements of the lists, which is applied to each 
element, producing a new list. For example, int_string has the signature: (int => string) 
list_map({1,2,3}, int_string) => { "1", "2", "3"} 
 
function list_map  
  input VType_aList in_vtype_alist; 
  input FuncType in_func; 
  output VType_bList out_vtype_blist; 
protected  
  replaceable type Type_a; 
  type VType_aList = list<Type_a>; 
  function FuncType 
    input Type_a in_type_a; 
    output Type_b out_type_b; 
   protected  
    replaceable type Type_b; 
  end FuncType; 
  replaceable type Type_b; 
  type VType_bList = list<Type_b>; 
algorithm  
  out_vtype_blist:= 
  match (in_vtype_alist,in_func) 
    local 
      Type_b f_1; 
      VType_bList r_1; 
      Type_a f; 
      VType_aList r; 
      FuncType fn; 
    case ({},_) then {};  
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    case (f :: r,fn) 
      equation  
        f_1 = fn(f); 
        r_1 = list_map(r, fn); then f_1 :: r_1; 
  end match; 
end list_map; 

The list_fold function takes a list and a function operating on pairs of a list element and an 
accumulated value, together with an extra accumulating parameter which is eventually returned as the 
result value. The third argument is the start value for the accumulating parameter. list_fold will call 
the passed function for each element in a sequence, adding to the accumulating parameter value.  
list_fold({1,2,3},int_add,2) =>  8 

int_add(1,2) => 3, int_add(2,3) => 5, int_add(3,5) => 8  

function list_fold  
  input VType_aList in_vtype_alist; 
  input FuncType in_func; 
  input Type_b in_type_b; 
  output Type_b out_type_b; 
protected  
  replaceable type Type_a; 
  type VType_aList = list<Type_a>; 
  function FuncType 
    input Type_a in_type_a; 
    input Type_b in_type_b; 
    output Type_b out_type_b; 
   protected  
    replaceable type Type_b; 
  end FuncType; 
  replaceable type Type_b; 
algorithm  
  out_type_b:= 
  match (in_vtype_alist,in_func,in_type_b) 
    local 
      FuncType r; 
      Type_b b,b_1,b_2; 
      Type_a l; 
      VType_aList lst; 
    case ({},r,b) then b;  
    case (l :: lst,r,b) 
      equation  
        b_1 = r(l, b); 
        b_2 = list_fold(lst, r, b_1); then b_2; 
  end match; 
end list_fold; 
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