Eclipse – RML Debugger communication protocol
This paper describes communication protocol between Eclipse RML Plugin and RML Debugger. The protocol is based on TCP sockets and contains two separate communication channels, command and events. RML Debugger listens for commands coming from Eclipse RML Plugin and responses by sending information synchronously or asynchronously, which depends on a command being sent. When asynchronous communication is required then event channel is used for this purposose. All are synchronous actually. The RML debugger could let’s say accept asynchronous events but they will be put on a waiting list (queue) and executed at certain points when the execution can stop and the queue examined.
The protocol currently supports setting/unsetting breakpoints, stepping, resuming, variable viewing. Optional RML Backtrace and call chain viewing can be implemented later.
The following is the list of commands which can be sent to RML Debugger. Each command is marked whether it requires synchronous or asynchronous processing.
break on|off filename:N – setting or unsetting breakpoint. N specifies the line number. filename specifies the file beeing open in the editor. (SYNC)
Response: “ok” or “failed”
step - perform stepping. (SYNC)
resume – perform program resuming. (SYNC)
livevars – request current live RML variables. (SYNC)
Response: comma separated list of variables

var V, filename, position information - request variables information. V is the name of a variable. (SYNC)
Response: formatted string of variable information (The same output as in RMLDataTree Java program)
backtrace – request backtrace information. (SYNC)
Response: list of strings with the functions/relations present on the stack at the moment with their parameters
call chain – request call chain information. (SYNC)
Response: list of strings with the functions/relations that were executed from the begining until the present moment with their parameters (as these approaches millions only a history of 1000 or less can be stored in the debugger)

The following asynchronous events are sent from RML Debugger to Eclipse RML Plugin:
resume step | client - resume step is sent in case of step command. resume client is sent in case of resume command. (See Stepping and Resuming UML diagrams below)
suspend step | breakpoint on/off filename:N – suspend step is sent in case of step command. suspend breakpoint is sent in case of resume command. (See Stepping and Resuming UML diagrams below)
[image: image1.jpg]SETTING / UNSETTING BREAKPOINTS

RMLDebugTarget RMLDebugger
T
I

T
|
setunset breakpoint | '
|
'

‘command "break onloff N"
il B

"ok | “failed”

[image: image2.jpg]STEPPING

RMLDebugTarget EventDispatchioh
| |
| |
sop | !
command "step"”
|
e G e e

event "resume step”

|
|
|
|
| resumed

§I:> v Single
atocstt
T

| ovent"suspond stop”

suspendedt

|
|
I
freSuspendEvent
affocts Ul
T
|

[image: image3.jpg]RESUMING

[TT— EventDispatchion o
. T T
H 1 i
resume | ! !
i i I
— o - I
command "rosuma !
: »
i 1
e B i
| i |
| i i
| | ovent"rosumectient |
i 1
| resumed i
i1 i
I
Run unit| breakpoint
freResumeEvent !
afecs Ul |
- I
L I
v 1 i
1 | ovont "suspond broakpoint N* |
i 1
! suspenced i
i1 i
I
i
freSuspendEvent }
Ul |
i
I
i
I
H

[image: image4.jpg]GETTING LIVE VARIABLES

"RMLDebugTarmet RMLDebugoer

refresh varables

[image: image5.jpg]GETTING VARIABLE INFORMATION

VarisblesView

BMLVariable

RifLDebugTarget RAMLDebugoer

gatvariable

getvariable

RMLValue

command "ar X"

formated variable nfo as string

