EQUATION-BASED MODEL REDUCTION IN OPENMODELICA COMPILER

OPENMODELICA WORKSHOP 05.02.2018, LINKÖPING, SWEDEN

OLIVER LENORD, NIKLAS WORSCHECH, FATEMEH DAVOUDI, UMUT DURAK, SVEN HARTMANN

Equation-based Model Reduction in OpenModelica Compiler Content

- Motivation
- Model Order Reduction
- Equation-based Model Reduction
- Results of Previous Works
- Implementation in OpenModelica Compiler
- Performance of Current Implementation
- Conclusions
- Outlook

Motivation

2 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Model Reduction Use Cases

- System Model
 - Predict the system behavior in the design space

- SiL/HiL Model
 - Reproduce the system behavior in the operation space

- Control Design Model
 - Reproduce the I/O behavior of the subsystem in the controller range

Equation-based Model Reduction in OpenModelica Compiler Proper Model Generation – Use Cases

- System Model
 - Predict the system behavior in the design space
 - Detailed model considering all relevant physical effects
 - Parameters derived from design or considered as design variables
 - Validated component models
 - Explore the design space offline to find optimal design

- ► HiL Model
 - Reproduce the system behavior in the operation space
 - Simplified model considering most relevant phys. effects
 - Parameters derived from detailed model
 - Validated against detailed model
 - Realtime simulation to verify the stability of the controller

- Control Design Model
 - Reproduce the
 I/O behavior of the
 subsystem in the controller
 range
 - Simplified model considering only the required phys. effects
 - Parameter identified through measurements
 - Validate against measurements
 - ECU runtime capable model as part of the control algorithm

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Model Order Reduction

6 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018 © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Equation-based Model Reduction in OpenModelica Compiler Equation-based Model Reduction vs. Model Order Reduction

Equation-based Model Reduction

- Based on a set of <u>symbolic</u> equations and a reference solution.
- Derive a reduced set of equations in a defined accuracy of the required outputs.

Model Order Reduction (MOR)

- ► Based on <u>finite element</u> models.
- Derive very fast and highly accurate compact models¹).

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018 © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

¹⁾ Antoulas, A. C. 2005. "An Overview of Approximation Methods for Large-Scale Dynamical Systems." *Annual Reviews in Control* 29 (2): 181–90. doi:10.1016/j.arcontrol.2005.08.002.

Equation-based Model Reduction in OpenModelica Compiler Equation-based Model Reduction vs. Model Order Reduction

Equation-based Model Reduction

- ► Prerequisite:
 - ► Validated equation based physical model
 - Reference Scenario (Test function + known reference solution)
 - Required accuracy of selected outputs
 OR required number of FLOPS on target HW
- ► Limitations:
 - ► Applicable only to comparatively small models.
 - ► Does not scale well.
 - Result depends heavily on the quality of the scenario.

Model Order Reduction (MOR)

- ► Prerequisite:
 - Validated finite element model
 - Boundary conditions
 - Required accuracy of selected outputs in defined operation range
- ► Limitations/Challenges:
 - ► Discontinuities.
 - Parametric / Non-linear Reduced Order Model (ROM) requires special techniques¹⁾.
 - Dense models from system simulations that do not stem from an integral kernel.
- 1) Dorwarth, M., S. Kehrberg, R. Maul, R. Eid, F. Lang, B. Schmidt, and J. Mehner. 2014. "Nonlinear Model Order Reduction for High Q MEMS Gyroscopes." In 2014 IEEE 11th International Multi-Conference on Systems, Signals Devices (SSD14), 1–4. doi:10.1109/SSD.2014.6808820.

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Order Reduction

9 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018 © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

- ► Assumptions:
 - d, T small
 - $m_{M_1} \ll m_{M_2}$

 $\begin{aligned} x_{rel,S_1} &= x_{M_1} \\ x_{rel,S_2} &= x_{M_2} - x_{M_1} \\ v_{rel,S_1} &= v_{M_1} \\ v_{rel,S_2} &= v_{M_2} - v_{M_1} \\ F_{S_1} &= c_{S_1} \cdot x_{rel,S_1} + d_{S_1} \cdot v_{rel,S_1} \\ F_{S_2} &= c_{S_2} \cdot x_{rel,S_2} + d_{S_2} \cdot v_{rel,S_2} \end{aligned}$

$$\dot{v}_{M_1} = v_{M_1}$$

$$\dot{v}_{M_1} = \frac{1}{m_{M_1}} (F_{S_2} - F_{S_1})$$

$$\dot{x}_{M_2} = v_{M_2}$$

$$\dot{v}_{M_2} = \frac{1}{m_{M_2}} (F_{ext} - F_{S_2})$$

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

- ► Assumptions:
 - d, T small
 - $m_{M_1} \ll m_{M_2}$

 $\begin{aligned} x_{rel,S_1} &= x_{M_1} \\ x_{rel,S_2} &= x_{M_2} - x_{M_1} \\ v_{rel,S_1} &= v_{M_1} \\ v_{rel,S_2} &= v_{M_2} - v_{M_1} \\ F_{S_1} &= c_{S_1} \cdot x_{rel,S_1} + d_{S_1} \cdot v_{rel,S_1} \\ F_{S_2} &= c_{S_2} \cdot x_{rel,S_2} + d_{S_2} \cdot v_{rel,S_2} \end{aligned}$

$$\dot{v}_{M_1} = v_{M_1}$$

$$\dot{v}_{M_1} = \frac{1}{m_{M_1}} (F_{S_2} - F_{S_1})$$

$$\dot{x}_{M_2} = v_{M_2}$$

$$\dot{v}_{M_2} = \frac{1}{m_{M_2}} (F_{ext} - F_{S_2})$$

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

- ► Assumptions:
 - d, T small
 - $m_{M_1} \ll m_{M_2}$

 $x_{rel,S_{1}} = x_{M_{1}}$ $x_{rel,S_{2}} = x_{M_{2}} - x_{M_{1}}$ $v_{rel,S_{1}} = v_{M_{1}}$ $v_{rel,S_{2}} = v_{M_{2}} - v_{M_{1}}$ $F_{S_{1}} = c_{S_{1}} \cdot x_{rel,S_{1}}$ $F_{S_{2}} = c_{S_{2}} \cdot x_{rel,S_{2}}$

$$\dot{v}_{M_1} = v_{M_1}$$

$$\dot{v}_{M_1} = \frac{1}{m_{M_1}} (F_{S_2} - F_{S_1})$$

$$\dot{x}_{M_2} = v_{M_2}$$

$$\dot{v}_{M_2} = \frac{1}{m_{M_2}} (F_{ext} - F_{S_2})$$

12 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

- ► Assumptions:
 - d, T small
 - $m_{M_1} \ll m_{M_2}$

$$x_{M_{1}} = \frac{c_{S_{2}} \cdot x_{M_{2}}}{c_{S_{1}} + c_{S_{2}}}$$
$$x_{rel,S_{2}} = x_{M_{2}} - x_{M_{1}}$$
$$F_{S_{2}} = c_{S_{2}} \cdot x_{rel,S_{2}}$$

$$\dot{v}_{M_2} = v_{M_2}$$

 $\dot{v}_{M_2} = \frac{1}{m_{M_2}} (F_{ext} - F_{S_2})$

13 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Behavior of Manually Reduced Model

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Equation-based Model Reduction Algorithm

- ► User Input:
 - Physical Model (DAE)
 - Reference Scenario
 - Error Boundaries
- ► Algorithm Output:
 - Ranking List: Terms with low impact first
 - Reduction List: Reduced terms
 - Error of Reduced Model vs.
 Original Model

BOSCH

15 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Reduction Methods

- Reduction Method
 - Term reduction (elimination)
 - Linearization
 - Replace with constant
 - Symmetry
- Automated Identification of applicable reductions
 - Estimation of the impact
 - Trade-off between effort and precision
 - Ranking Methods

/	
> + +++	
5. ST.	
"E	
Intro Africa	

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Ranking Methods in Comparison

Residual Ranking

- + Computational Effort
- + Implementation
- Precision
- Relative Ranking

One-Step Ranking

- Computational Effort
- o Implementation
- + Precision
- + Absolute Ranking

Sensitivity Ranking

- + Computational Effort
- + Implementation
- + Precision
- Relative Ranking
- Applicability

17 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Results of Previous Works

18 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Spatial Two-lane Vehicle Dynamics Model

- Spatial Two-lane Vehicle Dynamics Model
 - 30 States
 - Pacejka tire model
- ► Scenario
 - Double lane change at 40 km/h
 - Outputs: a_y , $\ddot{\psi}$
- Real time target
 - Sony Playstation 2 (10⁸ FLOPS)
 - 1ms cycle time \rightarrow FLOPS per step < 10^5
- Applied methods
 - One-step ranking
 - Term reduction

Mikelsons, Lars, Dieter Schramm, and Hans-Bernd Knoop. 2012. Generierung vereinfachter Modelle mechatronischer Systeme auf Basis symbolischer Gleichungen. Duisburg; Essen: Universitätsbibliothek Duisburg-Essen.

19 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Spatial Two-lane Vehicle Dynamics Model – Results

- Validation of reduced model
 - ▶ Double lane change at 80 km/h.
 - ► Error slightly larger than 10%.
 - Further reductions lead to known simplified vehicle dynamics models.
 - Reduced model requires 92215 FLOPs per integration step.
 - <u>Speed-up by a factor of 18</u> compared to the original model.

BOSCH

20 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Hydro-mechanical Vehicle Model

- Spatial Skid-Steer Loader model with hydraulic drive train
 - ~2000 equations in Modelica and
 - 52 states
- Scenario
 - Double loop maneuver
 - Outputs: v_x , v_y
 - Tolerance of the mean square error: 0.005 ${}^{m^2}/{}_{s^2}$
- Applied methods
 - Residual ranking
 - Term reduction

Lars Mikelsons, Hongchao Ji, Thorsten Brandt, and Oliver Lenord. 2009. "Symbolic Model Reduction Applied to Realtime Simulation of a Construction Machine." In , 765–74. doi:10.3384/ecp09430136.

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018 © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Equation-based Model Reduction in OpenModelica Compiler Reduction Results

- Undesired oscillations in the velocities.
- Deviations in the vertical dynamics.
- Solution:
 - Apply DFT (Discrete Fourier Transformation) as additional acceptance criteria for the reductions.

BOSCH

27 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Results with DFT

- Oscillations have vanished.
- Physically meaningful reductions are applied by neglecting:
 - Vertical dynamics
 - Pitch and roll dynamics
 - Dynamics of pressure relief valves
- Speed-up by a factor of 6 compared to the original model

22 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Implementation in OpenModelica Compiler

24 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018 © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Equation-based Model Reduction in OpenModelica Compiler Implementation in OpenModelica Compiler

- ► Available in OpenModelica 1.13.0
 - C++ Runtime with Buffer
 - Compiler Flag: --labeledReduction

▶ mos Script

```
setCommandLineOptions("+simCodeTarget=Cpp -d=writeToBuffer --labeledReduction");
getErrorString();
loadModel(Modelica); getErrorString();
loadFile("Test.mo"); getErrorString();
```

simulate(Test,fileNamePrefix="Test", stopTime = 20.0, outputFormat="buffer"); getErrorString();

Source: http://www.openmodelica.org [2]

25 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler

- ► Labels are added in the Code Generation phase.
- Evaluation and setting of the labels for Ranking and Reduction is managed during the simulation phase.

26 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Implementation in OpenModelica

Source: http://www.openmodelica.org [2]

27 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Implementation in OpenModelica

- OMC includes:
 - Labeling of all terms of an equation.
 - Reduction algorithm to remove selected terms from the equations.

- ► C++ Runtime includes:
 - Ranking algorithm of all labeled terms
 - Reduction algorithm that checks which terms can be removed from the equations

28 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Performance of Current Implementation

29 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018
© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Equation-based Model Reduction in OpenModelica Compiler Performance Test of Current Implementation

► Assumptions:

Evaluation using two mass model

30 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Ranking Results

Reduction	Labels to zero	v m2 error	
Step 1	8	10.7966	
Step 2	11	3,42727	_
Step 3	12	3,42727	Accepted
Step 4	14	3,57779	
Step 5	15	10,7966	Reductions
Step 6	0	0	
Step 7	0,2	0,494477	
Step 8	0.5	0	
Step 9	0,5,6	2,80696	
Step10	0,5,10	10,7966	
Step11	0,5,13	0,106507	
Step12	0,5,3	2,8069	
Step13	0,5,4	2,8069	
Step14	0,5,7	2,15583	
Step15	0,5,6	2,8069	
Step16	0,5,1	10,7966	

- Only reductions with small impact are accepted.
- Deviation of v_{M_2} remains in error bound.
- 31 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

- Absolute error of residual and perfect ranking 550 500 3.5 Actual behavior Absolute error of residual ranking ranking 3 400 perfect 350 2.5 300 5 2 250 error **Desired** behavior 1.5 200 Absolute 150 100 0.5 50 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 Ranking step
- ✓ Term reduction works.
- Residual ranking is poor.

Equation-based Model Reduction in OpenModelica Compiler Impact of Ranking on Overall Performance

- Ranking reduces the reduction effort by more than a factor of three.
- Residual Ranking is twice as fast as the Perfect Ranking.
- *Residual Ranking* does lead to an overall time saving of ~20%.
- Residual Ranking does have a negative impact on achieved speed-up. Not all possible reductions are applied.
- Overall effort of *Perfect Ranking* is bigger than using *No Ranking*.
- Based on current implementation it is recommended to use No Ranking.

Perfect Residual Ranking Ranking **No Ranking** Ranking Effort 460 ms 230 ms 140 ms 450 ms Reduction Effort 130 ms **Overall Effort** 600 ms 360 ms 450 ms 0.528 0.103 0.528 Error 1.04 1.13 1.13 Speed-up

32 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Reduction Results

Implemented reduction:

$$\begin{aligned} x_{rel,S_1} &= x_{M_1} \\ x_{rel,S_2} &= x_{M_2} - x_{M_1} \\ v_{rel,S_1} &= v_{M_1} \\ v_{rel,S_2} &= \frac{v_{M_2} - v_{M_1}}{v_{Rel,S_2}} \\ F_{S_1} &= c_{S_1} \cdot x_{rel,S_1} + \frac{d_{S_1} \cdot v_{rel,S_1}}{v_{Rel,S_2}} \\ F_{S_2} &= c_{S_2} \cdot x_{rel,S_2} + \frac{d_{S_2} \cdot v_{rel,S_2}}{v_{Rel,S_2}} \\ \dot{x}_{M_1} &= v_{M_1} \\ \dot{v}_{M_1} &= \frac{1}{m_{M_1}} (F_{S_2} - F_{S_1}) \\ \dot{x}_{M_2} &= v_{M_2} \\ \dot{v}_{M_2} &= \frac{1}{m_{M_2}} (F_{ext} - F_{S_2}) \end{aligned}$$

- Algebraic terms are removed.
- Differential terms have not been removed.

3.3 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

► Theoretical reduction:

$$x_{M_{1}} = \frac{c_{S_{2}} \cdot x_{M_{2}}}{c_{S_{1}} + c_{S_{2}}}$$
$$x_{rel,S_{2}} = x_{M_{2}} - x_{M_{1}}$$
$$F_{S_{2}} = c_{S_{2}} \cdot x_{rel,S_{2}}$$

$$\dot{x}_{M_2} = v_{M_2}$$

 $\dot{v}_{M_2} = \frac{1}{m_{M_2}} (F_{ext} - F_{S_2})$

Equation-based Model Reduction in OpenModelica Compiler Simulation Results

- ✓ Abs. error of output is in bound.
- ✓ 10% speed-up of RHS evaluation by reduction of algebraic terms.
- Decrease in simulation performance using variable step size solver due to undesired oscillations.
- Theoretical speed-up by a factor of three is not achieved.

BOSCH

34 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Conclusions & Outlook

35 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Conclusions

► Labeling

- − Labeling of the C Code does not allow symbolic optimization of the reduced equation system
 → No order reduction, no optimized algebraic loops.
- Proposal: Labeling should be applied to Modelica code or SCode.

Ranking

- Sensitivity Analysis or One Step Ranking is expected to give better results than current Residual Ranking.
- Overall time saving of ranking compared to No Ranking is moderate and therefore not as relevant.
- Order reduction ("fast states") has biggest impact on speed-up and should be handled at highest priority.
- Reduction
 - Better performance criteria required (e.g. DFT) to avoid undesired oscillations as side effects of term reduction.
 - "Dead code" (evaluation of not output relevant code) should be excluded up-front.

Equation-based Model Reduction in OpenModelica Compiler Outlook

- Debugging in Visual Studio
 - Fix current crash after merge into master.
- ► Re-design
 - Definition of scenario (excitation) and error criteria need to be independent of the model to be reduced.
 - Applied reductions must be back traceable and the reduced model should be reusable as Modelica model.
 - Shifting of current implementation to SCode or to an external module (e.g. by using an extended Python API)?

BOSCH

27 Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Equation-based Model Reduction in OpenModelica Compiler Outlook

- Additional cost measures need to be defined:
 - Additional error norms considering stiffness, Eigen frequency (DFT)
 - Preserving certain system properties (i.e. stability, passivity, linearity) ¹).
 - Computational effort (FLOPs, CPU time)²⁾.
- Methods of Uncertainty Quantification may be applicable.
- ▶ Combination with other reduction approaches to be investigated ^{3,4}).

- 1) Schilders, Wil. 2008. "Introduction to Model Order Reduction." *Model Order Reduction: Theory, Research Aspects and Applications*, 3–32.
- 2) Mikelsons, Lars, Dieter Schramm, and Hans-Bernd Knoop. 2012. *Generierung vereinfachter Modelle mechatronischer Systeme auf Basis symbolischer Gleichungen*. Duisburg; Essen: Universitätsbibliothek Duisburg-Essen.
- 3) Gu, Chenjie. 2011. "Model Order Reduction of Nonlinear Dynamical Systems." University of California, Berkeley.
- 4) Panzer, Heiko, Jan Mohring, Rudy Eid, and Boris Lohmann. 2010. "Parametric Model Order Reduction by Matrix Interpolation." *At-Automatisierungstechnik Methoden Und Anwendungen Der Steuerungs-*, *Regelungs-Und Informationstechnik* 58 (8): 475–484.

Equation-based Model Reduction in OpenModelica Compiler Outlook – Future Use Case: Proper Models for Control Design

- Control Design Models in Physics based Adaptive Controllers*
 - Control Design Model
 - Feed Forward
 - Controller
 - Adaptive Controllers
 - Online Parameter Identification
 - Fault-tolerant Adaptive Controller
 - Observer
 - Diagnostics
- ➔ Require physical models in a particular equation structure

- ► Hypothesis:
 - Apply the Model Equation Reduction approach to generate proper models for control design from more detailed system models.

Linear (LIN)				
$\sum_{k=0}^{n} a_k \cdot \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{m} b_k \cdot \frac{d^k u(t)}{dt^k} \qquad n \ge m$				
Linear dynamics and static nonlinearity (STANLIN)				
$\sum_{k=1}^{n} a_k \cdot \frac{d^k y(t)}{dt^k} = \sum_{k=1}^{m} b_k \cdot \frac{d^k u(t)}{dt^k} + f(y(t), u(t)) \qquad n \ge m$				
Static nonlinearity and frictions, linear rest-dynamics (FRICSTANLIN)				
$\sum_{k=1}^{n} a_k \cdot \frac{d^k y(t)}{dt^k} = \sum_{k=1}^{m} b_k \cdot \frac{d^k u(t)}{dt^k} + f(y(t), u(t)) + g\left(\frac{dy(t)}{dt}\right) \qquad n \ge m$				
Fully nonlinear dynamics (NLIN)				
$f\left(y(t),,\frac{d^{n}y(t)}{dt^{n}},u(t),,\frac{d^{m}u(t)}{dt^{m}}\right) = 0 \qquad n \ge m$				

Lenord, Worschech, Davoudi, Durak, Hartmann, OpenModelica Workshop, Linköping, SE | 02/05/2018

Thank you for your attention.

<u>Oliver Lenord¹</u>, <u>Niklas Worschech²</u>, Fatemeh Davoudi³, Umut Durak³, Sven Hartmann³

 ¹⁾ Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, 71272 Renningen, Germany
 ²⁾Bosch Rexroth AG, Engineering Systems and Solutions, Rexrothstraße 3, 97816 Lohr a.M., Germany
 ³⁾Technical University Clausthal, Department of Computer Science, Albrecht-von-Groddeck-Straße 7, 38678 Clausthal-Zellerfeld, Germany

