
Efficiently Compiling a Functional Language on AMD64:
The HiPE Experience

Daniel Luna
luna@update.uu.se

Mikael Pettersson
mikpe@it.uu.se

Konstantinos Sagonas
kostis@it.uu.se

Department of Information Technology
Uppsala University, Sweden

ABSTRACT
We describe and document our experience from develop-
ing an AMD64 backend for the HiPE (High Performance
Erlang) native code compiler. We consider implementation
alternatives and critically examine design choices for obtain-
ing an efficient AMD64 backend. In particular, we consider
in detail how other functional language implementors can
migrate their existing x86 backends to the AMD64 architec-
ture, a platform which is becoming increasingly important
these days. We mention backend components that can be
shared between x86 and AMD64, and those that better be
different for achieving high performance on AMD64. Finally,
we measure the performance of several different alternatives
in the hope that this information can save development ef-
fort for others who intend to engage in a similar feat.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, code generation, incremental compilers, optimization;
D.3.2 [Programming Languages]: Language Classifica-
tions—Applicative (functional) languages

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
Functional programming, AMD64, Erlang

1. INTRODUCTION
It is hardly surprising that developing an efficient new

backend for an existing native code compiler, especially in
compilers for high-level languages, usually turns out to be a
bigger task than one initially anticipates. To do it properly,
one should ideally consider many alternatives for each de-
sign choice and experimentally evaluate their performance
tradeoffs. As this is much more easily wished than done, few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05, July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

programming language implementors actually invest this ef-
fort and follow this ideal approach to backend development.
We hold that the effort spent in developing a backend for a
new architecture can be reduced significantly if experiences
get documented on paper and shared among developers. In
this way, parameters that worked well in similar settings can
be used “as is”, and developers can concentrate their efforts
in varying design choices that rely on those assumptions
which are not valid in their framework.

In the context of the HiPE compiler, a native code com-
piler for the concurrent functional language Erlang,1 we have
spent a period of about a year developing and tuning a back-
end for AMD64. (Actually, this was the first 64-bit backend
for HiPE. The AMD64 platform was chosen due to its simi-
larities with the widely popular x86 architecture, its upcom-
ing importance,2 and the affordability of these machines.)
We have experimented with various implementation alter-
natives and, since the implementation issues at the level of
generating native code are independent of the characteris-
tics of the source language, we believe that our experiences
and measurements are of interest to all declarative language
implementors that consider developing an efficient AMD64
native code backend.

The contributions of this paper are:

• On the programming language implementation side,
the paper considers the performance tradeoffs of var-
ious design alternatives for backend components on
AMD64. In particular, we focus our attention on how
functional languages with an existing x86 backend can
migrate it to AMD64 with moderate effort, but with-
out missing opportunities to take advantage of archi-
tectural features present on AMD64 but not on x86.

• On the experimental side, the paper includes an ex-
tensive set of measurements (obtained using hardware
performance counters) that evaluate the performance
of various implementation alternatives and support the
choice of our design decisions.

As a by-product, this paper also documents the internals of
HiPE/AMD64 and compares our choices with those of the
very few other compilers with existing AMD64 backends.

1
The Erlang/OTP (Open Telecom Plaform) system includes the

HiPE compiler as an integated component. It is available both as
open source and commercially from Ericsson. See www.erlang.se and
www.it.uu.se/research/group/hipe/.
2
In addition to many major PC manufacturers that already provide

AMD64-based desktops and laptops, Sun has announced its new line
of AMD Opteron64 based servers and workstations; www.sun.com/amd/.

176

The rest of the paper is structured as follows. The next
section describes the infrastructure of the HiPE compiler,
while Sect. 3 overviews the characteristics of the AMD64 ar-
chitecture from a compiler writer’s perspective. Sections 4
and 5 form the main body of this paper describing in detail
issues that are generic to obtaining good performance on
AMD64 and issues that are particular to the implementation
of functional languages, respectively. The performance of
all these implementation alternatives is evaluated in Sect. 6.
The paper ends with reviewing the internals of other cur-
rently existing compilers with backends for AMD64 (Sect. 7)
and with some concluding remarks (Sect. 8).

2. THE HIGH PERFORMANCE ERLANG
COMPILER INFRASTRUCTURE

In this section, to set the context of our work, we briefly
describe the Erlang/OTP system and the HiPE native code
compiler which is the basis of our work; refer to [9, 13] for
more detailed information.

Erlang is a concurrent functional language designed for
developing large-scale, distributed, fault-tolerant, soft real-
time control systems such as those typically developed by
the telecom industry. The primary implementation of the
language is the Erlang/OTP system from Ericsson, which
is nowadays used by many big companies to develop large
(often in the order of million lines of code) commercial ap-
plications. Even though Erlang/OTP is by default based on
a virtual machine interpreter, since 2001, it also includes the
HiPE native code compiler as a fully integrated component.

The HiPE compiler currently has backends for SPARC
V8+, x86, AMD64, and PowerPC. (The HiPE/AMD64 back-
end is available since October 2004.) It can be used as either
a just-in-time or ahead-of-time compiler, and compilation
can start either from bytecode or from source. (However,
in this paper, all measurements were obtained in the mode
where compilation happens ahead-of-time and starts from
bytecode.) The target-independent part of the compilation
takes place in two intermediate code representations: Icode
and RTL.

Icode is internally represented as a control flow graph
(CFG) which has been turned into static single assignment
(SSA) form [4]. In this stage various optimizations are per-
formed: conditional constant propagation (ConstProp) [17],
unreachable and dead-code elimination (DCE), and copy
propagation (CopyProp). Finally, a type propagator guided
by static type inference eliminates type tests whose outcome
is statically determined, or pushes these tests forward in the
CFG to the point that they are really needed.

Icode is then translated into RTL, which is a generic (i.e.,
target-independent) three-address register transfer language,
but the code is target-specific, mainly due to the use of
platform-specific registers when accessing a process’ state,
differences in address computations, and some differences in
the built-in primitives. In RTL, almost all operations are
made explicit. For example, data tagging and untagging
is translated to appropriate machine operations (shift, or,
etc), data accesses are turned into loads and stores. Also
arithmetic operations, data constructions and type tests are
inlined. RTL is also internally represented as a CFG in
SSA form and similar optimizations as in Icode (ConstProp,
DCE, and CopyProp) as well as partial redundancy elimina-
tion (PRE) and control-flow optimizations are performed.

Finally, RTL code is translated to (a symbolic representa-
tion of) the language of the target backend. At this level the
most important compilation phases that take place are reg-
ister allocation, branch-prediction-aware trace linearization,
some peephole optimizations, and finally assembling.

As far as this paper is concerned, it is important to notice
that at the levels of RTL and machine language, issues are
independent from the choice and characteristics of language
from which HiPE starts its compilation; the implementa-
tion decisions do not depend on characteristics of Erlang
such as being concurrent or dynamically typed. They are
thus applicable to other native code compilers for functional
languages.

3. AN OVERVIEW OF AMD64
AMD64 is a family of general-purpose processors currently

available for server, desktop, and notebook computers [1].
Architecturally, these processors are 64-bit machines, with

16 64-bit integer registers, 16 floating-point registers, and
64-bit virtual address spaces. An important characteristic is
that they are fully compatible with 32-bit x86 code. AMD64
processors can run 32-bit operating systems and applications
(referred to as legacy mode), 64-bit operating systems and
applications, or 64-bit operating systems with 32-bit appli-
cations (called compatibility mode).

A distinguishing implementation feature of the current
AMD64 processors is their integrated memory controllers,
which increase bandwidth and reduce latencies for memory
accesses. Another implementation feature is that the server
processors support multiprocessing (up to 8-way) without
the need for external support components, which reduces
the cost and complexity of such systems.

Although the design originated from AMD, Intel has since
started making software-compatible 64-bit processors, ini-
tially for servers.3

3.1 Technical Summary
Here we summarize the technical aspects of AMD64 that

are relevant for language implementors. Many of these are
shared with x86; differences from x86 are described later.

• Instructions are in 2-address form, i.e. dst op= src.
Although operating on registers is generally faster, most
instructions allow either dst or src, but not both, to
be memory operands. A memory operand is the sum of
a base register, a scaled index register, and a constant
offset, where most parts are optional.

• The AMD64 has 16 64-bit general-purpose registers
and 16 floating-point registers. Instructions on 32-bit
integers automatically zero-extend their results to 64
bits (32-bit operands are default on AMD64), while
instructions on 16 or 8-bit integers leave the higher
bits unchanged.

• The implementations use pipelining, and out-of-order
and speculative execution of instructions; this means
that branch prediction misses are expensive.

• The dynamic branch prediction hardware has a buffer
that remembers whether a given branch is likely to be

3
Intel calls this Intel r© EM64T (Extended Memory 64 Technology)

though; see also www.intel.com/technology/64bitextensions/.

177

taken or not. When a branch is not listed in the buffer,
the static predictor assumes that backward branches
are taken, and forward branches are not taken. This
means that an efficient compiler should pay attention
to how it constructs traces and linearizes its code.

• There is direct support for a call stack, pointed to by
the %rsp general purpose register, via the call, ret,
push and pop instructions.

• The return stack branch predictor has a small circular
buffer for return addresses. A call instruction pushes
its return address both on the stack and on this buffer.
At a ret instruction, the top-most element is popped
off the buffer and used as the predicted target of the
instruction.

• Instructions vary in size, from one to fifteen bytes. The
actual instruction opcodes are usually one or two bytes
long, with prefixes and suffixes making up the rest.
Prefixes alter the behaviour of an instruction, while
suffixes encode its operands.

3.2 Differences from x86
The main differences from x86, apart from widening reg-

isters and virtual addresses from 32 to 64 bits and doubling
the number of registers, concern instruction encoding, elim-
ination of some x86 restrictions on byte operations, and the
new floating-point model.

The x86 instruction encoding is limited to 3 bits for reg-
ister numbers, and 32 bits for immediate operands such as
code or data addresses. AMD64 follows the x86 encoding,
with one main difference: the REX prefix. The REX prefix,
when present, immediately precedes the instruction’s first
opcode byte. It has four one-bit fields, W, R, X, and B,
that augment the instruction’s x86 encoding. Even though
AMD64 is a 64-bit architecture, most instructions take 32-
bit operands as default. The W bit in the REX prefix
changes instructions to use 64-bit operands. The R, X, and
B bits provide a fourth (high) bit in register number encod-
ings, allowing access to the 8 new registers not available in
the x86. The REX prefix uses the opcodes that x86 uses
for single-byte inc and dec instructions; on AMD64, these
instructions must use a two-byte encoding.

Immediate operands on AMD64, such as address or data
constants, are limited to 32 bits just as on x86. This means
that branches, calls, and memory accesses cannot directly
access arbitrary locations in the 64-bit address space. (Such
accesses must in general be indirect via a pointer register.)
To simplify the construction of 64-bit constants, AMD64 has
a new instruction which takes a 64-bit immediate operand
and copies it into a specific register.

32-bit immediate operands on AMD64 are zero-extended
when used in 32-bit operations (the default), but they are
sign-extended when used in 64-bit operations. This makes
it difficult to use constants and addresses in the [231, 232

−1]
range in 64-bit operations.

x86 has several ways of encoding a memory operand that
denotes an absolute 32-bit address. AMD64 redefines one
of those encodings to instead denote a PC-relative address.
This is particularly helpful for reducing the number of load-
time relocations in programs with many accesses to global
data.

On AMD64 any general purpose register can be used in a
load or store operation accessing its low 8 bits. On x86 only

registers 0–3 can be used in this way, since register numbers
4–7 actually denote bits 8 to 15 in these registers in byte
memory access instructions.

Every AMD64 processor implements the SSE2 floating-
point instruction set, which is register-oriented with 16 reg-
isters. x86 processors have traditionally used the x87 in-
struction set, which is based on an 8-entry stack. Although
newer x86 processors also implement SSE2, they are limited
to 8 registers; furthermore, unless told otherwise, a compiler
for x86 cannot assume that SSE2 is available.

4. GENERATING EFFICIENT CODE ON
AMD64: GENERIC CONSIDERATIONS

For generation of efficient code on AMD64, there are a
few general but important rules to obey:

1. Enable good branch prediction. Arrange code to follow
the static branch predictor’s rules. Ensure that each
ret instruction is preceded by a corresponding call

instruction: do not bypass the call stack or manipulate
the return addresses within it.

2. Many instructions have different possible binary en-
codings. In general, the shortest encoding maximizes
performance. Avoid unnecessary REX prefixes.

3. Keep variables permanently in registers when possible.
If this is not possible, it is generally better to use mem-
ory operands in instructions than to read variables into
temporary registers before each use.

4. Ensure that memory accesses are to addresses that are
a multiple of the size of the access: a 32-bit read or
write should be to an address that is a multiple of 4
bytes. Reads and writes to a given memory area should
match in address and access size.

4.1 Immediate Operands
Immediate values (constants) in general operands are lim-

ited to 32 bits on AMD64, as on x86. On AMD64, an im-
mediate is sign-extended to 64 bits when used in a 64-bit
operation, while 32-bit operations compute 32-bit results
which are then zero-extended to 64 bits before being stored
in a target register.

A direct consequence of this is that instructions contain-
ing large immediates may have to be rewritten on AMD64.
If a constant in the [231, 232

−1] range is to be simply loaded
into a register or stored in a 32-bit memory word, then there
is no problem because a 32-bit operation will have the de-
sired effect: if the target is a register then the result is zero-
extended to 64 bits, and if the target is a memory operand,
the result is truncated to 32 bits. On the other hand, if such
a constant is to be used as an operand in a 64-bit operation,
like an addition or a 64-bit memory write, then the code
must be modified to compute the constant into a register
first, and to use that register instead of the constant in the
original instruction.

Another consequence is that code or data at arbitrary
64-bit addresses cannot be accessed using only immediate
operands: in general, 64-bit addresses must be loaded into
registers which are then used to access the code or data
indirectly.4 A code model is a set of constraints on the size

4
This is a generic issue on machines which only have immediate

178

and placement of code and data, the idea being that runtime
overheads can be reduced by sacrificing some generality. The
C ABI document for AMD64 [8] defines the following three
basic code models for application code:5

Small code model All compile- and link-time addresses
and symbols are assumed to fit in 32-bit immediate
operands. This model avoids all overheads for large
addresses, but restricts code and global data to the
low 2GB of the address space, due to sign-extension of
immediate operands.

Medium code model Like the small code model, except
that addresses of global data are unrestricted. To con-
struct a large address, the compiler must use a new
form of the move instruction which loads a 64-bit im-
mediate constant into a register. Calls and jumps to
code can still use ordinary 32-bit immediate offsets.

Large code model No restrictions are placed on the size
or placement of either code or global data. Global
data accesses are as in the medium code model. Long-
distance calls and jumps must use indirection: this can
be done statically, by rewriting all call and jumps that
may be long-distance, or dynamically, by having the
linker or loader redirect long-distance calls and jumps
to automatically generated trampolines that then jump
indirectly to the final targets.6

On HiPE/AMD64 we opted for a hybrid small/medium code
model. Addresses of code and runtime system symbols are
assumed to fit in sign-extended 32 bit immediates. The
addresses of data objects defined in compiled code, i.e.,
compile-time literals and jump tables, are not assumed to
fit in 32 bits; for them the move reg,imm64 instruction is
used, which the code loader updates with the datum’s ac-
tual runtime address.

For comparison, GCC on AMD64 implements the small
and medium code models, with the small one being the de-
fault [7]. It also implements a variant of the small code
model where all constant addresses are in the last 231 bytes
of the 64-bit address space; this code model is used for the
Linux kernel.

4.2 Floating-Point Arithmetic
Floating-point arithmetic on x86 is traditionally done with

the old x87 instruction set, which uses an 8-entry stack. A
newer register-oriented instruction set, SSE2, was added in
the Pentium 4 processor, but a compiler for x86 cannot uti-
lize it unless it can be sure that the generated code will only
run on SSE2-capable processors. AMD64 changes the situa-
tion in two ways: SSE2 is guaranteed to be present, and the
number of floating-point registers has been doubled to 16.

HiPE/AMD64 implements both models. SSE2 is gener-
ally preferred over x87, because of the larger number of reg-
isters, and because it avoids the complicated analyses and
code generation algorithms needed to work around the lim-
itations of the x87 stack [11].7

operands smaller than their virtual address space. The issue also
affects 32-bit SPARC and PowerPC, but not x86.
5
The ABI also defines code models for position-independent code and

the Linux kernel.
6

HiPE uses trampolines on PowerPC to compensate for its small
unconditional branch offsets.
7
Although AMD64 processors still support x87, there are indications

4.3 Register Allocation
Generating efficient code for x86 can be difficult, mainly

because the small number of general-purpose registers (7,
not counting the stack pointer) results in a larger number of
spills than on typical RISC machines. Generating efficient
code requires using both computationally intensive register
allocation methods, such as graph coloring, and x86-specific
solutions such as using explicit memory operands instead
of reloading spilled temporaries into registers (which might
cause other temporaries to spill).

AMD64 considerably improves the situation. The avail-
ability of 15 general-purpose registers (excluding the stack
pointer) reduces register pressure and the number of spills.
This may allow more lightweight strategies for register al-
location, such as linear scan [14, 15], to become feasible on
AMD64; this is especially important when compilation time
is an issue, such as in JITs and in interactive systems.

8-bit operations can be awkward on x86 because it only
allows the first four general-purpose registers to be used for
8-bit operands. AMD64 allows any general-purpose regis-
ter to be used for 8-bit operations. Working around the
limitations on x86 constrains either instruction selection or
register allocation, which can result in performance losses8.
On AMD64 these constraints are not necessary, allowing the
compiler to generate potentially higher-performance code.

4.4 Parameter Passing
Passing function parameters in registers is an important

optimization in many programming language implementa-
tions. It is even more important for functional program-
ming languages due to their call-intensive nature. First, it
tends to reduce the number of memory accesses needed to
set up the parameters in the caller. Second, it allows the
callee to decide whether the parameters need to be saved
on the stack or not. For leaf functions, the parameters can
typically remain in registers throughout the function’s body.
For non-leaf functions, the compiler is free to decide if and
where the parameters should be saved on the stack.

Since AMD64 has twice as many general-purpose regis-
ters as x86 has, a compiler will in general be able to pass
more parameters in registers on AMD64 than on x86, which
should improve performance.

An important issue to consider is whether the calling con-
vention needs to be compatible with the standard C calling
convention or not. In the former case, the compiler has little
choice but to follow the standard rules, which for Unix and
Linux are: on x86 all parameters are passed on the stack,
on AMD64 the first six are passed in registers with the re-
mainder on the stack just as for x86. If this is the case,
then the compiler must be generalized to support register
parameters when migrating from x86 to AMD64. In the
latter case, the compiler is probably already passing some
parameters in registers in x86, so migrating to AMD64 just
involves changing the number of parameter registers used,
and their names.

4.5 Branch Prediction
Enabling good branch prediction is essential for perfor-

mance for typical integer code, due to such code having a

that some operating systems, including Windows, will drop x87 sup-
port when they migrate from 32 to 64 bits.
8

In HiPE/x86, these limitations are currently worked around by
always using the %eax register in byte memory accesses.

179

higher degree of tests and conditional branches than typical
numerical code. The processor’s dynamic branch prediction
table takes care of this for the most frequently executed
(hot) code, but it cannot do so for infrequently executed
(cold) code, or when the amount of hot code is too large for
the table.

If the compiler has reason to assume that a given condi-
tional branch is more likely to branch in a particular direc-
tion, then it should linearize the code so that this prediction
coincides with the processor’s static branch predictor. Mod-
ern AMD64 and x86 processors predict forward conditional
branches as not taken, and backward conditional branches
as taken, so a way to achieve this is to:

1. bias conditional branches to be unlikely to be taken, if
necessary by inverting their conditions, and

2. linearize the control flow graph by constructing traces
that include the most likely path first.

Assumptions about branch directions may come from a vari-
ety of sources, including programmer annotations9 and feed-
back from running the code in profiling mode. Dynamically
typed languages typically perform frequent type tests that
check for error conditions before primitive operations; these
tests can be assumed to be highly biased in the non-error
direction.

In a large code model, (potentially) long-distance calls
and jumps must use indirection via computed addresses.
The targets of such instructions will not be predictable un-
less the instructions occur in hot code paths. Using normal
(static) calls or jumps to trampolines may improve branch
predictability by reducing the number of distinct indirect
jumps that need to be resolved and recorded in the dynamic
branch prediction table.

Since call and ret instructions push and pop (respec-
tively) return addresses on the return stack branch predic-
tion buffer, it is important to use them in pairs. Not doing
so, by for instance manually pushing a return address on the
stack but returning to it with ret, will cause the buffer to
become unsynchronized with the actual stack, which in turn
causes branch prediction misses in the ret instructions. This
issue highly relevant for languages that implement proper
tail-recursion optimization; see Sect. 5.1.

4.6 Instruction Operand Encoding
x86 encodes instruction operands using so-called ModRM

and SIB bytes, which contain modifiers and register num-
bers. Some combinations of modifiers and register numbers
change the interpretation of an operand, leading to a num-
ber of special cases which must be handled. The AMD64
REX prefix provides an additional bit for each of the three
register number fields in the ModRM and SIB bytes, which
affects the rules for the special cases. The updated rules for
the existing special cases are:

• A memory operand with a base register can be de-
scribed with just a ModRM byte, except when the
register is %esp, in which case an additional SIB byte
is required.

AMD64 does not decode the REX B bit to determine
this case. Therefore, a SIB byte is also required when
register 12 (%esp + 8) is used as a base register.

9
Such as the builtin expect annotation in gcc.

• A memory operand with a base register but no offset
(implicitly zero) can be decribed with just a ModRM
byte, except when the register is %ebp, in which case
an explicit offset constant must be included.

AMD64 does not decode the REX B bit to determine
this case. Therefore, an explicit offset is also required
when register 13 (%ebp + 8) is used as a base register.

• %esp cannot be used as an index register in a memory
operand, since that SIB encoding instead indicates the
absence of an index.

AMD64 does decode the REX X bit to determine this
case. Therefore, there is no problem using register 12
(%esp + 8) as an index register.

• A memory operand with a base register and an op-
tional index but no offset can be described with a
ModRM and a SIB byte, except when the register is
%ebp, in which case an explicit offset must be included.

AMD64 does not decode the REX B bit to determine
this case. Therefore, an explicit offset is also required
when register 13 (%ebp + 8) is used as a base register
with an optional index.

AMD64 also adds a new special case. A memory operand
specified simply by a 32-bit constant can be encoded in sev-
eral different ways. AMD64 has redefined the shortest en-
coding so that the constant is added to the program counter
instead of being an absolute address. This is a highly de-
sirable feature since it can be used to reduce the number of
load-time relocations, but it forces operands with absolute
addresses to use a longer encoding on AMD64 than on x86.

4.7 Detecting and Avoiding REX Prefixes
The REX prefix on AMD64 has two uses: it provides

additional bits to register numbers in instruction operands,
and it provides a flag which switches an instruction from the
default 32 bit operand size to a 64 bit operand size.

Detecting the need for a REX prefix is easily done while
the assembler is encoding an instruction: any use of a high
register number (8–15) or a 64-bit operation triggers it.

On the other hand, REX prefixes increase code size, re-
ducing instruction decode bandwith and the capacity of the
instruction cache, so the recommendation [2] is to avoid un-
necessary REX prefixes. This can be done by avoiding 64-
bit operations when 32-bit ones suffice, and by preferring
low register numbers (0–7) over high ones in 32-bit opera-
tions. The applicability of these strategies are application
and language specific. For instance, most C code uses plain
int for integers, which are 32 bits on AMD64, while code
using pointers or pointer-sized integers (which is typical in
high-level symbolic languages) must use 64-bit operations.

5. EFFICIENCY CONSIDERATIONS SPE-
CIFIC TO FUNCTIONAL LANGUAGES

5.1 Tail Recursion and Branch Prediction
Functional languages usually require proper tail-recursion

optimization in their implementations. This is because they
omit imperative-style looping statements, so tail-recursive
function calls is the only way to construct loops. Logic pro-
gramming languages are similar in this respect.

180

Consider a call chain where f recursively calls g which
tailcalls h. f sets up a parameter area including a return
address back to f and then branches to g. g then rewrites
this area and branches to h. In h, the area must look ex-
actly as if f had called h directly. The format and size of
the parameter area depends on the number of parameters;
a tailcall where the caller and callee have different num-
ber of parameters must therefore change the format of the
area. Now consider the return address parameter. It will
not change at a tailcall, but depending on the formatting
rules for the parameter area, it may still have to be moved
to a different location. This relocation is pure overhead, so
many implementations have focused on avoiding it.

One way to avoid relocating the return address is to al-
ways pass it in a specific register; to return, a jump via
that register is executed [16]. Another approach is to push
the return address on the stack before pushing the remain-
ing actual parameters [5]. This ensures that even if caller
and callee at a tailcall have different number of parameters,
the location of the return address will remain the same. To
return, a native return instruction which pops the address
off the stack may be used, or the address can be popped
explicitly and jumped to via a register. Both approaches
have been used to implement tailcalls on stack-oriented ma-
chines like x86 and older CISCs10. The problem with these
approaches is that they cause branch prediction misses at
returns, because the return stack branch predictor either is
not used at all or is out of sync.

The approach taken in HiPE, on both x86 and AMD64,
is to use the native call stack in the natural way. At a re-
cursive call, the parameters are placed in registers or at the
bottom of the stack, and the callee is invoked with a call

instruction. At a return, a ret $n instruction is executed
which pops the return address and n bytes of parameters
and then returns. The main advantage of this approach is
that it enables the return stack branch predictor, which re-
duces the number of branch mispredictions. It also reduces
the number of instructions needed at calls and returns. The
only disadvantage is that the return address will have to
be relocated at tailcalls if the caller and callee have dif-
ferent number of parameters on the stack. However, with
sufficiently many parameters passed in registers, the need
for relocating the return address becomes less likely. Since
AMD64 has more registers available for parameter passing
than x86, a calling convention that avoids return address
relocation in most cases is quite feasible.

5.2 Caching Global State in Registers
Compiled code from functional languages often reference a

number of global state variables, typically including at least
a stack pointer and a heap pointer (for dynamic memory
allocation), and usually also stack and heap limit pointers
(for memory overflow checking). Erlang, being a concurrent
language, adds to these a simulated clock and a pointer to
the current process’ permanent state record. Having these
global state variables permanently in registers should in gen-
eral improve performance. Thanks to its larger number of
registers, up to about 4–6 global variables in registers should
be possible on AMD64.

Increasing the number of global state variables in regis-
ters also increases the cost when these registers must be
saved to or restored from memory cells. One such case is

10
Passing the return address in a register is the normal case for RISCs.

when the code needs to call procedures written in other
languages, such as C library procedures. Another case is
context switching for process scheduling in concurrent lan-
guages that implement their own processes. In Erlang/OTP,
both cases are very frequent.

5.3 Native Stack Pointer or Not?
The stack pointer needs additional consideration. As de-

scribed previously, using the hardware-supported stack in
the natural way has advantages for branch prediction and
instruction counts; it also avoids reserving a general-purpose
register for a rôle directly supported by the hardware stack
pointer. Unfortunately, using the hardware stack also has
some disadvantages:

• On both AMD64 and x86, a memory operand consist-
ing of a base register and an offset requires a one byte
longer encoding when the base register is the hardware
stack pointer. This slightly increases the code size for
stack accesses.

As long as reasonable quality register allocation is per-
formed for local variables, it is doubtful that this code
size increase is a serious issue.11 If it does turn out to
be an issue, then another register can be reserved, and
used either as a frame pointer in addition to the stack
pointer, or as a replacement for the stack pointer. Of
course, both choices entail performance losses in other
areas.

• Some operating systems can force a process to asyn-
chronously execute a call to some code on the current
hardware stack. This issue arises from signal handlers
in Unix and Linux, but it also affects Windows and
possibly other operating systems. If the stack is dy-
namically sized and explicitly managed by the com-
piled code from the functional language, then the stack
may overflow as a result of such an asynchronous call.

On Unix/Linux, it is possible to force signal handlers
to execute on a separate stack, via the sigaltstack

system call and by registering signal handlers with the
SA ONSTACK flag. HiPE, MLton, and Poly/ML all use
this solution. No such workaround appears to be pos-
sible for Windows, so there the options seem limited to
either include a scratch area at the bottom of the stack
(the solution used by Poly/ML), or to abandon using
the native stack at all (the solution used by MLton).

• Synchronous calls to code written in some other lan-
guage, such as C library routines, are also susceptible
to stack overflow if the stack is dynamically allocated
and explicitly managed. If this is the case, then those
calls should be implemented such that a stack switch
is performed to the standard C stack before the call,
followed by a switch back afterwards.

After the stack switch the actual parameters must also
be adjusted if the parameter passing conventions differ
between the functional language and C. Passing most
parameters in registers reduces this cost, even more so
on AMD64 than x86 since C on AMD64 takes up to
six integer parameters in registers.

11
MLton was designed to avoid the issue on x86, by using %ebp as

a pointer to a simulated stack, and reassigning %esp to be the heap
pointer. There is no benchmark data available measuring the impact
of this design choice.

181

��������� �	
���
��� ������������ ���������� � ����� � � ��		 � ���������� �������� � ��� � ��������

�

����

�����

�����

�����

�����

�����

�����

�����

���

�����

���

�
�
�
�
�
�
�

������
������

��!���

Figure 1: Code size in bytes on x86 vs. AMD64 (size due to REX prefixes explicitly shown).

HiPE on AMD64 passes parameters in the same regis-
ters as C, which avoids having to copy the parameters
at (its frequent) calls to C procedures. On x86, HiPE
passes parameters in registers which are then simply
pushed on the C stack before a call to C; this is cheaper
than copying them from memory on the Erlang stack.

6. PERFORMANCE EVALUATION
The performance evaluation was conducted on a desktop

machine with a 2GHz Athlon64 processor, 1GB of RAM and
1MB of L2 cache, running Fedora Core 2 Linux in 64-bit
mode. Measurements for x86 code were obtained by run-
ning that code in compatibility mode on the same machine.
The Linux kernel has been updated with the perfctr ker-
nel extension [12], which provides per-process access to the
processor-specific performance monitoring counters. This
allows us to accurately measure runtime performance based
on the number of clock cycles, obtain information about
branch misprediction rates, compute CPI, and so on.

In figures and tables, all reported code sizes are in bytes.
Runtime performance, whenever not explicitly shown in clock
cycles, has been normalized so that in charts the lower the
bar, the better the performance.

The characteristics of the nine benchmark programs are
as follows: three of them (barnes2, float bm, and pseudo-

knot) are floating-point intensive, one of them (descrypt)
manipulates mostly bytes as it implements the DES encryp-
tion/decryption algorithm, and the remaining five manipu-
late integers, strings, and structured terms such as lists and
trees. One benchmark, md5, creates large numbers of 32-
bit integers. When tagged, they do not fit in 32-bit machine
words, so on x86 they are boxed and stored on the heap as
“bignums”. They do fit in 64-bit machine words however,
providing a significant advantage for AMD64.

6.1 Code Size Increase
Object code size typically increases on AMD64 compared

with x86, but decreases are also possible due to e.g., the

availability of more registers which results in less code for
handling spilled temporaries. In HiPE/AMD64, the bulk
of the code increase is due to the REX prefixes needed to
generate 64-bit instructions and access the high registers.
The rest of the increase is due to larger immediate offsets
(for example, stack frames are often larger, requiring 32-
bit offsets instead of 8-bit offsets when accessing data on
the stack), and accessing 64-bit constants (which require a
move to a register before each use). As can be seen in Fig-
ure 1, the code size increase is moderate and mostly due
to REX prefixes. Percentage-wise, the size of REX prefixes
is between 12–17% of the total AMD64 code for all bench-
marks.12 Since these benchmark programs are quite small,
we also show the code size for a larger “real-world” telecom
library called megaco (Media Gateway Controller). It also
confirms these numbers.

6.2 Running 32-bit vs. 64-bit Applications
With this experiment we try to determine whether it is

worth developing a native code compiler for AMD64 in the
first place. A main advantage of AMD64 machines is that
they can run 64-bit operating systems and 32-bit x86 ma-
chine code in compatibility mode. So, if one is not interested
in having a 64-bit address space, why not simply run the
code in this mode? Even though there are drawbacks (for
example, only 8 registers are available), even in compatibil-
ity mode, an AMD64 runs at full speed (i.e., no emulation
is involved).

Since the answer to this question very much depends on
the sophistication of the compiler, we offer two views. Fig-
ure 2 shows performance of AMD64 vs. x86 code when us-
ing two different register allocators and keeping every other
backend component the same. It is clear that the 64-bit
mode is a winner. It behaves better when the allocator can-
not prevent spilling on x86 (such is the case when using
linear scan). It also provides better performance in pro-

12
For comparison, Appendix A.1 shows code size increase in programs

generated using gcc.

182

Benchmark 64-bit mode 32-bit mode Ratio

descrypt 394450329 417732104 0.94
smith 1124120607 975115035 1.15
huff 2824795743 2817767486 1.00
prettypr 982338705 838201998 1.17
decode 2147561421 2325866898 0.92
md5 231344119 2062041044 0.11

(a) Using iterated register coalescing

Benchmark 64-bit mode 32-bit mode Ratio

descrypt 414822324 739868823 0.56
smith 1292385208 1744318644 0.74
huff 2797567542 3118378476 0.90
prettypr 1019246428 1039895068 0.98
decode 2160353131 2694052200 0.80
md5 265340924 2150536420 0.12

(b) Using a linear scan register allocator

Figure 2: Performance (clock cycles) of native 64-bit vs. 32-bit applications (i.e., x86 code).

��������	 �
���	 �
��	 ��������	 ������	
��	

�

��

��

��

��

��

��

��

��

��

���

	����������	 	������	����	 	�����	�����	 	�����

�

(a) On AMD64

�������� �	
�� ��

 �������� ������ 	��

�

��

��

��

��

��

��

��

��

��

���

�������
�� �
��������� ����������� ��
��

�

(b) On x86

Figure 3: Normalized performance of varying the register allocation algorithm on AMD64 and x86.

grams which manipulate bytes (descrypt) and large integers
(md5) as it avoids the restrictions of the x86. On the other
hand, there are programs (e.g., smith and prettypr) where
the performance is slightly worse on 64-bit mode due to
pointer-based data structures such as lists and records be-
coming larger, and thus placing additional burdens on the
memory and cache subsystems.

6.3 Choice of Register Allocator
The HiPE compiler is one of the few native code compilers

with a choice of three global register allocators: one based
on iterated register coalescing [6], a Briggs-style graph col-
oring allocator [3], and a linear scan register allocator [14,
15]. There is also a näıve allocator which keep temporaries
in memory and only loads them into registers locally on a
per-instruction basis; it however avoids loading temporaries
when instructions can accept explicit memory operands. All
four allocators were ported to AMD64.

Figure 3 shows normalized (w.r.t. the näıve allocator)
performance results when varying the choice of allocator on
AMD64 and x86. As can be seen, on both architectures,
global register allocation really pays off; see e.g. descrypt.13

On the other hand, since AMD64 has twice as many registers
as x86, even a low-complexity algorithm such a linear scan
provides decent performance and is competitive with graph
coloring algorithms, which require significantly longer time
to perform the allocation.

13
As can be seen in Figure 6 (Appendix A.2), it also reduces the size

of the generated native code.

6.4 Reserving Registers for Parameter Pass-
ing

As can be seen in Figure 4, choosing the right number of
registers for parameter passing is non-trivial. With the ex-
ception of md5 whose performance improves by about 15%,
the differences in performance (which is shown normalized
w.r.t. using zero registers for parameter passing) are rather
small. Since, as mentioned in Sect. 4.4, there may be other
considerations (e.g. calling foreign code) when choosing the
number of registers for parameter passing, we recommend
taking these into account and choosing a number between 3
and 5.

6.5 Floating-Point Arithmetic
As can be seen in Table 1, there is a definite advantage

to using SSE2 instead of x87 for floating-point on AMD64.
Erlang is not ideal for numerical applications: FP values
are heap-allocated and never passed in registers, and FP
register temporaries are short-lived, but even so there is still
a moderate speedup by using SSE2.

6.6 Use of Native Stack Pointer or Not
We saved the best for last. Figure 5 shows the branch mis-

prediction rates on AMD64 and x86 when using the hardware-
supported native stack vs. simulating the stack with a general-
purpose register. Again, the message is clear: use of the
native stack reduces the number of branch mispredictions14

14
The lower branch misprediction rate for md5 on AMD64 vs. x86

when using native stack is due to AMD64 not having to handle
bignums by calling C routines.

183

descrypt smith huff prettypr decode md5
70

75

80

85

90

95

100

105

0
1
2
3
4
5
6

%

Figure 4: Normalized performance varying the number of reserved registers for parameter passing.

Table 1: Performance comparison of SSE2 vs. x87 stack on AMD64.
Clock cycles Code size

Benchmark using SSE2 using x87 SSE2/x87 SSE2 x87

barnes2 672921992 679159760 0.99 15828 16928
float bm 601989479 792802467 0.76 2564 2468
pseudoknot 192459474 200751883 0.96 36880 38056

��������		 �
���	 �
��	 ��������	 ������	
��	

�

�

�

�

�

�

�

�

�
	�����	������	

	�����	��

�����	

	

	 ��	������

	 ��	��

�����

!

Figure 5: Branch misprediction rates when using
native vs. simulated stack.

and executed clock cycles (data shown in Appendix A.3).
Performance-wise, it pays off.

7. RELATED WORK AND SYSTEMS
The GNU Compiler Collection has by now mature sup-

port for AMD64 [7]. For AMD64 it includes optimizations
such as: using direct move instructions instead of push or
pop when changing the stack, preferring SSE2 over x87, us-
ing only the low 64 bits of SSE2 registers when possible,
defaulting to a small code model, and replacing small 8 or
16-bit loads with 32-bit loads and explicit zero extensions.
Instruction scheduling is implemented but found to be valu-
able mostly to SSE2 code. For calling conventions, gcc is
bound to follow the ABI [8]. Both Intel and The Portland
Group have released commercial C/C++/Fortran compilers
with AMD64 support, but no detailed documentation about
their implementation strategies appears to be available.

In the area of functional or declarative languages, cur-
rently very few directly support native code on AMD64 (we
do not consider those that compile via C). The only one we
know of to have mature AMD64 support, apart from HiPE,
is O’Caml [10]. On AMD64, O’Caml passes 10 arguments

in registers, uses the native stack, and reserves two registers
for global state variables: the heap pointer and the current
exception handler. Its x86 backend passes 6 arguments in
registers, uses the native stack, and reserves no registers for
handling global state. A straightforward graph coloring reg-
ister allocator is used for both backends.

The Glasgow Haskell Compiler has a preliminary AMD64
backend, but it currently does not implement any register
allocation for AMD64. Plans for developing AMD64 back-
ends for Clean and MLton are underway.

8. CONCLUDING REMARKS
Due to its similarities with the x86, the AMD64 is a new

64-bit platform that offers a unique opportunity to func-
tional language implementors: the chance to “super size”
their existing x86 backend with moderate effort. In this pa-
per, we have described in detail how one can migrate an
existing x86 backend to AMD64 and the issues that need to
be addressed in order to obtain an efficient AMD64 backend.

There are good indications that in the near future AMD64
machines might become as commonplace as x86 machines
are today. If so, sooner-or-later, existing native code com-
pilers for (declarative) programming languages will need to
adapt to this architecture. We hold that our experience and
measurements, which correspond to a lot of work, provide
valuable guidance to those wishing to develop such a back-
end.

Acknowledgments
This research and the development of the AMD64 backend
of HiPE have been supported in part by VINNOVA through
the ASTEC (Advanced Software Technology) competence
center as part of a project in cooperation with Ericsson.

184

9. REFERENCES
[1] AMD Corporation. AMD64 Architecture Programmer’s

Manual, Sept. 2003. Publication # 24592, 24593, 24594,
26568, 26569.

[2] AMD Corporation. Software Optimization Guide for AMD
AthlonTM 64 and AMD OpteronTM 64 Processors, Sept.
2003. Publication # 25112, Revision 3.03.

[3] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to
graph coloring register allocation. ACM Trans. Prog. Lang.
Syst., 16(3):428–455, May 1994.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph. ACM
Trans. Prog. Lang. Syst., 13(4):451–490, Oct. 1991.

[5] R. K. Dybvig. Three Implementation Models for Scheme.
PhD thesis, Department of Computer Science, University of
North Carolina at Chapel Hill, 1987. Technical Report
TR87-011. Available from:
http://www.cs.indiana.edu/scheme-repository/.

[6] L. George and A. W. Appel. Iterated register coalescing.
ACM Trans. Prog. Lang. Syst., 18(3):300–324, May 1996.

[7] J. Hubička. Porting GCC to the AMD64 architecture. In
Proceedings of the GCC Developers Summit, pages 79–105,
May 2003.

[8] J. Hubička, A. Jaeger, and M. Mitchell. System V
Application Binary Interface, AMD64 Architecture
Processor Supplement. See www.x86-64.org.

[9] E. Johansson, M. Pettersson, K. Sagonas, and T. Lindgren.
The development of the HiPE system: Design and
experience report. Springer International Journal of
Software Tools for Technology Transfer, 4(4):421–436, Aug.
2003.

[10] X. Leroy et al. The Objective Caml system release 3.07.
INRIA, Sept. 2003. See also http://caml.inria.fr/ocaml/.

[11] T. Lindahl and K. Sagonas. Unboxed compilation of
floating point arithmetic in a dynamically typed language
environment. In R. Peña and T. Arts, editors,
Implementation of Functional Languages: Proceedings of
the 14th International Workshop, volume 2670 of LNCS,
pages 134–149. Springer, Sept. 2002.

[12] M. Pettersson. Linux performance-monitoring counters
kernel extension. Available from:
http://user.it.uu.se/∼mikpe/linux/perfctr/.

[13] M. Pettersson, K. Sagonas, and E. Johansson. The
HiPE/x86 Erlang compiler: System description and
performance evaluation. In Z. Hu and
M. Rodŕıguez-Artalejo, editors, Proceedings of the Sixth
International Symposium on Functional and Logic
Programming, volume 2441 of LNCS, pages 228–244,
Berlin, Germany, Sept. 2002. Springer.

[14] M. Poletto and V. Sarkar. Linear scan register allocation.
ACM Trans. Prog. Lang. Syst., 21(5):895–913, Sept. 1999.

[15] K. Sagonas and E. Stenman. Experimental evaluation and
improvements to linear scan register allocation. Software –
Practice and Experience, 33(11):1003–1034, Sept. 2003.

[16] G. L. Steele Jr. Rabbit: a compiler for Scheme (a study in
compiler optimization). MIT AI Memo 474, Massachusetts
Institute of Technology, May 1978. Master’s Thesis.

[17] M. N. Wegman and F. K. Zadeck. Constant propagation
with conditional branches. ACM Trans. Prog. Lang. Syst.,
13(2):181–210, Apr. 1991.

Table 3: Size (in bytes) of generated native code on
HiPE/x86 vs. HiPE/AMD64.

x86 AMD64
Benchmark Code size Code size REX REX%

barnes2 14236 15828 2102 13.3%
float bm 2036 2564 295 11.5%
pseudoknot 31316 36880 5413 14.7%
descrypt 30008 35988 6137 17.1%
smith 5056 6208 960 15.5%
huff 10416 12964 2046 15.8%
prettypr 18916 24320 3658 15.0%
decode 6948 8940 1352 15.1%
md5 10044 13176 1846 14.0%
megaco 233320 289688 46340 16.0%

APPENDIX
A. ADDITIONAL MEASUREMENTS

To support some claims in Sect. 6, we include additional
measurements.

A.1 Code Size Increase
Table 2 shows the size of object files for some familiar

Linux programs on AMD64. (We have also included the
beam executable which contains code for the abstract ma-
chine and runtime system of Erlang/OTP.) These data were
collected using the size, and objdump commands. In the
table, the “Code size” column shows the total size as re-
ported by the size command on AMD64 and the “REX%”
column the part attributed to REX prefixes. The remaining
columns show increase of various sections compared with the
corresponding object files on x86. For example, the “text”
increase is computed as (amd64 text − x86 text)/x86 text,
and similar calculations occur for obtaining numbers for
“data”, “bss”, and “total”.15

Things to note are that in code generated by gcc, the REX
prefix percentage is slightly less than the one we report in
Sect. 6.1, but on the other hand, the total increase in code
size in object files is often much bigger than that between
HiPE/x86 and HiPE/AMD64. (For convenience, the data
used to generate Figure 1 are also shown in table form in
Table 3.)

A.2 Choice of Register Allocator
The effect of the register allocation algorithm used on the

size of the generated code on AMD64 is shown in Figure 6.

A.3 Use of Native Stack Pointer or Not
Data in Tables 4 and 5 show more detailed measurements

than those of Sect. 6.6. They show the same branch mis-
prediction rates as Figure 5, but they also show runtime
performance based on the number of clock cycles. With the
exception of huff on AMD64 whose clock cycle increase we
cannot fully explain (it is probably due to unlucky cache
alignment), the numbers reinforce the message that using
the processor’s native stack rather than a simulated one is
a winner.

15
In Table 2, one can not directly compare the total size increase with

the ‘REX%’, since the total increase is based on the x86 code sizes
and the ‘REX%’ is based on the AMD64 ones.

185

Table 2: Size of C object files (generated by gcc 3.3.3) on AMD64.
AMD64 Increase compared with x86

Application Code size REX% text data bss total

xterm 314591 5.8% 13.1% 38.6% 4.1% 15.0%
beam 1659007 9.7% 30.0% 48.8% 84.1% 43.0%
gdb 2857930 6.6% 18.2% 88.4% 15.1% 19.4%
ddd 3260866 7.7% 0.6% 70.1% 33.8% 3.2%
emacs 6622446 10.1% 14.9% 66.3% 0.0% 50.5%

��������	 �
���	 �
��	 ��������	 ������	
��	

�

����

�����

�����

�����

�����

�����

�����

�����

�����

	����������	

	������	����	

	�����	�����	

	�����	

�
�
�
�
��
��

������

Figure 6: Sizes of generated native code with different register allocators on AMD64.

Table 4: Performance using a native stack vs. a simulated stack on AMD64.
Branch misprediction % Clock cycles

Benchmark native simulated native simulated ratio

descrypt 3.4 5.9 394450329 427570517 0.92
smith 2.4 7.4 1124120607 1508869465 0.75
huff 0.4 1.0 2824795743 2614481627 1.08
prettypr 4.7 6.4 982338705 1041787437 0.94
decode 3.7 4.5 2147561421 2268147888 0.95
md5 0.8 3.8 231344119 267420561 0.87

Table 5: Performance using a native stack vs. a simulated stack on x86.
Branch misprediction % Clock cycles

Benchmark native simulated native simulated ratio

descrypt 3.5 5.9 417732104 451400978 0.93
smith 1.5 7.8 975115035 1331622536 0.73
huff 0.4 0.9 2817767486 2845832068 0.99
prettypr 5.2 6.4 838201998 882885782 0.95
decode 3.2 3.8 2325866898 2463384521 0.94
md5 2.4 3.6 2062041044 2197177458 0.94

186

