
AN INTEGRATED FRAMEWORK FOR MODEL-DRIVEN PRODUCT
DESIGN AND DEVELOPMENT USING MODELICA

 Adrian Pop1 Olof Johansson2 Peter Fritzson3

Programming Environments Laboratory
Department of Computer and Information Science

Linköping University
58131 Linköping

Sweden

1 Phone: +46 13 285781, Fax: +46 13 284499, Email: adrpo@ida.liu.se
2 Fax: +46 13 284499, Email: olojo@ida.liu.se
3 Phone: +46 13 281484, Fax: +46 13 284499, Email: petfr@ida.liu.se

Abstract

This paper presents recent work in the area of model-driven product development processes. The
focus is on the integration of product design tools with modeling and simulation tools. The goal
is to provide automatic generation of models from product specifications using a highly
integrated set of tools. Also, we provide the designer with the possibility of selecting the best
design choice, verified through (automatic) simulation of different implementation alternatives of
the same product model. To have a flexible interaction among various tools of the framework an
XML representation of the Modelica modeling language called ModelicaXML is used. For
efficient search in a large base of simulation models the Modelica Database was designed.

1 Introduction and Related Work
Designing products is a complex process. Highly
integrated tools are essential to help a designer to
work efficiently. Designing a product includes
early design phase product concept modeling and
evaluation, physical modeling and simulation and
finally the physical product realization. For
conceptual modeling and physical modeling and
simulation available tools provide advanced
functionality. However, the integration of such
tools is a resource consuming process that today
requires large amounts of manual, and error prone
work. Also, the number of physical models
available to the designer in the product concept
design phase is typically quite large. This has an
impact on the selection of the best set of
component choices for detailed product concept
simulation.
 To address these issues we have integrated new
product concept design tools with physical

modeling and simulation tools in a framework for
product design. In our proposed framework, the
product concept design phase of the product
development process is based on Function-Means
tree decomposition [7, 13]. This phase is
implemented in a first version of a prototype tool
called FMDesign, developed in cooperation with
the Machine Design Group led by Petter Krus,
IKP, Linköping University.
 As an example of Function-Means tree
decomposition we give a landing function in an
airplane. This function can be represented by two
different means: hydraulic landing gear or electric
landing gear. Each of the two alternatives can be
selected and configured to simulate its properties.
 Starting from FMDesign tool, our integration
work extends the framework in two ways:
• Providing a Selection and Configuration Tool

that helps the designer to choose a specific
implementation for the means in the function-
means tree from a Modelica model/

mailto:adrpo@ida.liu.se
mailto:olojo@ida.liu.se
mailto:petfr@ida.liu.se

component database. This tool also provides
component configuration and has links to a
Modelica standard based simulation
environment for component editing.

• Providing an Automatic Model Generation
Tool that helps the designer to choose the best
implementation from
different design
choices by evaluation
through simulation of
automatically
generated models of
candidate product
concepts. If the
designer is not pleased
with the results,
he/she can either
implement new
models for the
components that did
not perform in the
desired way or
reiterate in the design
process and choose
other alternatives for
implementing
different functions in
the product, or change
the configuration
parameters for models at deeper levels of
detail.

The paper is structured as follows: The next
section presents an overview of our proposed
framework. Section 3 enters in the details of the
framework components and their interaction.
Section 4 presents our conclusion and future
work.
 The presented system has similarities with the
Schemebuilder tool [8]. However our work is
more oriented towards the design of advanced
complex products that require systems
engineering, and targeted to the simulation
modeling language Modelica, which to our
knowledge has more expressive power in the
areas of our research, than many tools for systems
engineering that are currently widely used. For
details on Systems Engineering, see [2].

2 Architecture overview

The architecture of our extended framework is
presented in Figure 1. The entire product concept
design process is iterative.

Engineering
Design

System X

Product Concept
Design Tool

(FMDESIGN)

Requirements
Database

F1

M1a M1b M1c

F1a.1 F1a.2 F1a.3

ModelicaXML
Generated

Models

Simulation
Evaluation

Optimisation

Modelica
Simulation
Source code

Means
Evaluations

Operation
Cases

Product Concept Design
Database

Reference Links

F = Function
M = Means

Modelica Model
Database

Selection and Configuration
Tool

Automatic
Model

Generator
Tool

Figure 1: Design framework for product development

Starting from requirements for a product the
designer will use the FMDesign prototype for
modeling alternative product concepts. The
knowledge base for designing a product is
organized into function-means trees. A function in
the product can be realized by alternative means.
A product concept is a set of means that document
selected solution alternatives for implementing the
functions in a product concept. Example of a
function is "Actuator Power Supply",
with means "Hydraulic Power Supply"
or "Electrical Power Supply". Means
must be implemented by (physical) components
arranged in a bill-of-material like tree of
implementation objects.
 One can roughly say that a means and its
implementation are the same, but at different
levels of detail. Implementation objects (not

shown in the figure) may represent existing
component products on the market or
manufactured components. Implementation
objects carry data that is important for the
product concept design, and references to more
detailed design information like CAD-drawings,
simulation models etc. Some (physical
components) may implement several means, like
an aircraft wing that creates lift and stores fuel.
 To map suitable simulation model
implementations to a means, the designer would
use the Modelica Database query facility
provided by the Selection and Configuration
Tool. This tool also provides configuration of the
simulation components and uses the desired
Modelica environment for component editing.
 When the product concept design phase of the
product is sufficiently complete, the designer can
generate code for simulation from the
implementation tree using the Automatic Model
Generator Tool. The generator will output models
(different versions for different product concepts)
in ModelicaXML. From Modelica-XML the
models are translated to Modelica to be simulated.
The designer can review the simulation results in
tools like MathModelica [3], Dymola [1] or
OpenModelica [10] and then selects (in
FMDesign) the desired model alternative for the
implementation. If the designer sees that some
means do not perform in the desired way, a
customized simulation model can be built, or a
search conducted for more alternatives for that
specific means.

Modelica
code

Modelica
XML

Modelica Parser

read

output

class Test "comment"
Real x;
Real xdot;

equation
xdot = der(x);

end Test;

<modelicaxml>
<definition ident= "Test"

comment="comment">
<component ident="x" type="Real"

visibility="public" />
<component ident="xdot" type="Real"

visibility="public" />
<equation>...</equation>

</definition>
</modelicaxml>

modelicaxml

definition

component

component

equation

3 Detailed framework description
In this section we present the tools from our
proposed framework. Also, we briefly explain in
each section how they interact.

3.1 ModelicaXML
Modelica [4, 9] is an object-oriented language
used for modeling of large and heterogeneous
physical systems. For modeling with Modelica,
commercial software products such as
MathModelica [3] or Dymola [1] have been
developed. However, there are also open-source
projects like the OpenModelica Project [10].
 Modelica is translated to ModelicaXML using a
Modelica parser (Figure 2).

Figure 2: Modelica and the corresponding ModelicaXML
representation

ModelicaXML represents an XML serialization of
the Abstract Syntax Tree of the Modelica
language obtained after the parsing. In our
framework, ModelicaXML is used as an
interchange format between the different design
tools.
 The advantages of having an alternative
representation for Modelica in XML are:
• Flexible interaction and translation between

different types of physical modeling
languages and modeling tools. Also, easy
generation of model documentation.

• Basic search and query functionalities over
models.

• Easy transformation and composition of
models [12].

For more information on ModelicaXML the
reader is referred to [11] and [9].

3.2 Modelica Database (ModelicaDB)
The features of the Modelica language and
Modelica tools has made easy for designers to
create models. Also, the Modelica community has
a growing code-base. In order to cope with
interoperability between Modelica and other
modeling languages we first developed
ModelicaXML. However, scalability and efficient
search features for XML require extensive skills
in vendor specific products. To quickly get such
features without taking on that huge learning

effort, we have designed the Modelica Database
(ModelicaDB).
 The Modelica Database is populated with
Modelica models and libraries by importing their
ModelicaXML representation. The UML model
of this database is presented in the Appendix. For
paper space reasons we use a somewhat
customized compressed graphical representation
of UML class diagrams, where inheritance is
represented with a box between the class name
and attributes box, where inherited super classes
are preceded with a "->". For details on UML see
[6].
 Here we briefly explain the most important
structures. They are tightly coupled with the
Modelica structure [9, 11]:
• Modelica Repository: contains several

Modelica Models.
• Class: A class represents the fundamental

model element from the Modelica language. It
can include several Component clauses,
Equation and Algorithm statements. The
component sections can be declared as public
or private in order to provide only the desired
interface to the outer world. Specifying that
the equation or algorithm sections are only
active at the initialization phase they can be
declared as initial.

• Component: used to define parameters,
variables, constants, etc to be used inside a
class.

• Equations and Algorithms are used to specify
the desired behavior for a class.

In the product design framework the role of
ModelicaDB is to provide searching and
organization features of a large base of simulation
models. This base grows with every product
model developed or with the import of additional
simulation models from other sources (i.e. the
Modelica community). For example, if we want to
obtain all the models that have certain parameter
names we have to search in the database for all
classes that have a component with the attribute
variabilityPrefix set to “parameter”
and has the specified name. These searches will
be integrated in FMDesign using dialogs and
completely transparent for the user.

3.3 FMDesign
The FMDesign (Figure 3) prototype tool helps the
designer in creating product specifications using
function-means trees.

Figure 3: FMDesign

The created product model is stored in a product
design library for later reuse. Throughout the
product concept design process the designer can
use the existing concepts stored in the product
design library in order to model the desired
product. A somewhat simplified meta-model of
the information structure edited in FMDesign is
presented as an UML class diagram in the
appendix section.
 In the framework, FMDesign is the central
front-end to specific components. FMDesign
delegates searches in the ModelicaDB using the
Selection and Configuration Tool and it uses the
Automatic Model Generation Tool to generate the
models for simulation.
 As we can see in Figure 3, the work area is
divided into several parts:
• Products: Here products are created, deleted

and selected. When a product is selected, the
trees owned by it and described below, are
displayed.

• Requirements Tree: in this view the
requirements for a product can be specified.

• Function-Means Tree: in this view the
designer can define the operation states,
functions, their alternative means etc, of the
selected product.

• Product Concepts: Allows creating, deleting
and selecting product concepts.

• Product Concept Tree: displays the currently
selected Product Concept Tree, and allows the
user to select which means that will
implement different functions in the product,
using drag-drop. Selected means can be
customized for the current product concept by
overriding the default values for its design
variables owned by a selected means.

• Implementation Tree: displays and provides
functionality for editing one of many
configurable Implementation Trees for the
currently selected product concept. These
implementation trees organize the
implementation objects that represent and
refer to more detailed models of physical
objects, functional models, simulation
models, geometrical layout models etc, and
organize them into trees that are useful for
interfacing with tools later in the product
development process.

We only use the Implementation Tree of type
simulation to generate the Modelica simulation
model for a product. The Implementation Tree of
type geometrical can be used in the visualization
of the product.

3.4 The Selection and Configuration Tool
The Selection and Configuration Tool extends the
framework by adding integrated search
capabilities in FMDesign. The tool is coupled
with the Implementation Tree for a Product
Concept. The designer uses the selection tool to
search (query) the Modelica Database for
desirable simulation components to implement a
certain means. An implementation object in the
simulation implementation tree represents the
selected simulation component. Simulation
component to means mapping reflects the various
design choices made by the designer. In this way,
the designer can experiment with different
simulation component implementations at various
level of detail for a specific means. When
choosing alternatives for a specific means the
designer has two possibilities: to browse the
repository of simulation models classified
according to physical concepts or to use the
search dialog. The search dialog provides the
following functionality:
• Textual/pattern search of components, search

for a component in a specific physical
domain, search for a component with specific
parameters.

• Adding/deleting a product concept specific
means to simulation component mapping
where the simulation component is referred
from an implementation object.

After building the means-component mappings
the designer can choose to edit or configure
components by using the configuration dialog that
provides the following functionality:
• Set implementation component parameters or

parameters ranges.
• Edit the simulation component in the desired

Modelica environment and use the edited
component, which is also automatically added
to the Modelica Database.

3.5 The Automatic Model Generator Tool
The Automatic Model Generator Tool provides
the second extension of the framework.
 The model generator tool has as input the
Implementation Tree (Figure 3, lower right) of a
product and as output the complete simulation
model with the alternative design choices.
 The automatic model generator traverses the
Implementation Tree of a Product Concept and
outputs ModelicaXML models by choosing the
combination of selected components for means.
The generated models are then translated to
Modelica for means evaluation through
simulation. To simulate the models, commercial
tools like Dymola and MathModelica or the open-
source OpenModelica [10] compiler can be used.
 After the simulation of the generated models,
the results are used as feedback for the designer.
Using this feedback the designer can then choose
the best-suited model, based on the simulation
results.

4 Conclusions and Future Work
As future work we want to explore the use of
ontologies for product concept design and for the
classification of the available component libraries.
 The languages developed by the Semantic Web
[5] community will be used. Research efforts
based on this standard are integrating experience
of many promising research areas, for instance
declarative rules, which still lack a vendor neutral
exchange formats for industrial applications. The
semantic web standard lacks important
functionality for quality assurance and other
necessary functionality, which today is
implemented in commercial products, but will
open up for sharing of important research results
with industry in collaborative environments. Also
we would like to improve the Automatic Model
Generator Tool by using parts of the composition
and transformation framework described in [12].
 In the future we want to provide automatic
evaluation through simulation of the generated
models based on the constraints collected from the
Product's Requirement Tree.

5 Acknowledgements
The ProViking research program, created by the
Swedish Foundation for Strategic Research
supported this research through the project System
Engineering and Computational Design (SECD).
The National Computer Graduate School in
Computer Science (CUGS) and Vinnova through
the Semantic web for products (SWEBPROD)
project.

6 References
1. Dynasim. Dymola, http://www.dynasim.se/.
2. INCOSE. International Council on System Engineering,

http://www.incose.org.
3. MathCore. MathModelica,http://www.mathcore.se/.
4. Modelica: A Unified Object-Oriented Language for

Physical Systems Modeling, Language Specification
version 2.1, Modelica Association, 2003,

5. Semantic Web Community Portal,
http://www.semanticweb.org/.

6. OMG. Unified Modeling Language,
http://www.omg.org/uml.

7. Mogens Myrup Andreasen. Machine Design Methods
Based on a Systematic Approach (Syntesemetoder på
systemgrundlag), Lund Technical University, Lund,
Sweden, 1980.

8. R.H. Bracewell, D.A.Bradley. Schemebuilder, A Design
Aid for Conceptual Stages of Product Design, in
International Conference on Engineering Design,
IECD'93 1993, The Hague.

9. Peter Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1, Wiley-IEEE Press,
2003, http://www.mathcore.com/drmodelica.

10. Peter Fritzson, Peter Aronsson, Peter Bunus, Vadim
Engelson, Levon Saldamli, Henrik Johansson and
Andreas Karstöm. The Open Source Modelica Project, in
Proceedings of The 2th International Modelica
Conference,March 18-19, 2002, Munich, Germany.

11. Adrian Pop, Peter Fritzson. ModelicaXML: A Modelica
XML representation with Applications, in International
Modelica Conference,3-4 November, 2003, Linköping,
Sweden.

12. Adrian Pop, Ilie Savga, Uwe Assmann and Peter
Fritzson. Composition of XML dialects: A ModelicaXML
case study, in Software Composition Workshop 2004,
affiliated with ETAPS 2004,3 April, 2004, Barcelona.

13. Sören Wilhelms, Reuse of Principle Solution Elements In
Conceptual Design. Lic. thesis 1044, Linköping
University, 2003

http://www.dynasim.se/
http://www.incose.org/
http://www.mathcore.se/
http://www.semanticweb.org/
http://www.omg.org/uml
http://www.mathcore.com/drmodelica

7 Appendix

	Introduction and Related Work
	Architecture overview
	Detailed framework description
	ModelicaXML
	Modelica Database (ModelicaDB)
	FMDesign
	The Selection and Configuration Tool
	The Automatic Model Generator Tool

	Conclusions and Future Work
	Acknowledgements
	References
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

