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ABSTRACT

Highly integrated domain-specific environments are essential for the efficient design of complex
physical products. However, developing such design environments is today a resource-consuming
error-prone process that is largely manual. Meta-modeling and meta-programming are the key to
the efficient development of such environments.

The ultimate goal of our research is the development of a meta-modeling approach and its
associated meta-programming methods for the synthesis of model-driven product design
environments that support modeling and simulation. Such environments include model-editors,
compilers, debuggers and simulators. This thesis presents several contributions towards this
vision, in the context of the Modelica framework.

Thus, we have first designed a meta-model for the object-oriented declarative modeling
language Modelica, which facilitates the development of tools for analysis, checking, querying,
documentation, transformation and management of Modelica models. We have used XML
Schema for the representation of the meta-model, namely, ModelicaXML. Next, we have focused
on the automatic composition, refactoring and transformation of Modelica models. We have
extended the invasive composition environment COMPOST to handle M odelica models described
using ModelicaxML.

The Modelica language semantics has already been specified in the Relational Meta-Language
(RML), which is an executable meta-programming system based on the Natural Semantics
formalism. Using such a meta-programming approach to manipulate ModelicaXML, it is possible
to automatically synthesize a Modelica compiler. However, such a task is difficult without the
support for debugging. To address this issue we have devel oped a debugging framework for RML,
based on abstract syntax tree instrumentation in the RML compiler and support of efficient tools
for complex data structures and proof-trees visualization.

Our contributions have been implemented within OpenModelica, an open-source Modelica
framework. The evaluations performed using several case studies show the efficiency of our meta-
modeling tools and methods.
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Chapter 1

Introduction

Motto:

Models..., models everywhere.
Meta-models model models
Meta-MetaModels models Meta-Model s.

Attempt at a Definition of the Term " meta-model” (www.metamodel.com):
A meta-model is a precise definition of the constructs
and rules needed for creating semantic models.

Highly integrated domain-specific environments are essential for the efficient
design of complex physical products. However, developing such design
environments is today a resource-consuming error-prone process that is largely
manual. Meta-modeling and meta-programming are the key to the efficient
development of such environments.

The ultimate goal of our research is the development of a meta-modeling
approach and its associated meta-programming methods for the synthesis of model-
driven product design environments that support modeling and simulation. Such
environments include model-editors, compilers, debuggers and simulators. This
thesis presents several contributions towards this vision, in the context of the
Modelica (Fritzson 2004 [39]) framework.

This chapter introduces the concepts of meta-models and meta-programming,
and presents the object-oriented declarative modeling language Modelica, used for
the modeling of complex physical systems. We also present the research issues
addressed, the related research work, and outline the contributions of the thesis.


http://www.metamodel.com/

2 Chapter 1 Introduction

1.1 Background and Related Work

The research work in this thesis is cross-cutting several research fields, which we
introduce in this section. Here we give a more detailed presentation of the specific
background and related work of the severa areas in which we address problems.
After setting the scene, in the next section we present the thesis motivation and
formulate the research topics we are addressing.

1.1.1 Systems, Models, Meta-Models and Meta-Programs

Understanding existing systems or building new ones is a complex process. When
dealing with this complexity people try to break the large systems into manageable
pieces. In order to experiment with systems people create models that can answer
guestions about specific system properties. As a simple example of a system we can
take a fish; our mental model of a fish is our internad mind representation,
experiences and beliefs about this system. In other words, a model is an abstraction
of a system which mirrors parts or al its characteristics we are interested in. Models
are created for various reasons from proving that a particular system can be built to
understanding complex existing systems. Modeling — the process of model creation
— is often followed by simulation performed on the created models. A simulation
can be regarded as an experiment applied on a model.

Meta-modeling is still a modeling activity but its aim is to create meta-models.
A meta-model is one level of abstraction higher than its described model.

e If amode MM is used to describe a model M, then MM is called the meta-
model of m.

e Alternatively one can consider a metamodel as the description of the
meaning (semantics) of concepts that are used in the underlying level to
construct models (model families).

The usefulness of meta-models highly depends on the purpose for which they were
created and what they attempt to describe. In general, a meta-model can be regarded
as.

e A schema for data (here data can mean anything from information to
programs, models, meta-models, etc) that needs to be exchanged, stored, or
transformed.

e A language that is used to describe a specific process or methodology.

e A language for expressing (additional) meaning (semantics) of existing
information, e.g. information present on the World Wide Web (WWW).

Thus, meta-models are ways to express and share some kind of knowledge that help
in the design and management of models.
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When the models are programs, the programs that manipulate them are called meta-
programs and the process of their creation is denoted as meta-programming. As
examples of meta-programming we can include program generators, interpreters,
compilers, static analyzers, and type checkers. In general the meta-programs do not
act on the source code directly but on a representation (model) of the source code,
such as abstract syntax trees. The abstract syntax trees together with the meta-
program that manipulates them can be regarded as a meta-model.

One can make a distinction between general purpose modeling and domain
specific modeling for example physical modeling. General purpose modeling is
concerned with expressing and representing any kind of knowledge, while domain
specific modeling is targeted to specific domains. Lately, approaches that use
general purpose modeling languages (meta-metamodels) to define domain specific
modeling languages (meta-models) together with their environments have started to
emerge. The meta-metamodeling methodology is used to specify such approaches.

Combining different models that use different formalisms and different levels of
abstraction to represent aspects of the same system is highly desirable. Computer
aided multi-paradigm modeling is a new emerging field that is trying to define a
domain independent framework along several dimensions such as multiple levels of
abstraction, multi-formalism modeling, meta-modeling, etc.

1.1.2 Meta-Modeling and Meta-Programming Approaches

Hardly anyone can speak of genera purpose modeling without mentioning the
Unified Modeling Language (UML) (OMG [81]). UML is by far the most used
specification language used for modeling. UML together with the Meta-Object
Facility (MOF) (OMG [84]) forms the bases for Model-Driven Architecture (MDA)
(OMG [83]) which aims at unifying the design, development, and integration of
system modeling. As an example of this modeling paradigm we can consider the
Model Driven Architecture (MDA) (OMG [83]) proposed by Object Management
Group. The architecture has four layers, called MO to M3 presented in Figure 1-1
and below:

e  M3isthe meta-metamodel which is an instance of itself.

e M2 isthe level where the UML meta-model is defined. The concepts used
by the designer, such as Class, Attribute, etc., are defined at thislevel.

e M1listhelevel wherethe UML modelsreside.

e MOisthelevel wherethe actua user objects reside (the world).

An instance at a certain level is aways an instance of something defined at one
level higher. An actua object at MO is an instance of a class defined at M1. The
classes defined in UML models at M1 are instances of the Class concept defined at
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M2. The UML meta-model itself is an instance of M3. Other meta-models that
define other modeling languages are a so instances of M3.

Meta Object Facility (MOF)

o Level M3 | Meta-MetaModel |

&

Q.

m LA R RN R RN IRRRRRRRRRRRRRRERRRRRRERRRRR IRRRRRRRRRRRRRRRERRRERRRRRERNRRRN]

=y UML meta-model, e.g.

ﬁ Level M2 | Meta-Model | Class, Interface, Attribute,

B3 Y etc concepts

= i NN NN N NN NN NN EENEEEEE

2

[ Level M1 Model The actual UML model
del_]

S - .

5 | Level MO | User Objects | User Objects,

= actual data

Figure 1-1. The Object Management Group (OMG) 4-Layered
Model Driven Architecture (MDA).

Within the MDA framework, UML Profiles are used to tailor the genera UML
language to specific areas (domain specific modeling).

Modeling environment configuration approaches similar to the UML Profiles,
are present within the Generic Modeling Environment (GME) (Ledeczi et a. 2001
[63], Ledeczi et al. 2001 [64]) which is a configurable toolkit for creating domain-
specific modeling and program synthesis environments. Here, the configuration is
accomplished through meta-models specifying the modeling paradigm (modeling
language) of the application domain.

Computer-aided Multi-paradigm Modeling and Simulation (CaMpaM) (Lacoste-
Julien et al. 2004 [60], Laraet al. 2003 [61]) supported by tools such asthe ATOM?®
environment (A Tool for Multi-formalism and Meta-Modeling) (Vangheluwe and
Lara 2004 [124]) is aiming at combining several dimensions of modeling (levels of
abstractions, multi-formalisms and meta-modeling) in order to configure
environments tailored for specific domains.

We have aready described what meta-modeling and meta-programming are.
From another point of view meta-modeling and meta-programming are orthogonal
solutions to system modeling (Figure 1-2) that can be combined to achieve model
definition and transformation at several abstraction levels

By using meta-programming is possible to achieve transformation between
models or meta-models. The meta-models one level up can be used to enforce the
correctness of the transformation. Trandation and transformation between models
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are highly desired as new models appear and solutions to system modeling require
different modeling languages and formalisms together with their environments.

Meta-)k\/lodel ing

MetaMeta-Model2
Meta-Modell Meta-Model2

Abstraction

»
»

Transformation Meta-Programming

Figure 1-2. Meta-Modeling and Meta-Programming dimensions.

1.1.3 Component Models for Invasive Software Composition

The idea that software should be built from existing components appeared in the
software community at the end of the 60s, first formulated by Douglas Mcliroy
(Mcllroy 1968 [73]) and had a considerable influence in the software industry.

The most important result of dividing software into relatively independent and
adaptable parts is the increased reusability in software development. "Reuse is the
use of existing software components in a new context, either elsewhere in the same
system or in another system" (Marciniak 1994 [68]). Programmers want a
methodology that defines how to reintegrate previously created software into a new
context of development, to create software systems from existing software rather
than building them from scratch.

Software components are the basic units for software composition. They are
designed to be composed; that is, their structure and behavior shall follow specific
rules. "A software component is a software element that conforms to a component
model and can be independently deployed and composed without modification
according to a composition standard.” (Heineman and Councill 2001 [50]).
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A component model defines the external appearance of components that build a
system. The component model defines the functionality of the components to be
used in composition by explicitly describing component interfaces. A well-designed
component model provides support for several important properties of its
components, such as:

e Substitution: one component can be replaced by another that fulfills at least
the same syntactic or semantic conditions.

e Adaptation: the ability to customize and configure components for different
reuse contexts.

e Extension: when new system regquirements appear, the extension of existing
components should be possible.

A component model is the core of a component system. In a typical component
system, the component model describes components as black boxes, i.e,
encapsulated binary code components with completely hidden implementations.
The black-box composition method includes various transformations, like
adaptation and glue code generation, which essentially compose black boxes
without changing their actual content.

Client Library

Black-box Invasive
Composition Composition

Client Library Client Library

Figure 1-3. Black-box vs. Gray-box (invasive) composition. Instead of
generating glue code, composers invasively change the components.

However, in Chapter 3 of this thesis we consider components containing fragments,
i.e., pieces of code. As in black-box systems, the contents of the components are
hidden under a composition interface. This method is different from black-box
composition because the composition operators can invasively change the
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component fragments at predefined points of variability. This reuse abstraction is
called grey-box composition and the composition of grey-box components is
denoted as invasive software composition (see Figure 1-3).

Invasive software composition is a composition technology based on
parameterization and extension of grey-box components (AlRmann 2003 [8]). For a
terminological distinction, we call invasive components fragment boxes, the
variability points hooks, and the invasive composition operators composers. A
typical fragment box consists of a set of fragments and an invasive composition
interface, defined by hooks. Hooks can be of two types: declared hooks, defined by
the programmer using some kind of markup and implicit hooks defined by the
language structure.

Composition with KE
Declared Hooks O ﬁb :I _ O

Refactorings O

Transformations —
<
o O <o O

Figure 1-4. Invasive composition applied to hooks result
in transformation of the underlying abstract syntax tree.

Since the composers of an invasive composition program manipulate fragment
components, i.e,, some other programs, an invasive composition implies meta-
programming. The changes resulting from composition on fragment boxes apply
directly to the corresponding abstract syntax tree by attaching and removing
fragments as presented in Figure 1-4.

The COMPOST system (ARmann and Ludwig 2005 [9]) provides invasive
software composition of Java (AlRmann 2003 [8]) and ModelicaXML components
(Chapter 3), (Pop and Fritzson 2003 [92]). The composition library supports
generics (Musser and Stepanov 1988 [78]), mixin-ins (Bracha and Cook 1990 [22]),
connectors (ARmann et a. 2000 [7]), aspects (Kiczales et a. 1997 [59]) and views
(ARmann 2003 [8]) by invasively transforming language components.

Automatic derivation of a component model from language specification in
Natural Semantics is presented shortly Chapter 7, and in more detail in (Savga et al.
2004 [105]).
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Using the Extensible Markup Language (XML) (W3C [113]), and the XML
Schema (W3C [115]) to model abstract syntax trees (Attali et a. 2001 [10], Attali et
a. 2001 [11], Badros 2000 [13], Schonger et al. 2002 [106]) of programming
languages is becoming an interesting alternative for having easy access to the
structure of programs (in our case models) without the need for a specific parser.
We used this approach when designing and defining the meta-model for the
Modelica language presented in this thesis. In order to compose and transform
models defined by our meta-model we employ invasive software composition
(ARmann 2003 [8]), which is a grey-box component composition. To drive the
composition we have designed a component model for our meta-model within the
COMPOST system.

1.1.4 The Modelica Language

Modelica (Elmqvist et al. 1999 [33], Fritzson 2004 [39], Modelica-Association
1996-2005 [75], Tiller 2001 [109]) is an object-oriented language for declarative
mathematical modeling of large and heterogeneous physical systems. For modeling
with Modelica, commercial software products such as MathModelica (MathCore
[69]) (Figure 1-5) or Dymola (Dynasim 2005 [30]) have been developed. Also
open-source implementations like the OpenModelica system (Fritzson et al. 2002
[37], PELAB 2002-2005 [87]) are available.

:: Microsoft Visio - [DC motor.vsd:Page-1]

]@ File Edit Wiew Insert Format Tools Shape Window Help = 5|ﬂ|
D-FE- B8 SRY iBBY | o-c A A-O- /- G- [QAAan - |2
]Nﬂrmal ~ T Times Nevw Rome +  10pk, [+ ‘ B I U ‘ = == | AV&' &v| = == Ev|
B Madelica_Rlocks_Math =]
B Modelica_Electrical_fnalag_Bas
B Modelica_Electrical &nalog_Sou
B Modelica_Mechanics_Rotational

o 4 4 2

Inertia IdealGear  Ideal Plan

= =2 i

A
o i oy Feference Bearing J
Spring  Damper  SpringD: gle-
Senser
L8 = sk

Bastofa . BearingFr. Chrtch

® 2 =

Oneiffay Brake  GearEffic

4|

& -
A ey Page1 Kl »

[ Page 1/1 Status:|  Move i

Figure 1-5. MathModelica modeling and simulation environment.
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The Modelica language has been designed to allow tools to generate efficient
simulation code automatically, with the main objective of facilitating exchange of
models, model libraries and simulation specifications. The definition of simulation
models is expressed in a declarative manner, modularly and hierarchicaly. Various
formalisms can be combined in the more general Modelica formalism. In this
respect, Modelica has a multi-domain modeling capability which gives the user the
possibility to combine electrical, mechanical, hydraulic, thermodynamic, etc.,
model components within the same application model. Compared with most other
modeling languages available today, Modelica offers several important advantages
from the simulation practitioner's point of view:

e Acausa modeling based on ordinary differential equations (ODE) and
differential algebraic equations and discrete equations (DAE). There is also
ongoing research to include partial differential equations (PDE) in the
language syntax and semantics (Saldamli 2002 [102], Saldamli et a. 2005
[104], Saldamli et al. 2002 [103]).

e Multi-domain modeling capability, which gives the user the possibility to
combine electrical, mechanical, thermodynamic, hydraulic etc., model
components within the same application model.

o A general type system that unifies object-orientation, multiple inheritance,
and generics templates within a single class construct. This facilitates reuse
of components and evolution of models.

e A strong software component model, with constructs for creating and
connecting components. Thus the language is ideally suited as an
architectural description language for complex physical systems, and to
some extent for software systems.

The language is strongly typed and there are no side effects of function calls.
However, local assignments are alowed in the algorithmic part of the language.
The reader of the thesis is referred to any of (Fritzson 2004 [39], Modelica
Association 1996-2005 [75], 2005 [76], Tiller 2001 [109]) for a complete
description of the language and its functionality from the perspective of the
motivations and design goals of the researchers who developed it. Those interested
in shorter overviews of the language may wish to consult (Elmqvist et a. 1999 [33],
Fritzson and Bunus 2002 [38], Fritzson and Engelson 1998 [36]).

In this thesis we develop tools for the management of the Modelica models
based on meta-modeling and meta-programming approaches. We present a meta-
model for the Modelica language structure, invasive composition of Modelica
models and integration of Modelica-based modeling and simulation tools with
product design tools. Ongoing research (Fritzson et al. 2005 [40]) plans to extend
M odelica with meta-modeling and meta-programming features.
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1.1.5 Integrated Product Design and Development

In the area of model-driven product design using modeling and simulation we focus
on the integration of Modelica language with conceptual modeling tools based on
Function-Means tree decomposition (Andreasen 1980 [3]).

Designing products is a complex process. Highly integrated tools are essential to
help a designer to work efficiently. Designing a product includes early design phase
product concept modeling and evaluation, physical modeling and simulation and
finally the physical product readlization (Figure 1-6). For physica modeling and
simulation available tools provide advanced functionality. However, the integration
of such tools with conceptual modeling tools is a resource consuming process that
today requires large amounts of manual, and error prone work. Also, the number of
physical models available to the designer in the product concept design phase is
typicaly quite large. This has an impact on the selection of the best set of
component choices for detailed product concept simulation.

To address these issues we have developed a framework (Chapter 4) for product
development based on an XML meta-model (Chapter 2), (Pop and Fritzson 2003
[92]) of Modelica and its representation in a Modelica Database (Chapter 4 and 7),
(Johansson et al. 2005 [56], Pop et a. 2004 [94]). The product concept design of the
product development process is based on Function-Means tree decomposition and is
implemented in the FMDesign component (Figure 1-6).

To provide flexibility of the product design framework we have addressed the
composition and transformation of Modelica models in the COMPOST framework
(Chapter 3), (Pop et a. 2004 [95]).

—> Gent_erahngt Concept Concept Parameter
requiremen generation selection calculations
specification

Analysis
FM Design and
Tool evaluation
Modelica
ModelicaDB Simulation
Front-end ¥ Tool
A
Modelica

XML -

Figure 1-6. Integrated model-driven product design and development framework.
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Our framework for model-driven product design and development has similarities
with Schemebuilder (Bracewell and D.A.Bradley 1993 [21]). The Modelith
framework (Johansson et al. 2002 [54], Larsson et a. 2002 [62]) also employs an
XML-based model representation for transformation and exchange in physical
system modeling.

However, our work is more oriented towards the design of advanced complex
products that require systems engineering, and targeted to the simulation modeling
language Modelica. The Modelica language has a more expressive power in
modeling dynamic systems and system architectures, than many of the tools for
systems engineering that are currently used. Also, metamodeling and invasive
software composition methods are considered for automatic model composition and
configuration. Tight integration of conceptual modeling tools with modeling and
simulation tools is proposed. For details on Systems Engineering, the reader is
referred to the International Council on Systems Engineering Website (INCOSE
1990-2005 [53]).

1.1.6 Compiler Construction and Natural Semantics

Writing compilers (Aho et a. 1986 [1], Appel 1997 [4], 2002 [5], Muchnick 1997
[77]) for programming languages is an extremely complex process. One will have
to consult the semantics of the language and then implement the compiler in some
language of choice. This is a time consuming and error-prone activity. Another
approach is to generate parts or the entire compiler from a formal specification
(Clément et al. 1986 [26], Despeyroux 1984 [28]). Such approach is highly
welcomed and is in the spirit of lexer and parser generators like Lex (Flex) (GNU
2005 [46]) and Y acc (Bison) (GNU 2005 [47]).

From this area we consider the compiler-compiler approach, which generates
compilers from formal specifications of programming languages. In particular the
work on Natural Semantics (Kahn 1988 [57]), which is a formalism for specifying
many aspects of programming languages i.e. type systems, dynamic semantics,
trandational semantics, static semantics (Despeyroux 1984 [28], Glesner and
Zimmermann 2004 [43]), etc. Natura Semantics is an operational semantics
derived from the Plotkin (Plotkin 1981 [91]) structural operational semantics
combined with the sequent calculus for natural deduction.

One can observe that meta-modeling and meta-programming are also used when
constructing compilers:

e A programisamodel.

e A programming language is a meta-model.

e Natural Semantics is a meta-programming formalism used to define the
semantics of meta-models.
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The Relational Meta-Language (RML) (PELAB 1994-2005 [86], Pettersson 1995
[88], 1999 [90Q]) is a practical language for writing executable Natural Semantics
specifications. The RML language is compiled to highly efficient C code by the
rml2c compiler. In this way, large parts of a compiler can be automatically
generated from their Natural Semantics specifications. RML has been successfully
used at our department in teaching and for specifying and generating compilers
from Natural Semantics for Java, Modelica (Fritzson et a. 2002 [37]), MiniML
(Clément et al. 1986 [25]) and other languages.

There are few systems implemented that compile or interpret Natural Semantics.
One of these systemsis Centaur (Borras et al. 1988 [19]) with its implementation of
Natural Semantics called Typol (Despeyroux 1984 [28], 1988 [29]). This system is
translating the inference rules to Prolog. The RML system is a more efficient
implementation of Natural Semantics, with a performance of the generated code
that is severa orders of magnitude better than Typol.

The RML system had no debugging facilities which made understanding and
debugging of the large specifications a challenge. In this context we have developed
a debugging framework for RML (Chapter 6), (Pop and Fritzson 2005 [97]) based
on abstract syntax tree instrumentation in the RML compiler and support of
efficient tools for complex data structures and proof-trees visualization.

A similar approach to debugging is used in debugging Standard ML (Tolmach
and Appel 1995 [110]). The idea of having a proof explanation of the reasoning
inference has its root in the debugging of deductive databases (Mallet and Ducassé
1999 [67]) and Description Logics reasoning algorithms explanation (McGuinness
1996 [71], McGuinness and Borgida 1995 [70], McGuinness and Silva 2003 [72]).
A debugging framework for Natural Semantics can benefit from this work as it
must be able to handle large proof-trees and complex data structures.

As a crash course in Natural Semantics and the Relational Meta-Language
(RML) we give an example of a small expression (Exp) language and its redlization
in Natural Semantics and RML. A specification in Natural Semantics has two parts:

e Declarations of syntactic and semantic objects involved.
e Groups of inference rules which can be grouped together into relations.

In our example language we have expressions built from numbers. The abstract
syntax of thislanguage is declared in the following way:

integers:
ve Int
expressions (abstract syntax):
eec Expi=v|el+e2|el-e2|el*e2|el/e2|-e
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The inference rules for our language are bundled together in ajudgment €=>V in
the following way (we do not present here the similar rules for the other operators.):

1 v=>v

(2) el=vl e2=v2 vl+v2=>Vv3
el+e2=v3

The RML modules have two parts, an interface comprising datatype declarations
(abstract syntax) and the relation signatures that operate on such datatypes,
followed by the declarations of the actual relations which group together rules and
axioms. In RML, the Natura Semantics specification presented above is
represented as follows:

module expl:

(* Abstract syntax of language Expl *)
datatype Exp INTconst of int

| ADDop of Exp * Exp
| SUBop of Exp * Exp
| MULop of Exp * Exp
| DIVop of Exp * Exp
| NEGop of Exp

relation eval: Exp => int
end

(* Evaluation semantics of Expl *)
relation eval: Exp => int =

(* Evaluation of an integer node is the integer itself *)
axiom eval (INTconst (ival)) => ival

(*
Evaluation of an addition node ADDop is v3, if v3 is
the result of adding the evaluated results of its
children el and e2.

Subtraction, multiplication, etc, operators have
very similar specifications.

*)

rule eval(el) => vl & eval(e2) => v2 & vl + v2 => v3
eval ( ADDop(el, e2) ) => V3
rule eval(el) => vl & eval(e2) => v2 & vl - v2 => Vv3
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rule eval(el) => vl & eval(e2) => v2 & vl * v2 => v3

rule eval(el) => vl & eval(e2) => v2 & vl / v2 => v3
eval( DIVop(el, e2) ) -»v3
rule eval(e) => v & -V => vneg
eval( NEGop(e) ) => vneg

end (* eval *)

A proof-theoretic interpretation can be assigned to this specification. We interpret
inference rules as recipes for constructing proofs. We wish to prove that there is a
value V such that 1+ 2 = Vv holds for this specification. To prove this proposition
we need an inference rule that has a conclusion, which can be instantiated
(matched) to the proposition. The only proposition that matches is the second
proposition, which isinstantiated as follows:

1=ovi2=v2vi+v2= vy

1+2=vVv

To prove further, we need to apply the first proposition (axiom) several times, and
we reach the conclusion. One can observe that debugging of Natura Semantics
comprise proof-tree understanding and complex data type inspection.

1.1.7 Semantic Web and Description Logics

Recently, in the emerging Semantic Web area (Berners-Lee et a. 2001 [16],
SemanticWebCommunity [107], W3C [121], [114]), languages to model ontologies
(conceptualization of specific domains) are proposed as away to add more semantic
information (as meta-data) to the existing web data in order to render it usable to
machine processing. Until now, the huge amount of information on the web has
been designed only for human understanding and had no meaning (semantics) for
machines.

The Semantic Web approach is to use meta-languages that markup the existing
data on the web with a well-defined meaning in order to alow both machines and
humans to process it. There is a vivid debate if ontologies are meta-models or not
(Gadevic et a. 2004 [42]). At least from the point of view of knowledge
representation and sharing, ontologies and meta-models are trying to tackle the
same issues. The Semantic Web provides a common framework that allows data to
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be shared and reused between applications. In order to achieve such a goal the
Semantic Web has a layered architecture as in Figure 1-7 cf. (Berners-Lee 2000
[15]), which is similar to the MDA architecture proposed by OMG (Figure 1-1).
However, the Semantic Web languages are based on formal logic and the OMG
languages are more visual and lessformal.

Rules Trust
Data Proof E
2 Data Logic ;f,'f“
decd Ontology vocabulary E
doc. RDF + rdfschema 8

XML + NS + xmlschema

Figure 1-7. The Semantic Web layered architecture.

In the Semantic Web architecture at the bottom are Unicode and Uniform Resource
Identifiers (URI) followed by the Extensible Markup Language (XML) (W3C
[113]), namespaces (NS) and XML-Schema at the next level. XML specifies aterm
list with no relations. On top of XML comes the Resource Description Framework
(RDF) (W3C [118]) language to define a simple data-model for objects and the
relations between them. The RDF Vocabulary Description Language (RDFS or
RDF schema) (W3C [119]) is a vocabulary for describing properties and classes of
RDF resources. The Ontology layer uses languages like the Web Ontology
Language (OWL) (W3C [120], [122]) to add more vocabulary for describing
properties and classes, typing of properties, relations between classes, cardinality
constraints, etc.

The Web Ontology Language (OWL) consists of three sublanguages that
provide increasingly expressiveness with different computationa properties (W3C
[122]):

e OWL Lite provides classification hierarchies and very simple constraints.

e OWL DL provides the maximum possible expressiveness that still has
computational completeness and decidability. OWL DL has a
correspondence with Description Logics (DL).

e OWL Full offers maximum expressiveness with no computationa
guarantees.
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On top of these ontology languages rules and logic are available to add application
behavior.

Description Logics (DL) (Baader et al. 2003 [12], DescriptionLogicsWebsite
[27]) isafamily of formalisms for representing and reasoning with knowledge. DL
is used to represent data and knowledge of the relations between individual objects
and their grouping into classes. The DL reasoners (Haarslev et al. 2004 [49],
Horrocks [51], W3C [123]) make deductions from a knowledge base of such
description of classes and individuals. These deductions are targeted to detect
inconsistencies, to classify (organize) the classes into sub-class hierarchies, and to
classify individuals under appropriate concepts. DL has also been used to formalize
UML models or check their consistency (Berardi et al. 2001 [14]).

In this thesis we discuss the benefits of using Semantics Web languages to
construct a better Modelica meta-model in Chapter 2 (Pop and Fritzson 2003 [92])
and present a comparison between meta-models and ontologies in Chapter 5 (Pop
and Fritzson 2004 [93]).

1.2 Research topics

Having introduced the related research areas, we present next our thesis goal and
motivation, then formulate the two main problems we are addressing.

The ultimate goal of our research is the development of a meta-modeling
approach and its associated meta-programming methods for the synthesis of model-
driven design environments that support modeling and simulation. Such
environments include model-editors, compilers, debuggers and simulators. This
thesis presents several contributions towards this vision, in the context of the
Modelica framework. To manage this bold vision we have divided it into sub-goals
asfollows:

e Flexible tool support for management of Modelica models, based on meta-
modeling.

e Analysis, composition, refactoring and transformation of Modelica models.

¢ Integration of product design tools with modeling and simulation tools.

e Debugging at different levels of abstraction: models, meta-models and
meta-programs (Natural Semantics specifications).

e The integration of Natural Semantics (RML) features into a unified
extended Modelicalanguage.

The research work presented in this thesis addresses all these sub-goals of our
vision at various depths.
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1.2.1 Design and Application of Meta-Modeling Methods

In this thesis we are interested in the design and application of meta-modeling
methods for flexible integration of product design tools with modeling and
simulation tools for the Modelica language.

The existing tools for mathematical modeling and simulation of physica
systems for the Modelica language are only a smal part of a wider picture.
Modeling full systems requires integration of different modeling languages, model
interoperability, and flexibility. Also, because the Modelica community provides a
growing model-base, scalability issues within current tools will create problems of
model management. Another issue is that these tools currently provide very little
support for integration of their functionality in other modeling frameworks.

A solution for these issues would be a framework based on meta-modeling for
M odelica models management with the following regquirements:

e Easy and flexible access to model structure and information that would
facilitate the creation of tools targeted to different needs than modeling and
simulation, eg. configuration, documentation, enforcing of company
guidelines for modeling, etc.

e Means to configure models: composition, refactoring, and transformation
(to Modelica or other modeling languages).

e Scalable model-repository search and querying facilities.

In this thesis we present the design and development of a framework that meets
these requirements (Chapter 2 to Chapter 4).

1.2.2 Methods and Tools for Debugging of Meta-Programs

Another research topic of our thesis is the design and implementation of methods
for debugging of meta-programs expressed as executable Natural Semantics
specifications

Writing compilers for programming languages is an extremely complex process.
One will have to consult the semantics of the language and then implement the
compiler in some language of choice. This is a time consuming and error-prone
activity. Another approach is to generate parts or the entire compiler from a formal
specification. Such approach is highly welcomed and is in the spirit of lexer and
parser generators.

The Relational Meta-Language (RML) system is used to implement the
OpenModelica (Fritzson et al. 2002 [37], PELAB 2002-2005 [87]) compiler, a very
large specification with: 43 modules, 57083 lines of code, 4054 relations and 132
data structures. Managing this complexity without tool support creates problems of
understanding and has made bug fixing in the specification a challenge.
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To address this problem we have designed and developed a debugging framework
for the Relational Meta-Language (Chapter 6). While the debugger framework is far
from being optimized, its first users gave us very positive feedback. The debugging
approach is mature enough to handle large specification (~57000+ lines of code is
our largest specification at the moment).

1.3 Thesis Contributions

In short, the main contributions of this thesis towards the ultimate goal of a general
meta-modeling and meta-programming approach for the construction of integrated
design environments are the following:

e The design of a metamodel for Modelica language that facilitates
development of tools for anaysis, checking, querying, documentation,
transformation of Modelica models.

e Composition, refactoring and transformation of Modelica models based on a
component model for invasive composition of Modelica language and a
M odelica meta-model.

e Integration of model-driven product design and development tools with
modeling and simulation tools.

e Debugging of meta-programs for programming language semantics
specifications written in the Relational Meta-Language dialect of Natural
Semantics.

In other words we contribute to the area of meta-modeling and meta-programming
with methods and tools that efficiently address the design and usage of meta
models and the debugging of meta-programs.

Thisthesisis primarily based on the following articles and reports:

2003

1. Adrian Pop, Peter Fritzson: ModelicaXML:A Modelica XML Representation
with Applications, In Proceedings of the 3rd International Modelica
Conference (Modelica2003), November 3-4, 2003, Link&ping, Sweden. (In
Chapter 2)

2004

2. Adrian Pop, llie Savga, Uwe AlRmann, Peter Fritzson: Composition of XML
dialects: A ModelicaXML case study, In Proceedings of the Software
Composition Workshop (SC2004), affiliated with European Joint
Conferences on Theory and Practice of Software (ETAPS04), March 27 -
April 4, 2004, Barcelona, Spain, Electronic Notes in Theoretical Computer



Thesis Structure 19

Science  Volume 114, 17 January 2005, Pages 137-152,
http://www.elsevier.com/locate/issn/15710661. (In Chapter 3)

3. Olof Johansson, Adrian Pop, Peter Fritzson: A functionality coverage
analysis of industrially used ontology languages, In Proceedings of the
Model Driven Architecture: Foundations and Applications (MDAFA2004),
June 10-11, 2004, Linkdping, Sweden. (In Chapter 7)

4. Adrian Pop, Olof Johansson, Peter Fritzson: An integrated framework for
model-driven design and development using Modelica, In Proceedings of
SIMS 2004, the 45th Conference on Simulation and Modeling, September
23-24, 2004, Copenhagen, Denmark. (In Chapter 4)

5. Adrian Pop, Peter Fritzson: The Modelica Sandard Library as an Ontology
for Modeling and Smulation of physical systems, Technical Report, 2004,
http://www.ida.liu.se/~adrpo/reports. (In Chapter 5)

6. llie Savga, Adrian Pop, Peter Fritzson: Deriving a Component Model from a
Language Specification: An Example Using Natural Semantics, Technical
Report, 2004, http://www.ida.liu.se/~adrpo/reports. (In Chapter 7)

2005

7. Adrian Pop, Peter Fritzson: A Portable Debugger for Algorithmic Modelica
Code, In Proceedings of the 4th International Modelica Conference
(Modelica2005), March 7-9 , 2005, Hamburg-Harburg, Germany. (In
Chapter 7)

8. Olof Johansson, Adrian Pop, Peter Fritzson: ModelicaDB - A Tool for
Searching, Analyzing, Crossreferencing and Checking of Modelica
Libraries, In Proceedings of the 4th International Modelica Conference
(Modelica2005), March 7-9, 2005, Hamburg-Harburg, Germany. (In
Chapter 7)

9. Peter Fritzson, Adrian Pop, Peter Aronsson: Towards Comprehensive Meta-
Modeling and Meta-Programming Capabilities in Modelica, In Proceedings
of the 4th International Modelica Conference (Modelica2005), March 7-9,
2005, Hamburg-Harburg, Germany. (In Chapter 7)

10. Adrian Pop, Peter Fritzson: Debugging Natural Semantics Specifications,
submitted to The Sixth International Symposium on Automated and
Analysis-Driven Debugging (AADEBUG 2005), March 2005. (In Chapter
6)

1.4 Thesis Structure

Thisthesisis structured as a collection of publications, preceded by an introductory
chapter. In this section we give a short overview of each of the chaptersin the thesis
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and specify their origin. At the end of this section we also present visually in Figure
1-8 the overview of the structure of thisthesis.

Chapters 2 to 6 are faithful reproductions of articles published in conferences
and workshops. (We changed the formatting, the cross-references and the literature
references were grouped together at the end of the thesis for easy lookup).

Chapter 7 presents short overviews of additional published research that is
associated to this thesis work.

Chapter 1 presents a short introduction into the area of modeling, meta-modeling,
and meta-programming. Related work and the background for our research work
are aso introduced here. The chapter presents the research topics we are addressing
and our contributions. The conclusions of the thesis, highlights of our contributions
and future work directions are presented in the last part of this chapter.

Chapter 2 introduces ModelicaXML, a meta-model for syntactic properties of the
Modelica language. This meta-model is an aternative representation of the
Modelica language structure in XML format. We show how this meta-model can
facilitate the development of tools for querying, transformation, documentation, and
analyses of Modelica models. The shortcomings of the proposed Modelica syntactic
meta-model are investigated and we discuss how some of the Modelica semantics
could be represented using languages and ontologies developed in the Semantic
Web.

The ModedicaXML representation provides more functionality than a typica
C++ classlibrary implementing an AST representation of Modelica:

o Declarative query languages for XML can be used to query the XML
representation.

e The XML representation can be accessed via standard interfaces like
Document Object Mode (DOM) (W3C [112]) from practicaly any
programming language.

The uses of the ModelicaXML representation for Modelica models, combined with
the power of general XML tools, ease the implementation of tasks such as:

Analysis of Modelica programs (model checkers and validators).

Pretty printing (un-parsing).

Translation between Modelica and other modeling languages (interchange).
Query and transformation of Modelica models.

Documentation generation for models.

Although ModelicaXML captures the structured representation of Modelica source
code, the semantics of the Modelica language cannot be expressed without
implementing specific XML-based tools. To address this issue we have investigated
the benefits of using languages developed in the Semantic Web community. We



Thesis Structure 21

believe that using such technology for Modelica models would enable severa
applicationsin the future:

e Models could be automatically trandated between modeling tools.

e Models could become autonomous (active documents) if they are packaged
together with the operational semantics from the compiler, and therefore,
they could be simulated in a normal browser.

e Software information systems (SIS) could be more easily constructed for
Modelica, facilitating model understanding and information finding. We
consider adapting the approach described in (Welty 1995 [125]) to construct
such a SIS for Modelica.

e Model consistency could be checked similar to (Berardi et al. 2001 [14])
using already implemented Description Logic (DL) reasoners i.e. Fact or
Fact++ (Horrocks [51]), Racer (Haarslev et a. 2004 [49], W3C [123]), or
our implementation. Using our implementation will give us the freedom to
experiment with more language constructs and constraints.

e Certain models could be trandated to and from the Unified Modeling
Language (UML) (OMG [81)).

Chapter 3 presents how invasive composition, refactoring, and transformations can
be performed on Modelica models by using the Modelica meta-model and a
component model developed for the COMPOST composition framework. The
design of the component model for the Modelica meta-model is presented and
examples of composition and composition programs are given. This chapter aso
presents the invasive composition framework COMPOST and investigates how
software composition and transformation can be applied to domain specific
languages used today in modeling and simulation of physical systems. By extending
the COMPOST concrete composition layer with a component model for Modelica,
we provide composition and transformation of Modelica models.

Transformation and composition of Modelica models alows easy automatic
change of models to fit context. Also, entire systems can be automaticaly
generated, configured, and simulated using a composition language. Such a result
gives the framework for product design presented in Chapter 4 a high flexibility and
scalability.

Chapter 4 proposes an integrated framework for model-driven product design and
development tools (using conceptual design based on Function-Means tree
decomposition) with modeling and simulation tools. The Modelica Database
component provides scalable querying and analysis facilities for Modelica models.
The product concept design of the product development process is based on
Function-Means tree decomposition and is implemented in the FMDesign
component. The Modelica models are first translated to XML documents
conforming to the ModelicaXML meta-model. Then these documents are used to
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populate the Modelica Database. The goal of this framework is to provide automatic
generation of models from product design specifications using a highly integrated
set of tools. Another goal is to provide the designer with the possibility of selecting
the best design choice, verified through (automatic) simulation of different
implementation alternatives of the same product model. To have a flexible
interaction among various tools of the framework the ModelicaXML representation
of the Modelica language is used as middleware. For efficient searching in large
repositories of simulation models the Modelica Database was designed.

As future work we want to explore the use of ontologies for product concept
design and for the classification of the available component libraries. For this
purpose the languages developed by the Semantic Web community will be used.

This framework is our test-bed for experimenting with novel techniques and
methodol ogies in conceptual design.

Chapter 5 makes a comparison between Maodelica Standard Library and ontologies.
We discuss on how the features of the declarative Modelica language are
contributing to the sharing and reuse of knowledge stored in domain specific
libraries and compare this approach with the concept definition approach from
ontologies. As an example we present the Modelica Standard Library that defines
models in domains such as mechanical, electrical, etc.

Chapter 6 changes the focus of the thesis towards debugging of executable meta-
programs used in the specification of programming language semantics. The
chapter presents a debugging framework for debugging of Natural Semantics
specifications written in the Relational Meta-Language (RML). The debugging
strategy and the components of this framework are described in detail together with
some usage experience of the debugger on large scale specifications.

Chapter 7 shortly presents additional articles published in cooperation with severa
authors that are associated with the research work of this thesis. The publications
cover:

e Comparisons between industrially used ontology languages as Modelica,
UML, and the RosettaNet technical dictionary (RosettaNet [100]).

e Automatic derivation of component models for programming languages that
have aNatural Semantics meta-metamodel specified in RML.

e Debugging of Modelica algorithmic code extended with meta-modeling and
meta-programming facilities.

e The design and usage of the Modelica Database (ModelicaDB) for storage
and management of Modelica model repositories. The detailed UML meta-
model for the Modelica Database is presented and use cases of the Modelica
Database are discussed.

e The design of Meta-Modeling and Meta-Programming extensions proposed
for the Modelica language.
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1.5 Conclusions and Future Work

This last section of the introductory chapter presents our conclusions and our future
work directions.

1.5.1 Conclusions

We have designed the ModelicaXML meta-model for Modelica language, which
facilitates the development of efficient tools for analysis, checking, querying,
documentation, transformation and management of Modelica models. We addressed
the automatic composition, refactoring and transformation of Modelica models by
extending the invasive composition environment COMPOST with a ModelicaXML
component model.

We have integrated Modelica-based modeling and simulation tools with model-
driven product design tools within a flexible framework that supports scalable
model selection and configuration.

The Modelica language semantics has already been specified in the Relationd
Meta-Language (RML), which is an executable meta-programming system based
on the Natural Semantics formalism. Using such a meta-programming approach to
manipulate ModelicaXML, it is possible to automatically synthesize a Modelica
compiler. However, such a task is difficult without the support for debugging. To
address this issue we have developed a debugging framework for RML, based on
abstract syntax tree instrumentation in the RML compiler and support of efficient
tools for complex data structures and proof-trees visualization.

Our contributions have been implemented within OpenModelica, an open-
source Modelica framework. The evauations performed using several case studies
show the efficiency of our meta-modeling tools and methods. As an overview, in
the quest of our research goal, we have touched modeling, meta-modeling,
component models for invasive software composition, integration of model-driven
product design tool with modeling and simulation tools, debugging of meta-
programs expressed in Natural Semantics (Relational Meta-Language). This thesis
entersinto the details of all these issues and presents several viable solutions.

1.5.2 Future work directions

With the research work presented in this thesis we have made important steps on
the way to our research goa. However, our research work will continue along
severa directions we wish to point out in the following.

We have already started work on extending the Modelica language with Meta-
modeling and Meta-programming features (Fritzson et al. 2005 [40]). Such features
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will enable the development of a Modelica compiler written in Modelica and
expand the scope of the Modelica language to become a meta-modeling and meta-
programming language. The automatic trandation of the RML specification of the
OpenModelica compiler to the extended Modelica has already been started and we
hope that in the near future the Modelica community will contribute to the new
compiler.

The debugging framework presented in this thesis has already been adapted to
handle M odelica al gorithmic code with the new meta-modeling extensions (Pop and
Fritzson 2005 [96]). Debugging of the Modelica equation sections is already
covered (Bunus 2002 [23], 2004 [24]), and we plan to integrate it with our
algorithmic debugging to have a complete debugging framework for Modelica.

Building Natural Semantics and extended M odelica based tools for the Semantic
Web with application to model-driven product design will certainly be another
future direction of our research. As a starting point we wish to adapt RML to the
Natural Semantics specifications of Description Logics (Borgida 1992 [18]).






Chapter 2

ModelicaXML: A ModelicaXML
Representation with Applications

Adrian Pop, Peter Fritzson: ModelicaXML:A Modelica XML Representation with
Applications, In Proceedings of the 3rd International Modelica Conference
(Modelica2003), November 3-4, 2003, Linkoping, Sweden

2.1 Abstract

This paper presents the Modelica XML representation with some applications.
ModelicaXML provides an Extensible Markup Language (XML) aternative
representation of Modelica source code. The language was designed as a standard
format for storage, analysis and exchange of models. ModelicaXML represents the
structure of the Modelica language as XML trees, similar to Abstract Syntax Trees
(AST) generated by a compiler when parsing Modelica source code. The
ModelicaXxML (DTD/XML-Schema) grammar that validates ModelicaXML
documents is introduced. We reflect on the software-engineering analyses one can
perform over ModelicaXML documents using standard and general XML tools and
techniques. Furthermore we investigate how we can use more powerful markup
languages, like the Resource Description Framework (RDF) and the Web Ontology
Language (OWL), to express some of the Modelica language semantics.

2.2 Introduction

The structure of a Modelica model can be derived from the source code
representation, by using a Modelica compiler front-end (the lexical analyzer and the
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parser).

The compiler front-end takes the source code representation and transforms it to
abstract syntax trees (AST), which are easier to handle by the rest of the compiler.
As pointed out in (Badros 2000 [13]), a clear disadvantage of this procedure is the
need of embedding a compiler front-end in every tool that needs access to the
structure of the program. Writing such a front-end for an evolving and advanced
language like Modelicais not trivial, even with the support of automated tools like
Flex (GNU 2005 [46])/Bison (GNU 2005 [47]) or ANTLR (Parr 2005 [85]).

To overcome these problems, a standard, easily used, structured representation
is needed. ModelicaXML is such a representation that defines a structure similar to
abstract syntax trees using the XML markup language.

This representation provides more functionality than a typical C++ class library
implementing an AST representation of Modelica:

o Declarative query languages for XML can be used to query the XML
representation.

e The XML representation can be accessed via standard interfaces like
Document Object Modd (DOM) (W3C [112]) from practicaly any
programming language.

The usages of the ModelicaXML representation for Modelica models, combined
with the power of general XML tools, will ease the implementation of taskslike:

Analysis of Modelica programs (model checkers and validators).

Pretty printing (un-parsing).

Translation between Modelica and other modeling languages (interchange).
Query and transformation of Modelica models.

Although ModelicaXML captures the structured representation of Modelica source
code, the semantics of the Modelica language cannot be expressed without
implementing specific XML-based tools. To address this issue we have investigated
the benefits of using other markup languages like the Resource Description
Framework (RDF) and the Web Ontology Language (OWL). These languages,
developed in the Semantic Web Community (Berners-Lee et a. 2001 [16],
SemanticWebCommunity [107], W3C [121]), are used to express semantics of data
in order to be automatically processed by machines. We believe that using such
technology for Modelica models would enable several applicationsin the future:

e Models could be automatically translated between modeling tools.

e Models could become autonomous (active documents) if they are packaged
together with the operational semantics from the compiler, and therefore,
they could be ssmulated in a normal browser.

e Software information systems (SIS) could more easily be constructed for
Modelica, facilitating model understanding and information finding.
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e Mode consistency could be checked using Description Logic (DL) (Baader
et al. 2003 [12], DescriptionL ogicsWebsite [27]).

e Certain models could be trandated to and from the Unified Modeling
Language (UML) (OMG [81)).

The paper is structured as follows. Related work is presented in Section 2.3.
Modelica, XML and the ModelicaXML Document Type Definition (DTD) are
discussed in Section 2.4. In Section 2.5 we present the software-engineering tasks
one can perform on the ModelicaXML representation using XML tools and
technologies. Section 2.6 investigates the use of RDF and OWL for representing
semantics of Modelica models. Conclusions, future research directions and
summary of the work are presented in Section 2.7.

2.3 Related Work

In the field of general programming languages, JavaML (Badros 2000 [13]) has
been developed as structured representation of Java source code. JavaML
emphasizes the power of such structured representation when leveraging XML
tools. When it comes to domain specific modeling languages, there are severa
(Bjorn et a. 2002 [17], Freiseisen et al. 2002 [34], Larsson et a. 2002 [62])
approaches to specifying models in XML. These approaches deal with model
transformation, exchange and management (regarding adaptation to already existing
simulation tools) or with code generation from the intermediate XML
representation to C++. Our interest focuses more on providing flexible and general
software-engineering tooling support for the Modelica programmer. For this
purpose the ModelicaXML is covering the full Modelica language (Fritzson 2004
[39], Modelica-Association 1996-2005 [75]), including algorithm sections and
expression operators. Furthermore, we consider more powerful markup languages
for defining some of the Modelica static semantics and we discuss future use of
such Semantic Web technologies.

2.4 Modelica XML Representation

Modelica (Fritzson 2004 [39], Modelica-Association 1996-2005 [75]) is an object-
oriented language used for modeling of large and heterogeneous physical systems.
For modeling with Modelica, commercia software products such as MathModelica
(MathCore [69]) or Dymola (Dynasim 2005 [30]) have been developed. However,
there are also open-source projects like the OpenModelica Project (Fritzson et al.
2002 [37], PELAB 2002-2005 [87]). Our research is part of the OpenModelica
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Project and aims at providing a more flexible framework with the use of XML
technologies.

In sub-section 3.1 we briefly introduce the concepts of XML and DTD and give
an example of a Modelicamode with its ModelicaXML representation.

2.4.1 The eXtensible Markup Language (XML)

The Extensible Markup Language (XML) (W3C [113)]) is a standard recommended
by the World Wide Web Consortium (W3C). XML is a simple and flexible text
format derived from Standardized Generalized Markup Language (SGML) (W3C
[114]). The XML language is widely used for information exchange over the
Internet. The tools one can use for parsing, querying, transforming or validating
XML documents have reached a mature state. Such tools exist both as open-source
projects and commercia software products.
A small example of an XML document is shown below:

<?xml version="1.0"?>
<!DOCTYPE persons SYSTEM '"persons.dtd"s
<persons>
<person job="programmer">
<name>John Doe</name>
<email>
grigore@none.ro
</email>
</person>

<person job="manager"s>
<comment>Classified</comment>
</person>
</persons>

An XML document is simply a text in which the information is marked up using
tags. The tags are the names enclosed in angle brackets. For easy identification we
show elements in bold face and attribute names in italics throughout the XML
example. The information delimited by <persons> and </persons> tags is an
XML element. As we can seg, it can contain other elements called <person> that
nests additional elements within itself.

The attributes are specified after the tag as an unordered name/value list of
name="value" items. In our example, the attribute job with the value
"programmer".

The first line states that thisis an XML document. The second line express that
an XML parser must validate the contents of the elements against the Document
Type Definition (DTD) (W3C [113)]) file, here named "persons.dtd". The DTD
provides congtraints for the contents much like grammars used for programming
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languages.

There are two criteriato be met in order for an XML document to be valid. First,
al the elements have to be properly nested and must have a start/end tag. Second,
all the contents of all elements must obey their DTD grammar specifications.

We will defineaDTD for the above example:

<!-- the person.dtd file -->
<!ENTITY % person-job-attribute
"job(programmer |manager) #REQUIRED">
< !ELEMENT persons (persont*)>
<!ELEMENT person ((name+, emailx*) | comment+) >
<!ATTLIST person
project CDATA #IMPLIED
&person-job-attribute; >
<!ELEMENT name (#PCDATA) >
< !ELEMENT email (#PCDATA) >
< !ELEMENT comment (#PCDATA) >

The above DTD defines one entity, four elements, and one attribute list containing
two attributes. The entities are underlined, bold is used for elements, and attributes
are specified in italics.

The entity (ENTITY) declaration defines person-job-attribute as a text
value that can be used anywhere inside the DTD and the XML document. The XML
parser will replace the entity with its defined text where it is used. The principal
element (ELEMENT) declared in DTD is persons and has zero or more elements
person hested inside. The special characters inside the element definitions are " *»
meaning: zero or more, " | " meaning: selection — either left side or right side, "+
meaning: one or more.

The attribute (ATTLIST) list defines two attributes for the person element:
project and job.

The project attribute can contain character data (cpaTa) and is optiond
(#IMPLIED). The job attribute can only have one of the two values, either
"programmer" OF "manager".

There is another XML document structure standard, called XML-Schema (W3C
[115]), which is similar to DTD but is encoded in XML. This standard reconstructs
al the capabilities of the DTD and extends them with: namespaces, context
sensitivity, the possibility to define severa root elements in the same schema,
integrity constraints, regular expressions, sub-typing, etc. Tools for transforming
XML-Schema representations from/to a DTD representation are available. We use
the DTD variant in this example only because it is clearer than the too verbose
XML-Schema.

One can consult the World Wide Web Consortium website (W3C [113], [115])
for more information regarding XML, DTD and XML-Schema.
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2.4.2 ModelicaXML Example

To introduce the Modelica XML representation, we give a Modelica example and
show its corresponding representation as ModelicaX ML.

Elements are in bold, attributes are in italic and entities are using underline
throughout this section, except from Modelica keywords.

class SecondOrderSystem

parameter Real a=1;

Real x(start=0); Real xdot (start=0);
equation

xdot=der (x) ; der (xdot)+a*der (x) +x=1;
end SecondOrderSystem;

For ease of presentation, a ModelicaXML document is split into several parts, each
representing a more nested level. The ellipses from one level are detailed in the next
level:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE program SYSTEM

"ModelicaXML.dtd">
<program within="...">
<definition ident="SecondOrderSystem"
restriction="class">

</aé£inition>
</program>
The root element is a Modelica program. The child elements of program are a
sequence of definition elements and an optional within attribute (see Figure
2-1, sub-section 2.4.3 for schemata).

<definition ident="SecondOrderSystem"
restriction="class">

<component>. . .</component>
<equation>...</equation>
</definition>

Thedefinition(daﬂentcaWhaveimport,extends,elements,equation,Or
algorithm as sub-elements. In our case we only have component (i.e., variable)
and equation sub-elementsinside definition (See Figure 2-2, sub-section 2.4.3
for schemata).

<component ident="a" type="Real"
variability="parameter"
visibility="public">
<modification equals>
<real literal value="1"/>
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</modification equals>
</component >

<component ident="x"
type="Real"
visibility="public">
<modification arguments>
<element modification>
<component reference ident="start"/>
<modification equals>
<real literal value="0"/>
</modification equals>
</element modification>
</modification_arguments>
</component >

The first component (i.€., variable, see Figure 2-3, sub-section 2.4.3 for schemata)
has the variability aftribute set t0 "parameter" as in "parameter Real
a=1;". The second component declaration (i.e, variable) in the example
represents the "Real x(start=0);" line from our Moddlica class. All
components have the visibility attribute set to "public". Thelast component
issimilar to the second component and is not presented.
<equation>
<equ_equal>
<component reference ident="xdot"/>
<call>
<component reference ident="der"/>
<function arguments>
<component reference ident="x"/>
</function_ arguments>
</call>
</equ_equals>
</equation>

Equations are enclosed in the equation element (see Figure 2-4, sub-section 2.4.3
for schemata)

The eguation section of the secondOrdersSystem model describes two
equations. The first equation is quite straightforward. Equality is represented by an
equ_equal element with two elementsinside. The right-hand sideis a function call
(using the cal1l element) to a derivative and the left hand side is a component
reference represented with the element with the same name. The second equation
below is more complex. It has function calls represented using the call element,
binary operations (see Figure 2-6, sub-section 2.4.3 for schemata) such as add, mul
for addition (+) and multiplication (*). The component reference elements
denote variable references. For the function calls, the arguments are specified using
the element function arguments that can contain expressions, named arguments
or for indices.
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<equation>
<eq equals>
<add>
<call>
<component reference ident="der"/>
<function arguments>
<component reference ident="xdot" />
</function arguments>
</call>
<add>
<component reference ident="x"/>
<mul>
<component reference ident="a"/>
<call>
<component reference ident="der"/>
<function arguments>
<component reference ident="x" />
</function_arguments>
</call>
</mul>
</add>
</add>
<integer literal value="1"/>
</equ_equals>
</equation>

ModelicaXML Schemata are explained in the next sub-section.

2.4.3 ModelicaXML Schema (DTD/XML-Schema)

When designing the ModelicaXML representation we started from the Modelica
grammar. We simplified the common cases to compact the XML representation
without loss of information or structure. The Modelica DTD/XML-Schema has a
rather close correspondence to the Modelica grammar with the following
exceptions: attributes are used to make the XML representation more concise and
the DTD/XML-Schema jumps over some non-terminals from the Modelica
grammar to make the XML representation more compact.

The OpenModelica Project parser for Modelica source code, written in ANTLR
(Parr 2005 [85]), was changed to output the ModelicaXML representation. There
are many components in the OpenModelica Project that use the ANTLR Modelica
parser. Using our ModelicaXML language such tools can be decoupled from this
parser. One clear advantage of this approach is that only one parser is maintained
and future Modelica language extensions or modifications could be easily
integrated.

For presentation purposes we translated our first DTD implementation to XML-
Schema using XML Spy (Altova 2005 [2]). The purpose of this trandation was to
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generate pictures from the XML-Schema. Also, another reason was to have
schemata files in both formats for future use. Perhaps, the DTD variant will be
discontinued in the future because the XML -Schema is more widely used now.

All elements from our schema have the optional attributes from the location
entity (which are siine, scolumn, eline and ecolumn) and the info
attribute, which can be used to store additiona information. These location
attributes are used to generate a mapping between key elements in our schema and
the Modelica source code representation. In the following we present some of the
important elements from the DTD/XML-Schema.

The content of our ModelicaXML root element, namely program is depicted in
Figure 2-1. Inside the root element we can have none or several definition
elements. The optional attribute within can be used inside a program element.
The rounded corner boxes on the line connecting two elements can be sequence
(likein Figurel) or choice (like in the bottom part of Figure 2).

| program [%]—(—--—:Eliiedeﬁnitiun

_________________ E} —
The root elemeant of 0.
Modelicafil The definition elernent

Figure 2-1. The program (root) element of the ModelicaXML Schema.

The required attributes for definition are ident and restriction (which can
have one of the "class", "model", "record", "block", "connector",
"type", "package", OF "function" vaues). Optional attributes are final,
partial, encapsulated, replaceable, innerouter, visibility (one of
"public", "protected" values) and string comment.

The definition element is detailed in Figure 2-2. Presented in the picture at
the bottom are the derived element (that handles constructs of thetype "class x
= Y;") and the enumeration element used to declare enumeration types. The
upper part of Figure 2-2 shows the other allowed elements that can appear inside
the definition element. All the elementsin the upper part havethe visibility
attribute, taking one of the "public" or "protected" values. The visibility
attribute values are stating the "public" or "protected" part from the Modelica
source code. We can see that the definition element is recursive, which allows
the declaration of classesinside classes.

The definition €lement can contain import, extends, external,
equation, algorithm, annotation and component €lements. The latter can
use constrain €lement for handling statementslike "type X=Y extends Z;".
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Figure2-2. Thedefinition element from the ModelicaXML Schema.

Component elements, with schemata presented in Figure 2-3, have attributes
representing the Modelica type prefix (f1ow, variability and direction), and

type name (type).

The name of the component is stored in the ident attribute. These attributes are
important because one can query the ModelicaXML representation for a specific
component having desired type and ident. How XML query languages can be used

isexplained in section 2.5.

The type array subscripts element and the array subscripts element
are expressing the fact that Modelica array subscripts can be declared either at the

type level or at the component level.
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Figure 2-3. The component element from the ModelicaXML Schema.

One can use the element modification arguments to further modify the
component. Comments for a component can be specified with the comment
element. The elementSmodification equals and modification assign are
used to modify the component; as sub-elements they can have Modelica
expressions.

The ecuation
elernent

The ecuation ; —Ilequ—When = == ' ,equ_then

slament !

# comment has The annotation
attribube to store elament
the comment string

Figure 2-4. The equation element from the ModelicaXML Schema.
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An equation element, presented in Figure 2-4, can have initial as an attribute
to steteif it represents aModelicainitial equation.

The content and the structure of the equation element are closely following the
definition from the Modelica Language Specification (Modelica-Association 1996-
2005 [75]). The equ connect element takes component references as arguments
here, instead of connect references, as in the version 2.0 of the Modelica Language
Specification.

The collapsed parts from the equ_if and equ_when elements are the Modelica
expressions, detailed in Figure 2-6. The Modelica expressions are present in the
collapsed parts of the algorithm elementsalg if and alg when and alg while.

,alg_while -] =

algorithm [] ' '--:‘alg_elsewhen
The algorithrm | P ATES
elernent : 0.
'alg_hreak
:
+pgomment (53—, annotation

& comment has The annatation
attribute to stare element
the carnrment string

Figure 2-5. The algorithm element from the ModelicaXML Schema.

The algorithm element is presented in Figure 2-5. We point out that the elements
alg break and alg return are recently added statements of the algorithm
section in the latest version (2.1) Modelica Language Specification.

The elements that can appear in ModelicaXML expressions can be found in
Figure 2-6. These are binary operations, literals, component references, array
congtructions, array operators and logical operations.

The constructs from the ModelicaXML schemata not covered here, along with
the full "modelicaxML.xsd" (the XML-Schema version) and "modelica-
XML.dtd" (the DTD version), can be found at the OpenModelica Project website.
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Figure 2-6. The expressions from ModelicaXML schema.

2.5 ModelicaXML and XML tools

This section introduces various XML tools and explains their usage in conjunction
with ModelicaXML. In the following, in different sub-sections we cover: the
stylesheet language for transformation (XSLT) (W3C [116]), the query language for
XML documents (XQuery) (W3C [117]) and the Document Object Model (DOM)
(W3C [112)).

2.5.1 The Stylesheet Language for Transformation (XSLT)

XSL is a stylesheet language for XML. XSLT is the part of XSL that deals with
transformation of XML documents.
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Using XSLT one can implement pretty printers (un-parsers) that can transform
ModelicaXML back into Modelica source code. Alternative transformations could
transform ModelicaXML into other general, modeling or markup languages
(HTML, XHTML, etc). Transformers that translate other modeling languages
(provided that they have an XML representation) into ModelicaXML can also be
implemented with XSLT. Using XSLT and ModelicaXxML, implementation of
HTML documentation generators, similar with what the commercial software
Dymola provides, becomes trivial. We cannot provide the HTML documentation
generator here because of space reasons, but it will be included in the
OpenModelica Project.

We illustrate the usage of XSLT with an example that transforms Modelica
code. For this example we assume that Modelica code was already translated to
ModelicaXML. After the transformation, one can output the Modelica code from
the changed ModelicaXML representation using our "modelicaxml-
2modelica.xslt" stylesheet from the OpenModelica Project.

Example of changing a component name, both in the declaration of the
component and in the component references:

<xsl:stylesheet version="1.0 ...">
<!-- example of component rename -->
<xsl:param name="comp_ old name"/>
<xsl:param name="comp new name"/>
<!-- we echo everything that is not a component or a
component reference -->
<xsl:template match="*|@*|text ()">
<xsl:copy>
<xsl:apply-templates select="*|@*|text()"/>
</xsl:copy>
</xsl:template>
<!-- we match the old component and we output the new name
-=>
<xsl:template match="component
[@eident=$comp_old name] ">
<component ident="{$comp new name}">
<xsl:apply-templates/>

</component >
<!-- we match the old component reference and we output the
new component name -->

</xsl:template>
<xsl:template match="component reference
[@ident=Scomp old name] ">
<component reference
ident="{$comp new name}">
<xsl:apply-templates/>
</component reference>
</xsl:template>
</xsl:stylesheet>
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The XSLT engine is using templates that match on the XML tree structure. The
matching is performed by the X Path expression appearing as the value of the match
attributes. By using xs1:apply-templates element we instruct the XSLT engine
to apply the rest of the templates on the sub-tree that we already matched. When
this stylesheet is applied on our secondorderSystem example from section 2.4.2
with the parameters "xdot" and "xdot new" it will change the component name
and all the component references of xdot to xdot_new.

XSLT can distinguish between components with the same name defined in
different classes by the use of XPath expressions. To rename such occurrences we
first match the class in which is defined and then the actual component. This applies
for both declarations and component references.

A search-and-replace tool could perform this transformation, but such atool has
no knowledge about the context and it will replace even the occurrences appearing
inside comments.

2.5.2 The Query Language for XML (XQuery)

XQuery is a query language similar with what SQL is for relational databases.
Using XQuery, one can easily retrieve information from XML documents. The
XQuery and XSLT are overlapping in some features, and our example could be
implemented in XSLT also.

We give a short example of a query over our “SecondOrderSystem.xml”
example from section 2.4.2. In words, “find al parameter components with type
Real and show theinitiaization value™:

<table border="1">

for $b in
(document ("SecondOrderSystem.xml") /*/
definition/component)
where S$b/e@etype = "Real" and
$b/@variability="parameter"
return <tr><td>
{ $b/e* }
{ $b/modification equals }
</td></tr>

}

</table>

We executed this query in the Qexo (GNU 2005 [44]) implementation of XQuery
and the result in HTML is asfollows:

<table border="1">
<tr><td>
ident="a" type="Real"
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variability="parameter"
visibility="public"
<modification equals>
<real literal value="1" />
</modification equals>
</td></tr>
</table>

As expected, the attributes and the set value of the element corresponding to
"parameter Real a=1;" from our Modelica example was returned as the
answer.

Using XQuery, any types of queries can be asked about the Modelica model.
This opens-up the possibility of easily debugging very large models. User interfaces
can be implemented to hide the query building from the user. Static type checking
can aso be implemented as a series of queries on the model, but is not trivial,
because the class hierarchy is not explicitly defined in XML.

XQuery uses XPath as sub-language to select the part of tree that matches the
XPath expression. In our XML representation one can match an entire component
having a specified ident attribute. The XPath language can be used to handle
scooping.

2.5.3 Document Object Model (DOM)

The Document Object Model (DOM) (W3C [112]) is a standard interface that
alows programs to access/update the content, structure and style of XML
documents. DOM is similar with agenera tree-management library.

There are open-source implementations for DOM APIs in Java, C, C++, Perl,
Python and other programming languages.

Any Modelicatool written in various programming languages can use the DOM
API to directly access/modify the ModelicaX ML representation.

2.6 Towards an Ontology for the Modelica Language

This section investigates the possibility of using the markup languages Resource
Description Framework (RDF) (W3C [118]), RDF Vocabulary Description
Language (RDFS) (W3C [119]) and OWL (W3C [120], [122]) developed in the
Semantic Web (Berners-Lee et a. 2001 [16], SemanticWebCommunity [107], W3C
[121]) for development of a Modelica ontology.

An ontology is a description (like a formal specification of a program) of both
the objectsin a certain domain and the rel ationships between them. In the context of
the Semantic Web there is a layered approach for specifying increasingly richer
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semantics for the upper layersasin Figure 2-7.

Rules Trust
Data Proof g
2
Data Logic %
j:sl: Ontology vocabulary §
doc, RDF + rdfschema g,

Unicode

Figure 2-7. The Semantic Web Layers.

At the bottom, in top of Unicode and Uniform Resource Identifiers (URI) is XML,
namespaces (NS) and XML-Schema. XML specifies a term list with no relations.
On top of XML comes RDF to define a vocabulary and some relations. RDFS (RDF
schema) defines a vocabulary for constructing RDF vocabularies.

The Ontology layer uses languages like OWL to define description logic
relationships.

With ModelicaXML we are now only at the XML level! Using RDF we can
express graphs and we can model inheritance relationships and place queries over
this relation. This can be achieved easily with a smart parser. Using OWL we can
place restrictions over relations and concepts and we can reason with inference
using Description Logics.

2.6.1 The Semantic Web Languages

This sub-section briefly introduces the Semantic Web Languages. Resource
Description Framework (RDF/RDFS) and Web Ontology Language (OWL).

We illustrate the use of Semantic Web Languages by taking a Modelica model
and its representation in OWL.

class Body "Generic body"
Real mass;
String name;

end Body;

class CelestialBody "Celestial body"
extends Body;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;
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CelestialBody moon (name = "moon",
mass = 7.382e22, radius = 1.738e6) ;

Body body instance (name = "some body",
mass = 7.382e22);

Our Modelica model has two classes (concepts) Body and CelestialBody the
|atter being a subclass of the former (by using "extends" statement).
The encoding in OWL isasfollows:

<?xml version="1.0" ?>
<rdf :RDF

<!-- namespaces declaration -->
xmlns=".../inheritance.owl#"
xmlns:modelica=".../inheritance.owl#"
xml :base=".../inheritance.owl">
<owl:0Ontology rdf:about=
".../inheritance.owl" />

<!-- define Body -->
<owl:Class rdf:ID="Body">
<rdfs:label>Generic Body</rdfs:label>
</owl:Class>
<!-- define mass -->
<owl:DatatypeProperty rdf:ID="mass">
<rdfs:domain rdf:resource="#Body"/>
<rdfs:range
rdf : resource="XMLSchema#float"/>
</owl:DatatypeProperty>
<!-- define name -->
<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Body"/>
<rdfs:range
rdf :resource="XMLSchema#fstring" />
</owl:DatatypeProperty>

<!-- define CelestialBody -->
<owl:Class rdf:ID="CelestialBody">
<rdfs:label>
Celestial Body

</rdfs:label>
<rdfs:subClassOf
rdf :resource="#Body" />
<!-- cardinality restriction on the

g constant: one and only one in
CelestialBody -->
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty
rdf :resource="#g" />
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<owl:cardinality rdf:datatype
="XMLSchema#nonNegativeInteger">
1
</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<!-- define g -->
<owl:DatatypeProperty rdf:ID="g">
<rdfs:domain
rdf : resource="#CelestialBody"/>
<rdfs:range
rdf :resource=" XMLSchema#float"/>
</owl:DatatypeProperty>
<!-- define radius -->
<owl:DatatypeProperty
rdf:ID="radius">
<rdfs:domain
rdf :resource="#CelestialBody"/>
<rdfs:range
rdf :resource=" XMLSchema#float"/>
</owl:DatatypeProperty>
<!--
instance declaration of CelestialBody
-=>
<CelestialBody rdf:ID="moon">
<name rdf:datatype="XMLSchema#string"s>
moon
</name>
<mass rdf:datatype="XMLSchema#float">
7.382e22
</mass>
<radius rdf:datatype="XMLSchema#float">
1.738e6
</radius>
<g rdf:datatype="XMLSchema#float">
6.672e-11
</g>
<g rdf:datatype="XMLSchema#float">
intentional error
(string is not float)
</g>
</CelestialBody>

<l--

instance declaration of Body

-->

<Body rdf:ID="body instance">

<name rdf:datatype="XMLSchema#string">
some body
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</name>
<mass rdf:datatype="XMLSchema#float">
7.382e22
</mass>
<--
intentional error
(Body does not have a radius)
-=>
<radius rdf:datatype="XMLSchema#float">
1.738e6
</radius>
</Body>
</rdf :RDF>

In the OWL representation of the Modelica model we first define Body as being an
owl:Class With "Generic body" aslabel. The attributes of Body, namely: mass
and name are represented as owl:DatatypeProperty. The datatype is a binary
relation having a range (type) and a domain (in our case the Body concept). As
range we use the datatypes from XML-Schema, in our case, for mass we use
"float" and for name we use "string®".

The class celestialBody is defined as owl:subclassof the Body class
according to the "extends" statement from our Modelica model. As an OWL
feature in the definition of celestialBody We show alocal cardinality restriction
placed on the g relation. This means that in the instances of celestialBody, theg
component has to appear exactly once. The representation of g or radius
componentsis similar to the representation of mass oOr name.

The moon instance of the celestialBody class sets the values of the
components. We intentionally added the g component twice and with awrong type.
We also declare an instance of the Body class that has a radius component (which
isan error).

To verify the model, our file: "inheritance.owl" was fed into an OWL
Validator (Rager 2003 [99]).

The validator, as expected, reports the following errors:

e For the g component that has a string as value: “Range Type Mismatch. Use
of this property implies that object is of type XML Schema#float” .

e For the radius component in the body_instance declaration: ”Domain Type
Mismatch. Use of this property implies that subject is of type
#CelestialBody. Subject is declared type [Body]”

e For the moon instance: “Cardinality Violation. Resource #moon violates
the cardinality restriction on class #CelestialBody for property #g. Resource
has 2 statements with this property. Maximum cardinality is1”.

The OWL language has more constructs than our example has covered. One can
consult the OWL website (W3C [120], [122]) for more details.
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2.6.2 Theroadmap to a Modelica representation using
Semantic Web Languages

In the example above we have presented a small ontology that models our Modelica
model, consisting of both classes and instances. With a clever parser, such
ontologies could be generated from Modelica libraries and then used for composing
Modelica models.

The roadmap to a Modelica representation in OWL has the following steps:

o Define an RDFS vocabulary for Modelica source code constructs. Such a
vocabulary should include concepts like class, model, record, block, etc.

e Transform the Modelica libraries in their OWL representation using the
above vocabulary.

e An OWL validator can then check the correctness of both the concepts and
the instances of these concepts.

At the end of this roadmap we would have Modelica represented in OWL. The
future benefits of such a representation were underlined in the Introduction section.
Here, we briefly explain how they could be achieved.

2.6.2.1 The Autonomous Models

In the OpenModelica Project, the Modelica compiler is built from the formal
specification (expressed in Natural Semantics (Kahn 1988 [57])) of the Modelica
Language. This specification can be compiled to executable form using the
Relational Meta-Language (RML) system (PELAB 1994-2005 [86], Pettersson
1995 [88], 1999 [90]). The rules from Natural Semantics could be trandated to
OWL or RuleML (RuleML [101]) and shipped together with the model. Using the
rules from the model a normal browser could compile and simulate the Modelica
model. We assume that the platform should have a C compiler.

2.6.2.2 The Software Information System (SIS)

Having the Modelica ontologies that model the source code one could use the
approach detailed in (Welty 1995 [125]) and build the domain model of the
problem. Merging them together would result in a Software Information System.

Using such a Software Information System, users can ask queries about the
Modelica source code concepts (components, classes, etc) that are classified
according to the domain model concepts of the problem.

2.6.2.3 Model consistency could be checked using Description Logic

Modelica models represented in OWL (Description Logics) can be fed into a
reasoning tool like FaCT (Horrocks [51]) or Racer (Haardev et a. 2004 [49]) for
consistency checking.
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Moreover, such support would be of great help to the Modelica library designers
that could formally check relevant properties of the class hierarchies.

The checks one can do using Description Logics on the Modelica OWL
representation are the following:

e Ensure that the classes and the class hierarchy are consistent (ensure that a
class can have instances and is not over-constrained).

e Find the explicit relations between classes, regarding for example sub-
typing or equivalence.

2.6.2.4 Translation of Models to/from Unified Modeling Language
(UML)

The UML language has its XML representation called XMl (OMG [82]).
Trandation from Modelica models conforming to a Modelica ontology to XMl
could be possible using XSLT.

2.7 Conclusion and Future work

We have presented the ModelicaXML language and some applications of XML
technologies. We have shown that there are some missing capabilities with such
XML representation and we addressed some of them. We have presented a roadmap
to an alternative representation of Modelicain OWL and the use of representation
together with the Semantic Web technology.

As future work, we consider completing the ModelicaXML with the definition
of dl the intermediate steps representations from Modelica to flat Modelica and
further to the code generation. This complete representation would allow various
open-source tools to act at these formally defined levels, independent of each other.
More information could be added in the future to such XML representation, like:
model configuration, simulation parameters, etc.

Further insights in the direction of Semantic Web Languages and their use to
express Modelica semantics are necessary. Compilation in both directions between
OWL and the Relational Meta-Language (RML) is worth considering.

2.8 Acknowledgements

We would like to thank the anonymous reviewers for their valuable and insightful
comments or suggestions.



Chapter 3

Composition of XML dialects: A
ModelicaXML case study

Adrian Pop, llie Savga, Uwe ARmann, Peter Fritzson: Composition of XML
dialects: A ModelicaXML case study, In Proceedings of the Software Composition
Workshop (SC2004), affiliated with European Joint Conferences on Theory and
Practice of Software (ETAPS04), March 27 - April 4, 2004, Barcelona, Spain,
Electronic Notes in Theoretical Computer Science Volume 114, Pages 137-152,
http://www.el sevier.com/l ocate/issn/15710661

3.1 Abstract

This paper investigates how software composition and transformation can be ap-
plied to domain specific languages used today in modeling and simulation of
physical systems. More specifically, we address the composition and transformation
of the Modelicalanguage. The composition targets the ModelicaXML diaect which
is the XML representation of the Modelica language. By extending the COMPOST
concrete composition layer with a component model for Modelica, we provide com-
position and transformation of Modelica. The design of our COMPOST extension is
presented together with examples of composition programs for Modelica.

Keywords. Composition of XML dialects, XML, Domain Specific Languages,
Modelica, ModelicaXML, COMPOST
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3.2 Introduction

Modelica (Elmqvist et al. 1999 [33], Fritzson 2004 [39], Modelica-Association
1996-2005 [75], Tiller 2001 [109]) is an object-oriented modeling language used
for modeling of multi-domain (i.e. mechanical, electrical, electronic, hydraulic, etc)
complex physical systems. Modeling with Modelica has a component-oriented
approach where components can be connected together to form a complex system.
To have access to the structure of a model, ModelicaXML (Pop and Fritzson 2003
[92]) has been developed as an XML representation (serialization) of Modelica
language.

Commercia software products as MathModelica (MathCore [69]) and Dymola
(Dynasim 2005 [30]) as well as open-source as OpenModelica System (Fritzson et
a. 2002 [37], PELAB 2002-2005 [87]) can be used for modeling with the Modelica
language. While al these tools have high capabilities for compilation and
simulation of Modelica models, they:

e Provide little support for configuration and generation of components and
models from external data sources (databases, XML, etc).

e Provide little support for security, i.e. protection of “intellectual property”
through obfuscation of components and models.

¢ Do not provide automatic composition of models using a composition lan-
guage. This would be very useful for automatic generation of models from
various CAD products.

e Provide little support for library designers (no automatic renaming of com-
ponents in models, no support for comparison of two version of the same
component at the structure level, etc)

We address these issues by extending the COMPOST framework with a Modelica
component model that acts on the ModelicaXML representation.

The use of XML technology for software engineering purposes is highly present
in the literature today. The SmartTools system (Attali et al. 2001 [10], Attali et al.
2001 [11]) uses XML technologies to automaticaly generate programming
environments specialy tailored to a specific XML diaect that represents the
abstract syntax of some desired language. The use of Abstract Syntax Trees
represented as XML for aspect-oriented programming and component weaving is
presented in (Schonger et al. 2002 [106]). The OpenModelica System (Fritzson et
al. 2002 [37]) project investigates some transformations on Modelica code like
meta-programming (Aronsson et al. 2003 [6]). The bases of uniform composition
for XML, XHTML diaect and the Java language were developed in the European
project Easycomp (EasyComp 2004 [31]). However, the possibilities of this
framework can be further extended and tested by supporting composition for an
advanced domain specific language like Modelica.
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The paper is structured as follows. The next section introduces Modelica,
ModelicaXML, and COMPOST. Section 3.4 presents our COMPOST extension
and its usage through various examples of composition and transformation
programs for Modelica. Conclusion and future work can be found in Section 3.5.
Section 3.6, the appendix, gives the ModelicaXML representation for some of the
examples.

3.3 Background

In this section we briefly introduce the Modelica language and its XML repre-
sentation: ModelicaXML, followed by a short description of the COMPOST
framework.

3.3.1 Modelica and ModelicaXML

Modelica has a structure similar to the Java language, but with equation and
algorithm sections for specifying behavior instead of methods. Also, in contrast to
Java, where one would use assignment statements, Modelica is primary an
equation-based language. Equations are more powerful than assignments because
they do not specify a certain control and data flow direction. Since the flow
direction is not explicitly specified, the Modelica classes are more reusable than the
classes from traditional programming languages, which use assignment statements
for which the data flow direction is always from the right to the left-hand side. We
introduce Modelica by an example:

class HelloWorld "HelloWorld comment"
Real x(start = 1);

parameter Real a = 1;
equation
der (x) = -a*x;

end HelloWorld;

In the example we have defined a class called Helloworld,which has two
components and one equation. The first component declaration (second line) creates
a component x, with type real. All Moddlica variables have a start attribute,
which can beinitialized using a modification equation like (start = 1).

The second declaration declares a so called parameter named a, of type Real
and set equal to an integer with value 1. The parameters are constant during
simulation; they can be changed only during the set-up phase, before the actua
simulation.

The software composition is not performed directly on the Modelica code, but
instead, on an alternative representation of it: ModelicaXML (Pop and Fritzson
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2003 [92]). As an example, the Helloworld class trandated to ModelicaXML
would have the following representation:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE modelica SYSTEM "modelica.dtd"s
<program>

<definition ident="HelloWorld" restriction="class"
string comment="HelloWorld comment">
<component visibility="public" type="Real"ident="x">
<modification arguments>
<element modification>
<component reference ident="start"/>
<modification equals>
<integer literal value="1"/>
</modification equals>
</element modification>
</modification arguments>
</component >

<component visibility="public" variability="parameter"
type="Real" ident="a">
<modification equals>
<integer literal value="1"/>
</modification equals>
</component >

<equation>
<equ_equal>
<call>
<component reference ident="der"/>
<function arguments>
<component reference ident="x"/>
</function_arguments>
</call>
<sub operation="unary">
<mul>
<component reference ident="a"/>
<component reference ident="x"/>
</mul>
</sub>
</equ_equals>
</equation>
</definition>

</program>

The trandation of the Modelica into ModelicaXML is straightforward. The abstract
syntax tree (AST) of the Modelica code is seridized as XML using the
ModelicaXML format. ModelicaXML is validated against the modelica.dtd
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Document Type Definition (DTD) (W3C [113]). Using the XML representation for
Modelica, generation of documentation, translation to/from other modeling
languages can be simplified.

3.3.2 Compost

COMPOST is a composition framework for components such as code or document
fragments, with special regard to construction time. Its interface layer called
UNICOMP for universal composition provides a generic model for fragment
components in different languages and different concrete component models. *

Components are composed by COMPOST as follows. First, the components,
i.e., templates containing declared and implicit hooks, are read from file. Then, a
composition program in Java applies composition operations to the templates, and
transforms them towards their final form. (The transformations rely on standard
program transformation techniques.) After all hooks have been filled, the
components can be pretty-printed to textual form in a file again. They should no
longer contain declared hooks so that they can be compiled to binary form.

3.3.2.1 The notions of components and composition

Fragment-based composition with COMPOST (ARmann and Ludwig 2005 [9]) is
based on the observation that the features of a component can be classified in
several dimensions. These dimensions are the language of the component, the
model of the component, and abstract component features. The dimensions depend
on each other and can be ordered into alayer structure of 5 layers (Figure 3-1):

1. Transformation Engine Layer. The most basic layer encapsulates know!-
edge about the contents of the components, i.e., about the concrete language
of the component. Fragment-based component composition needs a
transformation engine that transforms the representation of components
(ARmann 2003 [8]). For such transformation engines, COMPOST reuses
external tools, such as the Java refactoring engine RECODER (Ludwig
[66]). This transformation engine layer contains adapters between
COMPOST and the external tools.

2. Concrete Composition Layer. On top of the pure fragment layer, this layer
adds information for a concrete component model, e.g., Java fragment
components, or ModdicaXML fragment components. Concrete
composition constraints are incorporated that describe valid compositions,
which can refer to the contents of the components. For instance, a constraint

! COMPOST and its interface layer UNICOMP can also model runtime and other types
of component models, which are not the subject of this paper.
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could be defined that disallows to encapsulating a Java method component
into another Java method component.

3. Time Specific Composition Layer. On this layer the time of the com-
position is taken into account: static or runtime composition.

4. Abstract Composition Layer. In this layer, knowledge is modeled that
does not depend on the concrete component language, or on the concrete
component model. General constraints are modeled, for instance, that each
component has a list of subcomponents, the component hierarchy is a tree,
or composition expressions employ the same type of component,
independently of the concrete type.

5. UNICOMP Interface Layer. The interfaces of the abstract composition
layer have been collected into a separate interface layer, UNICOMP. This
set of interfaces provides a generic fragment component model, from which
different concrete component models can be instantiated.

T S
5 UNICOMP { Y mnferface layer
Cumpnnenh \\‘-Eﬁm__w; -/,.‘ hw
4 Components Abstract
(Boxes) (Cora) Composliticn
y Layer
Time speclfic
3 Fragment Composltion
Boxos ‘\ Layer
OxHTML |
i ! Language specific
% ;';?m"t ! Composlition Layer
[XHTML | | ModelicaXmL | Transformation
| Fragment, ¢ Engine
| Valuss | Runtime ~ Layer

Figure 3-1. The layers of COMPOST.

For COMPOST applications, UNICOMP hides underlying concrete information
about the component model to a large extent. An application uses COMPOST in a
similar way as a component framework with an Abstract Factory (Gamma et al.
1994 [41]). When a component is created, its concrete type is given to the
COMPOST factory. However, after creation, the application only uses the
UNICOMP generic interfaces. Hence, generic applications can be developed that
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work for different component models, but use generic composition operations.
Already on the Abstract Composition Level, the following uniform operations for
fragment components are available;

Other uniform basic operations. COMPOST composition operators can
address hooks and adapt them during composition for a context. As a basic
set of abstract composition operators, copy, extend, and rename are
available.

Uniform parameterizations. Template processing works for completely
different types of component models. After a semantics for composition
points and bind operations has been defined, generic parameterization
programs can be executed for template processing.

Uniform extensions. The extension operator works on all types of com-
ponents.

Uniform inheritance. On the abstract composition layer COMPOST defined
several inheritance operators that can be employed to share components, be
it Java, or XML-based components. Inheritance is explained as a copy-and-
extend operation, and both copy and extend operations are available in the
most abstract layer.

Uniform connection. COMPOST allows for uniform connection operations,
aswell for topologic as well as concrete connections (ARmann 2003 [8]).
Uniform aspect weaving. Based on these basic uniform operations, uniform
aspect weaving operations (Karlsson 2003 [58]), can be defined.

The great advantage of the layer structure is that new component models, e.g., for
XML languages, can be added easily as we show in this paper. In fact, COMPOST
is built for extension: adding a new component model is easy, it consists of adding
appropriate classes in the concrete composition levels, subclassing from the abstract
composition level aswe show in Section 3.4.

3.3.2.2 Composition Constraints

Each COMPOST layer contains constraints for composition. These constraints
consist of code that validates components and compositions.

Composite component constraints. A component must be composite, i.e.,
the composed system is a hierarchy of subsystems. A component is the
result of a composite composition expression or a composition program.

Composition typing constraints. Composition operations must fit to com-
ponents and their composition points. For instance, a composer may only
bind appropriate values to composition points (fragments to fragments,
runtime values to runtime values), or use a specific extension semantics.

Constraints on the content of components. For instance, for a Java com-
position system, this requires that the static semantics of Java is modeled,
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and that this semantics controls the composition. For an XML diaect,
semantic constraints can be modeled, for instance, that all links in a doc-
ument must be valid, i.e., point to a reasonable target. Our extended
framework presented in this paper provides parts of the Modelica semantics
in top of the ModelicaX ML format.

With these constraints, it should be possible to type-check composition expressions
and programs in the UNICOMP framework. Many of these constraints can be
specified in a logic language, such as first order logic (Datalog) or OWL (W3C
[122]), and can be generated to check objects on every layer.

3.3.2.3 Support for staged compaosition

COMPOST supports staged composition as follows. Firstly, the UNICOMP layer
has been connected to the Component Workbench, the visual component editor of
the VCF (Oberleitner and Gschwind 2002 [80]). Composition programs for
fragment component models can be edited from the Component Workbench, and
executed via COMPOST.

So far, a case study has been build for a web-based conference reviewing system
that requires Java and XHTML composition. This paper shows how to compose
Modelica components by using its alternative XML representation: ModelicaXML.

Secondly, COMPOST can be used to prepare components such that they fit into
component models of stage 2 and 3. For instance, COMPOST connectors can
prepare a Java class for use in CORBA context (AfRmann et al. 2000 [7]). They can
also be used to insert event-emitting code, to prepare a class for Aspect-Oriented
Programming.

3.4 COMPOST extension for Modelica

This section describes the Modelica component model. The architecture of our
system is presented. Modelica Box and Hook hierarchies are explained. Finaly,
various composition programs are given as examples.

3.4.1 Overview

The architecture of the composition system is given in Figure 3-2. A Modelica
parser is employed to generate the ModelicaXML representation. ModelicaXML is
fed into the COMPOST framework where it can be composed and transformed. The
result is transformed back into Modelica code by the use of a ModelicaXML
unparser.
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Meodeslica Code

Modelica
UnParser

ModelicaXML

Composition
programs
on
Modelica

Modelica
Component

Compost
) Model

XML Recoder

Composition, Transformation, and Refactoring

Modelica Box Hierarch
on Modelica Components )

Modelica Hook Hierarchy

Figure 3-2. The XML composition. System Architecture Overview.

3.4.2 Modelica Box Hierarchy

Besides genera classes, Modelica uses so called restricted class constructs to

structure information and behavior: models, packages, records, types, functions,

connectors and blocks. Restricted classes have most properties in common with

general classes, but have some restrictions, e.g. there are no equations in records.
Modelica classes are composed of elements of different kinds, e.g.:

e Import or extends declarations.
e Public or protected variable declarations.
e Equation and algorithm sections.

Each of the Modelica restricted classes and each of the element types have their
corresponding box class in the Modelica Box hierarchy (Figure 3-3).

In our case, the boxes (templates) are mapped to their specific element types in
the ModelicaXML representation. For example, the ModelicaClass box is
mapped t0 a <define ident="ClassName"s>..</define> element. The
ModelicaClass box can contain several ModelicaElement boxes and can con-
tain itself in the case that one Modelica class is declared inside another class.

The boxes that inherit from ModelicaContainer represent the usual con-
structs of the Modelica language. The boxes that inherit from ModelicaElement
are defining the contents of the boxes that inherit from ModelicaContainer.
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The boxes incorporate constraints derived from Modelica static semantics. For
example, constraints specify that inside aModelicaRecord isnot alowed to have
ModelicaEquationSections.

XMLBox
ModelicaXMLBox
0.* I
ModslicaContainer = ModelicaElement
ModelicaClass | ModelicaType — ModelicaComponent
ModelicaModsel | ModelicaPackage —ModelicaEquationSection
ModelicaRecord ModelicaFunction ModelicaAlgorithmSection

ModelicaBlock

ModelicaConnector —

Figure 3-3. The Modelica Box Hierarchy defines
aset of templates for each language structure.

While these constraints in our case were specified in the Java code, a future
extension will automatically generate these constraints from external specifications
expressed in formalisms such as Document Type Definition (DTD) (W3C [113]),
Web Ontology Language (OWL) (W3C [120], [122]) or Relational Meta-Language
(RML) (PELAB 1994-2005 [86], Pettersson 1995 [88], 1999 [90]).

3.4.3 Modelica Hook Hierarchy

Implicit Hooks are fragments of Modelica classes that have specific meaning
according to Modelica code structure and semantics. By using Hooks one can easily
change/extract parts of the code. In the Modelica Hook Hierarchy presented in
(Figure 3-4) only Implicit Hooks are defined for the Modelica code.

There is no need to define Declared Hooks especially for Modelica, because the
XMLDeclaredHook aready performs this operation. One can have an XML de-
clared hook that extracts from the XML document the contents of an element with a
specified tag, i.e, <extract ...s.

Hooks are used to configure parts of boxes. The XMLImplicitHook iS
speciaized asModelicaParameterHook OF ModelicaModificationHook.
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ModelicaParameterHook hinds variable components in ModelicaXML that have
variability attribute set to "parameter". TO provide typing constraints, specific
hooks for real literal, integer literal, string literal types have
been declared. These constraints the binding of the parameters to values of proper
type.

Hook
DecdlaredHook ImplicitHook
XMLImplicitHook
XMLDeclaredHook ,
MaodelicaModifierHook ModelicaParameterHook

ModelicaRealHook

Other Modelica Hooks

ModelicaintegerHook

ModslicaStringHook

Figure 3-4. The Modelica Hook Hierarchy.

ModelicaModificationHook targets component declarations that have their
elements changed by modifiers. In the Hel1loworld example in Section 3.3.1, the
modifier is imposing on component x to change its start value. At the Model-

icaXML level the ModelicaModificationHook is searching for XML elements
of the form:

<component ident="ComponentName'">
<modification arguments>
<element modification>
<component reference ident="element"/>
<modification equals>value initialization e.g.
<integer literals>l</integer literals>
</modification equals>
</element modification>
</modification_ arguments>
</component >

This hook will bind proper values to the modified elements.
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Also, other types of implicit hooks can be specified like hooks for the left hand side
or the right hand side of an equation hooks that change types of components, hooks
that change the documentation part of a class declaration, etc.

3.4.4 Examples of composition and transformation programs

This subsection gives concrete examples on the usages of our framework. The
examples are written in Java, but they could easily be performed using a tool that
has visual abstractions for the composition operators. For presentation issues only
the Modelica code is given in the examples below and their corresponding
ModelicaXML representation is presented in Section 3.6.

3.4.41 Generic parameterization with type checking

To be able to reuse components into different contexts they should be highly
configurable. Configuration of parameters in Modelica is specified in class
definitions and can be modified in parameter declaration. The values can be read
from external sources using externa functions implemented in C or Fortran. In the
example below we show how the parameters of a Modelica component can be
configured using implicit hooks. Because we use Java, the parameter/value list can
be read from any data source (XML, SQL, files, etc). The example is based on the
following Modelicaclass:

class Engine

parameter Integer cylinders = 4;

Cylinder cl[cylinders];

/* additional parameters, variables and equations */
end Engine;

Different versions of the Engine class can be automatically generated using a
composition script. Also, the parameter values are type checked before they are
bound to ensure their compatibility. The composition script is given below partialy
in Java, partially in pseudo-code:
ModelicaCompositionSystem cs = new
ModelicaCompositionSystem() ;

ModelicaClass templateBox =
cs.createModelicaClass ("Engine.mo.xml") ;

/* read parameters from configuration file, XML or SQL */

foreach engine entry X

ModelicaClass engineX =
templateBox.cloneBox () .rename ("Engine "+X) ;
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foreach engine parameter

{

engineX.findHook ("parameterName") .bind (parametervValue) ;
/* typed parameterization */

engineX.print () ;

}

Using a similar program, the modification of parameters can be performed in
parameter declarations.

3.4.4.2 Class Hierarchy Refinement using Declared Hooks

When designing libraries one would like to split specific classes into a more general
part and a more specific part. As an example, one could split the class defined
below into two classes that inherit from each other, one more generic and one more
specific, in order to exploit reuse. Also if one wants to add a third class, e.g.
RectangularBody, t0 the created hierarchy the transformation above would be
beneficial. The specific class that should be modified is given below:

class CelestialBody "Celestial Body"
Real mass;

String name;

constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

The desired result, the two split classes where one inherits from the other, is shown
below:

class Body "Generic Body"
Real mass;

String name;

end Body;

class CelestialBody "Celestial Body"
extends Body;

constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

One can see that this transformation extracts parts of classes and inserts them into a
new created class. Also, the old class is modified to inherit from the newly created
class.

This transformation is performed with the help of one declared hook (for the
extraction part) and an implicit hook for the superclass, with its value bound to the
newly created class. The user will guide this operation by specifying, with a
declared hook or visualy, which parts should be moved in the new class. The
composition program that performs these transformations is as follows:
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ModelicaCompositionSystem cs = new
ModelicaCompositionSystem() ;
ModelicaClass bodyBox = cs.createClass("Body.mo.xml") ;
ModelicaClass celestialBodyBox =
cs.createModelicaClass ("Celestial .mo.xml") ;
ModelicaElement extractedPart =
celestialBody.findHook ("extract") .getValue() ;

/* empty the hook contents */
celestialBody.findHook ("extract") .bind (null) ;

bodyBox.append (extractedPart)

bodyBox.print () ;

celestialBody.findHook ("superclass") .bind ("Body") ;
/* or findSuperclass() .bind("Body"); */

celestialBody.print () ;

Similar transformations can be used to compose Modelica models based on the
interpretation of other modeling languages. During such composition some classes
need to be wrapped to provide a different interface. For example, when thereis only
a force specified for moving a robot arm, but the available library of components
only provides electrical motors that generate aforce proportional to avoltage input.

3.4.4.3 Composition of classes or model flattening

Mixin composition of the entire contents of two or more classes into one another is
performed when the models are flattened i.e. as the first operation in model
obfuscation or at compilation time. The content of the classes composed below is
not relevant for this particular operation. The composition program that
encapsulates this behavior is as follows:

ModelicaCompositionSystem cs = new
ModelicaCompositionSystem() ;
ModelicaClass resultBox =
cs.createModelicaClass ("Classl.mo.xml") ;
ModelicaClass firstMixin =
cs.createModelicaClass ("Class2.mo.xml") ;
ModelicaClass secondBox =
cs.createModelicaClass ("Result.mo.xml") ;

resultBox.mixin (firstMixin) ;
resultBox.mixin (secondMixin) ;
resultBox.print () ;

It first reads the two classes from files, creates a new result class and pastes the
contents of the first classesinside the new class.
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3.5 Conclusion and Future work

We have shown how composition on Modelica, using its aternative the Model-
icaXML representation, can be achieved with a small extension of the COMPOST
framework. While this is a good start, we would like to extend our work in the
future with some additional featureslike:

More composition operators and more transformations, i.e., obfuscation,
symbolic transformation of equations, aspect oriented debugging of compo-
nent behavior by weaving assert statements in equations, etc.
Implementation of full Modelica semantics to guide the composition, based
on the adready existing Modelica compiler implemented in the
OpenModelica System.

Validation of the composed or transformed components with the
OpenModelica compiler.

Automatic composition of Modelica models based on interpretation of other
modeling languages.

Modelica should provide additional constraints on composition, based on the
domain knowledge. These constraints are specifying, for example, that specific
components should not be connected even if their connectors allow it. We would
like to further investigate how these constraints could be specified by library
developers.

3.6 Appendix

CelestialBody in ModelicaXML format before transformation:

<definition ident="CelestialBody" restriction="class"

string comment="Celestial Body"/>
<component visibility="public"
ident="mass" type="Real"/>
<component visibility="public"
ident="name" type="String"/>
<component visibility="public"
variability="constant" ident="g"
type="Real">
<modification equals>
<real literal value="6.672e-11"/>
</modification equals>
</component>
<component visibility="public"
variability="parameter" ident="radius"
type="Real"/>

</definition>
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CelestialBody and Body in ModelicaXML format after transformation:

<definition ident="Body" restriction="class"
string comment="Generic Body"/>
<component visibility="public" ident="mass" type="Real"/>
<component visibility="public"
ident="name" type="String"/>
</definition>

<definition ident="CelestialBody" restriction="class"
string comment="Celestial Body"/>
<extends type="Body"/>
<component visibility="public"
variability="constant" ident="g"
type="Real">
<modification equals>
<real literal value="6.672e-11"/>
</modification equals>

</component >
<component visibility="public" variability="parameter"

ident="radius" type="Real"/>
</definition>

The Engine class representation in ModelicaXML:

<definition ident="Engine" restriction="class">
<component visibility="public" variability="parameter"
type="Integer" ident="cylinders">
<modification equals>
<integer literal value="4"/>
</modification equals>
</component >
<component visibility="public" type="Cylinder" ident="c">
<array subscripts>
<component reference ident="cylinders"/>
</array subscripts>
</component >
</definition>
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and Modeling (SIM S 2004), September 23-24, 2004, Copenhagen, Denmark.

4.1 Abstract

This paper presents recent work in the area of model-driven product devel opment
processes. The focusis on the integration of product design tools with modeling and
simulation tools. The goa is to provide automatic generation of models from
product specifications using a highly integrated set of tools. Also, we provide the
designer with the possibility of selecting the best design choice, verified through
(automatic) simulation of different implementation alternatives of the same product
model. To have a flexible interaction among various tools of the framework an
XML representation of the Modelica modeling language called ModelicaXML is
used. For efficient search in a large base of simulation models the Modelica
Database was designed.

4.2 Introduction and Related Work

Designing products is a complex process. Highly integrated tools are essential to
help a designer to work efficiently. Designing a product includes early design phase
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product concept modeling and evaluation, physical modeling and simulation and
finally the physical product realization. For conceptua modeling and physical
modeling and simulation available tools provide advanced functionality. However,
the integration of such tools is a resource consuming process that today requires
large amounts of manual, and error prone work. Also, the number of physica
models available to the designer in the product concept design phase is typically
quite large. This has an impact on the selection of the best set of component choices
for detailed product concept simulation.

To address these issues we have integrated new product concept design tools
with physical modeling and simulation tools in a framework for product design. In
our proposed framework, the product concept design phase of the product
development process is based on Function-Means tree decomposition (Andreasen
1980 [3]). This phase is implemented in a first version of a prototype tool called
FMDesign, developed in cooperation with the Machine Design Group led by Petter
Krus, IKP, Linkdping University.

As an example of Function-Means tree decomposition we give a landing
function in an airplane. This function can be represented by two different means:
hydraulic landing gear or electric landing gear. Each of the two alternatives can be
selected and configured to simulate its properties.

Starting from FMDesign tool, our integration work extends the framework in
two ways:

e Providing a Selection and Configuration Tool that helps the designer to
choose a specific implementation for the means in the function-means tree
from a Modelica model/ component database. This tool also provides
component configuration and has links to a Modelica standard based
simulation environment for component editing.

e Providing an Automatic Model Generation Tool that helps the designer to
choose the best implementation from different design choices by evaluation
through simulation of automatically generated models of candidate product
concepts. If the designer is not pleased with the results, he/she can either
implement new models for the components that did not perform in the
desired way or reiterate in the design process and choose other alternatives
for implementing different functions in the product, or change the
configuration parameters for models at deeper levels of detail.

The paper is structured as follows: The next section (section 4.3) presents an
overview of our proposed framework. Section 4.4 enters in the details of the
framework components and their interaction. Section 4.5 presents our conclusion
and future work.

The presented system has similarities with the Schemebuilder tool (Bracewell
and D.A.Bradley 1993 [21]) and Modelith framework (Johansson et al. 2002 [54],
Larsson et a. 2002 [62]). However our work is more oriented towards the design of



Architecture overview 67

advanced complex products that require systems engineering, and targeted to the
simulation modeling language Moaodelica, which to our knowledge has more
expressive power in the areas of our research, than many tools for systems
engineering that are currently widely used. For details on Systems Engineering, see
(INCOSE 1990-2005 [53]).

4.3 Architecture overview

The architecture of our extended framework is presented in Figure 4-1. The entire
product concept design processiisiterative.

Operation | Smultion
G : Bvelugtion
I Optimisdion

ModdicaXML
Gagadal
Modds

Figure 4-1. Design framework for product devel opment.

Starting from requirements for a product the designer will use the FMDesign
prototype for modeling alternative product concepts. The knowledge base for
designing a product is organized into function-means trees. A function in the
product can be realized by alternative means. A product concept is a set of means
that document selected solution aternatives for implementing the functions in a
product concept. Example of a function is "Actuator Power Supply", With
means "Hydraulic Power Supply" OF "Electrical Power Supply".
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Means must be implemented by (physical) components arranged in a bill-of-
material like tree of implementation objects.

One can roughly say that a means and its implementation are the same, but at
different levels of detail. Implementation objects (not shown in the figure) may
represent existing component products on the market or manufactured components.
Implementation objects carry data that is important for the product concept design,
and references to more detailed design information like CAD-drawings, simulation
models etc. Some (physical components) may implement several means, like an
aircraft wing that creates lift and stores fuel.

To map suitable simulation model implementations to a means, the designer
would use the Modelica Database query facility provided by the Selection and
Configuration Tool. This tool also provides configuration of the simulation
components and uses the desired Modelica environment for component editing.

When the product concept design phase of the product is sufficiently complete,
the designer can generate code for simulation from the implementation tree using
the Automatic Model Generator Tool. The generator will output models (different
versions for different product concepts) in ModelicaxML. From ModelicaXML
the models are trandated to Modelica to be ssmulated. The designer can review the
simulation results in tools like MathModelica (MathCore [69]), Dymola (Dynasim
2005 [30]) or OpenModelica (Fritzson et a. 2002 [37], PELAB 2002-2005 [87])
and then selects (in FMDesign) the desired model aternative for the
implementation. If the designer sees that some means do not perform in the desired
way, a customized simulation model can be built, or a search conducted for more
alternatives for that specific means.

4.4 Detailed framework description

In this section we present the tools from our proposed framework. Also, we briefly
explain in each section how they interact.

441 ModelicaXML

Modelica (Fritzson 2004 [39], Modelica-Association 1996-2005 [75]) is an object-
oriented language used for modeling of large and heterogeneous physical systems.
For modeling with Modelica, commercia software products such as MathModelica
(MathCore [69]) or Dymola (Dynasim 2005 [30]) have been developed. However,
there are also open-source projects like the OpenModelica Project (Fritzson et al.
2002 [37], PELAB 2002-2005 [87]).

Modelica is translated to ModelicaXML (Pop and Fritzson 2003 [92]) using a
Modelica parser (Figure 4-2).
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class Test "comment"

Real x;
Real xdot;
equation
Moddica xdot = der (x) ;
code end Test;

red

Modelica Parser
<modelicaxml>
OUtDUt <definition ident= "Test"
comment="comment" >
Moddica <component ident="x" type="Real"
XML visibility="public" />

<component ident="xdot" type="Real"
visibility="public" />
<equation>...</equation>
</definition>
</modelicaxml>

Figure 4-2. Modelica and the corresponding ModelicaX ML representation.

ModelicaXML represents an XML serialization of the Abstract Syntax Tree of the
Modelica language obtained after the parsing. In our framework, ModelicaXML is
used as an interchange format between the different design tools.

The advantages of having an aternative representation for Modelica in XML
are:

o Flexible interaction and trandation between different types of physica
modeling languages and modeling tools. Also, easy generation of model
documentation.

e Basic search and query functionalities over models.

e Easy transformation and composition of models (Pop et al. 2004 [95]).

For more information on ModelicaXML the reader is referred to (Pop and Fritzson
2003 [92]) and (Fritzson 2004 [39]).

4.4.2 Modelica Database (ModelicaDB)

The features of the Modelica language and Modelica tools has made easy for
designers to create models. Also, the Modelica community has a growing code-
base. In order to cope with interoperability between Modelica and other modeling
languages we first developed ModelicaXML. However, scalability and efficient
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search features for XML require extensive skills in vendor specific products. To
quickly get such features without taking on that huge learning effort, we have
designed the Modelica Database (ModelicaDB).

The Modelica Database is populated with Modelica models and libraries by
importing their ModelicaXML representation. The UML model of this database is
presented in the appendix (section 4.7). For paper space reasons we use a somewhat
customized compressed graphica representation of UML class diagrams, where
inheritance is represented with a box between the class name and attributes box,
where inherited super classes are preceded with a "->". For details on UML see
(OMG [81)).

Here we briefly explain the most important structures. They are tightly coupled
with the Modélica structure (Fritzson 2004 [39], Pop and Fritzson 2003 [92]):

e Modelica Repository: contains severa ModelicaModels.

e Class: A class represents the fundamental model element from the Modelica
language. It can include several Component clauses, Equation and
Algorithm statements. The component sections can be declared as public or
protected in order to provide only the desired interface to the outer world.
Specifying that the equation or algorithm sections are only active at the
initialization phase they can be declared asinitial.

e Component: used to define parameters, variables, constants, etc to be used
inside aclass.

e Equations and Algorithms are used to specify the desired behavior for a
class.

In the product design framework the role of ModelicaDB is to provide searching
and organization features of a large base of simulation models. This base grows
with every product model developed or with the import of additional simulation
models from other sources (i.e. the Modelica community). For example, if we want
to obtain al the models that have certain parameter names we have to search in the
database for al classes that have a component with the attribute
variabilityPrefix Set t0 "parameter" and have the specified name. These
searches will be integrated in FMDesign using dialogs and completely transparent
for the user.

4.4.3 FMDesign

The FMDesign (Figure 4-3) prototype tool helps the designer in creating product
specifications using function-means trees.

The created product model is stored in a product design library for later reuse.
Throughout the product concept design process the designer can use the existing
concepts stored in the product design library in order to model the desired product.
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A somewhat simplified meta-model of the information structure edited in
FMDesign is presented as an UML class diagram in the appendix (section 4.7).

In the framework, FMDesign is the central front-end to specific components.
FMDesign delegates searches in the ModelicaDB using the Selection and
Configuration Tool and it uses the Automatic Model Generation Tool to generate
the models for simulation.
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Figure 4-3. FMDesign — atool for conceptual design of products.
can seein Figure 4-3, the work areais divided into several parts:

Products: Here products are created, deleted and selected. When a product
is selected, the trees owned by it and described below, are displayed.
Requirements Tree: in this view the requirements for a product can be
specified.

Function-Means Tree: in this view the designer can define the operation
states, functions, their alternative means etc, of the selected product.

Product Concepts: Allows creating, deleting and selecting product concepts.
Product Concept Tree: displays the currently selected Product Concept
Tree, and alows the user to select which means that will implement
different functions in the product, using drag-drop. Selected means can be
customized for the current product concept by overriding the default values
for its design variables owned by a selected means.

Implementation Tree: displays and provides functionality for editing one of
many configurable Implementation Trees for the currently selected product
concept. These implementation trees organize the implementation objects
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that represent and refer to more detailed models of physical objects,
functional models, simulation models, geometrical layout models etc, and
organize them into trees that are useful for interfacing with tools later in the
product devel opment process.

We only use the Implementation Tree of type simulation to generate the Modelica
simulation model for a product. The Implementation Tree of type geometrical can
be used in the visualization of the product.

4.4.4 The Selection and Configuration Tool

The Selection and Configuration Tool extends the framework by adding integrated
search capabilitiesin FMDesign. The tool is coupled with the Implementation Tree
for a Product Concept. The designer uses the selection tool to search (query) the
Modelica Database for desirable simulation components to implement a certain
means. An implementation object in the simulation implementation tree represents
the selected simulation component. Simulation component to means mapping
reflects the various design choices made by the designer. In this way, the designer
can experiment with different smulation component implementations at various
level of detail for a specific means. When choosing alternatives for a specific means
the designer has two possibilities: to browse the repository of simulation models
classified according to physical concepts or to use the search dialog. The search
dialog provides the following functionality:

e Textual/pattern search of components, search for a component in a specific
physical domain, search for a component with specific parameters.

e Adding/deleting a product concept specific means to simulation component
mapping where the simulation component is referred from an
implementation object.

After building the means-component mappings the designer can choose to edit or
configure components by using the configuration dialog that provides the following
functionality:

e  Set implementation component parameters or parameters ranges.

¢ Edit the simulation component in the desired Modelica environment and use
the edited component, which is also automatically added to the Modelica
Database.
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445 The Automatic Model Generator Tool

The Automatic Model Generator Tool provides the second extension of the
framework.

The model generator tool has as input the Implementation Tree (Figure 4-3,
lower right) of a product and as output the complete ssmulation model with the
alternative design choices.

The automatic model generator traverses the Implementation Tree of a Product
Concept and outputs ModelicaXML models by choosing the combination of
selected components for means. The generated models are then trandated to
Modelica for means evaluation through simulation. To simulate the models,
commercial tools like Dymola and MathModelica or the open-source
OpenModelica (Fritzson et a. 2002 [37], PELAB 2002-2005 [87]) compiler can be
used.

After the ssmulation of the generated models, the results are used as feedback for
the designer. Using this feedback the designer can then choose the best-suited
model, based on the simulation results.

4.5 Conclusions and Future Work

As future work we want to explore the use of ontologies for product concept design
and for the classification of the available component libraries.

The languages developed by the Semantic Web (Berners-Lee et a. 2001 [16],
SemanticWebCommunity [107], W3C [121], [120], [122]) community will be used.
Research efforts based on this standard are integrating experience of many
promising research areas, for instance declarative rules, which still lack a vendor
neutral exchange formats for industrial applications. The semantic web standard
lacks important functionality for quality assurance and other necessary
functionality, which today is implemented in commercial products, but will open up
for sharing of important research results with industry in collaborative
environments. Also we would like to improve the Automatic Model Generator Tool
by using parts of the composition and transformation framework described in (Pop
et al. 2004 [95]).

In the future we want to provide automatic evaluation through simulation of the
generated models based on the constraints collected from the Product's Requirement
Tree.
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Chapter 5

The Modelica Standard Library as an
Ontology for Modeling and Simulation
of Physical Systems

Adrian Pop, Peter Fritzson: The Modelica Sandard Library as an Ontology for
Modeling and Smulation of physical systems, Technica Report, 2004,
http://www.ida.liu.se/~adrpo/reports.

5.1 Abstract

This paper presents the Modelica Standard Library, an ontology used in modeling
and simulation of physical systems. The Modelica Standard Library is continuously
developed in the Modelica community. We present parts of the Modelica Standard
Library and show an example of its usage. Also, in this paper we focus on the
comparison of Modelica, the language used to specify the Modelica Standard
Library with other ontology languages developed in the Semantic Web community.

5.2 Introduction and Related Work

The Modelica Standard Library provides concepts (classes) from various physical
domains that can be easily used to create models (new classes). Also, these new
created models can be further re-used.

As related work we can mention the PhySys ontology and OLMECO library
(Borst et al. 1997 [20]) for dynamic physical systems. The PhySys ontology
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consists of three engineering ontologies formalizing conceptual viewpoints on
physical systems. system layout, physical processes and descriptive mathematical
relations. The PhySys ontology and the OLMECO library provide a similar
framework as our work presented in (Pop et al. 2004 [94]) which is based on
function-means decomposition of systems and Modelica components are associated
with different means.

The paper is structured as follows. The next section shortly presents the
Modelica language. Also, in this part we compare the Modelica language and the
Web Ontology Language (OWL) (W3C [120], [122]) developed in the Semantic
Web community (Berners-Lee et al. 2001 [16], SemanticWebCommunity [107],
W3C [121]). Section 5.4 enters into the details of some parts of the Modelica
Standard Library and shows an example of its usage. Section 5.5 presents
conclusions and future work.

5.3 Modelica

Modelica (EImqvist et al. 1999 [33], Fritzson 2004 [39], Modelica-Association
1996-2005 [75], Tiller 2001 [109]) is an object-oriented declarative language used
for modeling of large and heterogeneous physical systems. The Modelica language
isanew, revolutionizing approach to physical modeling area because is component-
based and equation-based, which provide strong reuse (equations are more powerful
than assignments because they do not specify control flow). Modelica has a general
class concept in which documentation, attributes (components) and the class
behavior can be stated. Modelica libraries (Hubertus 2002 [52], Modelica
Association 1996-2005 [75]) have detailed forma semantics based on agebraic,
differential and difference equations. Modelica language provides constructs for
building class documentation (both textual and icons), which can be used by tools
to provide visual modeling. Also, in Modelica the connections between components
are clearly specified with the use of connectors.

For modeling with Modeica, commercial software products such as
MathMaodelica (MathCore [69]) or Dymola (Dynasim 2005 [30]) have been
developed. However, there are also open-source projects like the OpenModelica
Project (Fritzson et a. 2002 [37], PELAB 2002-2005 [87]). We briefly introduce
the Modelica language by a short example:

class HelloWorld "Hello World Model"
Real x(start = 1);

parameter Real a = 1;
equation
der (x) = -a*x;

end HelloWorld;
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The example defines a simple class with two attributes and one equation section.
This ssimple model can be configured when used again in other models i.e.
HelloWorld (a=3) ;

Comparison of provided functionality between Modelica, Unified Modeling
Language (UML) (OMG [82], [81]) and RosettaNet (RosettaNet [100]) technical
dictionary is discussed in (Johansson et al. 2004 [55]). The conclusion is that
sharing and reuse of static engineering ontologies among these languages can be
fully automated.

When comparing Modelica and the Web Ontology Language (OWL) devel oped
in the Semantic Web we can outline the following:

o Classes are template-based in Modelica vs. classes are constructed from
several primitives using logical connectorsin OWL.

e In OWL relations between classes can be specified and additiona
congtraints can be stated. Also reasoner tools provide the possibility of
inferring new knowledge from existing facts.

¢ Both languages have multiple inheritance, subtyping and XML seriaization
(ModelicaXML (Pop and Fritzson 2003 [92]) for Modéelica).

Modelica users and library developers would benefit from Semantic Web
technologies and research work isin progress to adapt these to Modelica.

5.4 Modelica Standard Library (MSL)

In this section we shortly introduce the Modelica Standard Library (MSL)
(Modelica-Association 1996-2005 [75]) and give a usage example. For space
reasons we prompt the interested reader to the detailed description of the MSL,
available at: http://www.modelica.org/libraries.shtml

5.4.1 Overview of the ontology
The ontology is structured into several sub-ontologies (packages):

Modelica.Blocks - Input/Output blocks
Blocks This package provides input/ output blocks for building up block

diagrams.
(5]
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Modelica.Constants — M athematical and physical constants

Constarts This package defines often needed constants from mathematics,
machine dependent constants and constants from nature.

™

Modelica.Electrical — Electric and electronic components

Electrical This package contains electrical components to build up analog

circuits.
+71

Modelica.l cons— 1 con definitions of general interest

lcons This package contains icon definition used to document
components (for visual modeling).

Modelica.M ath — M athematical functions

This package defines highly used mathematical functions (sin, cos,
Math tan, etc).

()

Modelica.M echanics — Mechanical components (one dimensional rotational and
trandational)

Mechanics

This package defines components to model mechanical systems.

e

Modelica.Thermal — Thermal components

Thermial This package defines components to model one dimensional heat
transfer with lumped elements.

Likrary
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Modelica.Siunits— Sl -unit type definitions (according to | SO 31-1992)

Slunitz This package provides predefined types such as Mass, Length,
Time, etc, based on the international standards on units.

[kq....

5.4.2 Discussion on the Modelica Standard Library

The features of the Modelica language and Modelica tools have made easy for
designers to create models. The Modelica Standard Library provides a shared
repository of components for reuse in different models. Tools like MathModelica
(MathCore [69]) are using the Modelica Standard Library to help users visualy
pick and connect componentsinto larger models asin Figure 5-1.
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Figure5-1. Visual construction of models using MathModelica.

From the left part of the Figure 5-1 the components of a MSL library can be
dragged into the current model where they can be connected and further configured.
Because the components are very generic and highly configurable they can be
easily re-used in different models or different parts of the same model.

The library developers can impose certain weak restrictions on the use of the
components to ensure that they cannot be misused. However, the Modelica
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language lacks the power of imposing advanced constraints on the components or
their relationship. We will address thisissue in the future by translating Modelicato
the Web Ontology Language (OWL) and use this language to express restrictions,
additional domain knowledge, and distributed use of models over the WWW, etc. A
short example of trandating Modelica to OWL is given in the appendix (section

5.7).

5.4.3 Example

As an example of Modelica Standard Library (MSL) use, we present the model of a
DC-motor. The visual layout of this model is presented in Figure 5-2. Additional
examples can be found at the Modelica website (Modelica-Association 1996-2005
[75]).

inductor

amfi

A

==
=T

inertiad

signalVoltaged

* graundd

Figure 5-2. DC-motor model.

The model presented contains components from three domains that can be found in
the Modelica.Mechanics, Modelica.Electrical and Modelica.Blocks
sub-libraries of MSL. The code for the DC-motor is as follows:

model DCMotor
import Modelica.Electrical;
import Modelica.Mechanics;
import Modelica.Blocks;
Inductor inductorl;

Resistor resistorl;

Ground groundl;
EMF emfl;
SignalVoltage signalVoltagel;
Step stepl;
Inertia inertial;

equation
connect (stepl.y,

signalVoltagel.voltage) ;

connect (signalvVoltagel.n,
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resistorl.p);
connect (resistorl.n, inductorl.p);
connect (signalVoltagel.p, groundl.p);
connect (groundl.p, emfl.n);
connect (inductorl.n, emfl.p);
connect (emfl.rotFlange b,
inertial.rotFlange a);
end DCMotor;

The connections between components are realized by the connect statement and
can only be established between connectors of equivalent types. This ensures that
only valid connections can be made between components.

A model definition can import several packages in order to use the classes
defined in them. The packages can be extended through inheritance or specialized
through redeclaration. The imports can be named (i.e. import
SI=Modelica.Siunits), qualified or unqualified (import everything). These
features provide a detailed control over the imported definitions and help avoid
name conflicts.

In this paper we focused more on the model design part and less on the
simulation of the created models. For simulation the models are checked for
correctness according to the Modelica static semantics, flattened and translated to
highly efficient C code glued with numerical solvers. We simulate the DC-motor
model and plot afew of itsvariablesin Figure 5-3.

simulate (DCMotor, stopTime=25) ;
plot ({stepl.y,inertial.flange a.tau})

1.0

Figure5-3. DCMotorCircuit simulation with
plot of input signal voltage step and the flange angle.
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5.5 Conclusions and Future Work

We have presented parts of the Modelica Standard Library (MSL) and showed how
MSL is used when building models. We have a so outlined the main similarities and
differences between Modelica and other ontology languages (W3C [120], [122])
developed in the Semantic Web community.

As future work we would like to automatically construct an ontology translated
from MSL into the Web Ontology Language (OWL). We can foresee that the
structural part of the Modelica classes can be trandlated easily into OWL as we
briefly show in the appendix (section 5.7). The non-trivial part would be to build
the relationships between the translated concepts. Such relationships would require
additional ontologies that provide concepts for system decomposition, physical
processes, etc. These ontologies, combined with the Semantic Web technologies
would add new functionality to Modelicatools like:

e Classifying new concepts (classes) and verifying models (i.e. that amodel is
coherent, etc)

e Imposing additional restriction over the models (i.e. an electric circuit must
have a ground component, a car must have 4 wheels, etc)

e Expressing some of the Moddica static semantics directly in OWL
(inheritance, subtyping, etc).

5.6 Acknowledgements

We would like to thank to al people in the Modelica community (Modelica-
Association 1996-2005 [75]) who are actively involved in the development and
maintenance of the Modelica Standard Library.

5.7 Appendix

In this section we show a simple example of how structural parts of Modelica could
be translated into OWL. This kind of translation could be further augmented with
additional constraints or information. Also, an OWL validator would be able to
check such documents.

The following Modelica models and their tranglation into OWL are presented in
the following:

class Body "Generic body"
Real mass;
String name;

end Body;
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class CelestialBody "Celestial body"
extends Body;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

CelestialBody moon (name = "moon",
mass = 7.382e22, radius = 1.738e6);

Body body instance (name = "some body",
mass = 7.382e22);

Our Modelica model has two classes (concepts) Body and CelestialBody the

latter being a subclass of the former (by using "extends" Statement).
The encoding in OWL was aready presented in Chapter 2, section 2.6.1.






Chapter 6

Debugging Natural Semantics
Specifications

Adrian Pop, Peter Fritzson: Debugging Natural Semantics Specifications, submitted
to the Sixth Internationa Symposium on Automated and Analysis-Driven
Debugging (AADEBUG 2005), March 2005.

6.1 Abstract

This paper presents the design, implementation and usage of a debugging
framework for the Relational Meta-Language (RML) which is a language for
writing executable Natural Semantics specifications. The language is successfully
used at our department for writing large specifications for a range of languages like
Java, Modelica, Pascal, MiniML etc. The RML system previously had no
debugging facilities, which made it hard for programmers to debug their
specifications. With this work we address these issues by providing a debugging
framework for debugging high level Natural Semantics specificationsin RML.

Categories and Subject Descriptors

D.2.5[Testing and Debugging].

D.2.4 [Softwar e/Program Verification].

D.3.4 [Programming L anguages]: Processors—debuggers.

D.3.2 [Programming Languages]: Language Classifications—applicative
(functional) languages

General Terms: Debugging and Verification.
Keywords: Debugging, rule-based, logical functional languages, proof-trees.
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6.2 Introduction

No programming language environment can be considered mature if is not
supported by a strong set of tools which include debugging and profiling. At our
department we have devel oped a language called Relational Meta-Language (RML)
(PELAB 1994-2005 [86], Pettersson 1995 [88], 1999 [90]) for writing Natural
Semantics specifications.

The RML language is extensively used for teaching and writing large
specifications for different languages like Java, Modelica, MiniML (Clément et al.
1986 [25]), Pascal, etc. Even if the RML language has a very short learning curve,
the absence of debugging facilities previously created problems of understanding,
debugging and verification of large specifications.

To overcome these issues a debugging framework for RML was designed and
implemented. The debugger is based on abstract syntax tree instrumentation
(program transformation) in the RML compiler and some runtime support. Type
reconstruction is performed at runtime in order to present values of the user defined
types. For inspecting complex variable values, an external data browser was
implemented. Post mortem analysis is possible by recording parts of or the entire
specification trace in an XML file, which can be queried using available XML tools
(XML (W3C [113]), XQuery (W3C [117]), XPath and XSLT (W3C [116]), etc).

The paper is structured as follows: this section presents an introduction. The
next section compares our work with existing research. Section 6.4 introduces
Natural Semantics and the Relational Meta-Language (RML). The design and
implementation of the debugger is the topic of section 6.5. The debugger
functionality is presented using examples in section 6.6. The browser for variable
values is presented in section 6.7. Section 6.8 describes shortly the post-mortem
analyses one can describe on the recorded trace. In section 6.9 performance results
of our debugger are presented. Conclusions and future work is the subject of section
6.10. Acknowledgements and references conclude the last two sections of the paper.

6.3 Related Work

As pointed out in (Liebermann 1997 [65]), the computer science community is
congtantly ignoring the debugging problem even tough the debugging phase of
software development takes more than the overall development time. With our
work we contribute to improving this state of affairs.

In lazy functional languages like Haskell the execution order is hard to
understand. Partly for these reasons the Evaluation Dependence Tree (EDT) tree
(Nilsson 1998 [ 79]) concept was proposed to help the understanding and debugging
of the language. On the other hand, RML is a strict functional language where
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arguments are evaluated before the call and in this respect closer to Standard ML
(Milner et al. 1997 [74]). Our work is related to the work done for Standard ML
debugger (Tolmach and Appel 1995 [110], Tolmach 1992 [111]). We have not yet
implemented time traveling, but this is one of our future work directions. General
design ideas were inspired from (Pettersson 1998 [89]).

Using assertions and print statements for debugging was and unfortunately still
is many programmers choice for debugging programs. Source code instrumentation
(or program transformation) that changes the program code in order to facilitate
debugging is an approach present approach in the literature (Fritzson et al. 1994
[35], Pope and Naish 2003 [98]).

Explanation of program execution in deductive systems like Deductive
Databases (Mallet and Ducassé 1999 [67]) or Description Logic reasoners
(McGuinness 1996 [71], McGuinness and Borgida 1995 [70], McGuinness and
Silva 2003 [72]) has similarities with our RML debugger because they generate and
analyze proof-trees (or derivation trees). RML is based on the style and visual
layout of Natural Semantics and has a top-down |eft-right determinate search with
local backtracking as proof procedure.

6.4 Natural Semantics and the Relational Meta-
Language (RML)

Natural Semantics (Kahn [57]) is formalism for specifying many aspects of
programming languages, e.g. type systems, dynamic semantics, translational
semantics, static semantics, etc. Natural Semantics is an operational semantics
derived from the Plotkin (Plotkin 1981 [91]) structural operational semantics
combined with the sequent calculus for natural deduction.

The Relational Meta-Language (RML) (PELAB 1994-2005 [86], Pettersson
1995 [88], 1999 [90]), is a practica language for writing Natural Semantics
Specifications. The RML language is compiled to highly efficient C code by the
rml2c compiler. In this way, large parts of a compiler can be automatically
generated from their Natural Semantics specifications.

From the features of the RML language we can mention: strong static typing,
simple module system, type inference, pattern matching and recursion are used for
control flow, types can be polymorphic.
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6.4.1 A short example of an RML specification

As a crash course in Natural Semantics and the Relational Meta-Language (RML)
we give an example of a small expression (Exp) language and its realization in
Natural Semantics and RML.

A specification in Natural Semantics has two parts: declaration of syntactic and
semantic objects involved, followed by groups of inference rules. In our example
language we have expressions built from integer constants and arithmetic operators.
The syntax of thislanguage is declared in the following way:

integers.
ve Int
expressons.
ec Bp:=v|el+e2|el-e2|el* 2| el/ 2| —

The inference rules for our language are bundled together in ajudgment €=>V in
the following way:

(1) v=>vV

el=>vl e2=>v2 vl+v2=>Vv3

(2) el+e2=>v3

(3) el=>vl e2=>v2 vl-v2=>v3
el-e2=>v3

(4) el=>vl e2=>v2 vlxv2=>Vv3
el*e2=>v3

(5) el=>vl e2=>v2 vl/v2=>v3
el/e2=>v3

e=>VvV —v=>vheg
(6) —e=>vneg

In the Relationa Meta-Language (RML), the Natural Semantics specification
presented above can be represented by the following source code (one can note that
the visual layout of Natural Semanticsis preserved in RML):

(* file expl.rml *)
module expl:

(* Abstract syntax of language Expl *)
datatype Exp = INTconst of int

| ADDop of Exp * Exp
| SUBop of Exp * Exp
| MULop of Exp * Exp
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| DIVop of Exp * Exp
| NEGop of Exp
relation eval: Exp => int

end

(* Evaluation semantics of Expl *)
relation eval: Exp => int =

(* Evaluation of an integer node *)
axiom eval (INTconst (ival)) => ival
(* Evaluation of an addition node ADDop
is v3, 1f v3 is the result of adding
the evaluated results of its children
el and e2

Subtraction, multiplication, etc,
operators have very similar specs *)

* % ok X 3k X

rule eval(el) => vl & eval(e2) => v2 & vl + v2 => Vv3
eval( ADDop(el, €2) ) -> v3
rule eval(el) => vl & eval(e2) => v2 & vl - v2 => V3
eval( SUBop(el, e2) ) - v3
rule eval(el) => vl & eval(e2) => v2 & vl * v2 => v3
eval( MULop(el, €2) ) = v3
rule eval(el) => vl & eval(e2) => v2 & vl / v2 => v3
eval( DIVop(el, €2) ) > v3
rule eval(e) => v & -v => vneg
eval( NEGop(e) ) > vieg

end (* eval ¥*)

The proof-theoretic interpretation is assigned to this specification. We interpret
inference rules as recipes for constructing proofs.

6.4.1.1 Proof theoretic interpretation

We wish to prove that there is a value v such that 1+2=>v holds for this
specification. To prove this proposition, we need an inference rule that has a
conclusion, which can be instantiated (pattern-matched) to the proposition. The
only proposition (rule) that matches is the second one.
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1=>Vv1l 2=>Vv2 V1+Vv2=>V3
1+2=>v

(2

To prove further we need to apply the first proposition (here axiom) twice times and
we reach the conclusion.

6.4.2 The rml2c compiler and the runtime system

The rm12c compiler is written in Standard ML ‘97 (Milner et a. 1997 [74]) using
the Standard ML of New Jersey (SML/NJ) (SML/NJFellowship 2004-2005 [108])
compiler. The compiler (Figure 6-1) uses severa intermediate representations on
which it makes extensive optimizations. The front-end generates ANSI-C code
which is linked with the runtime system.

module Dump

with “absyn.rml”
0

relation dump: Absyn.Program =>

Reordering
Static Elaboration

(Typecheck) Debugging
RML AST to FOL Instrumentation

FOL to CPS via Pattern-Matching Compiler

| CPStoCode |

Code AST

| CodetoANSI-C |

Linking with the
RML runtime system

Executable

Figure 6-1. The rm12c compiler phases.
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Immediately after parsing, the specification structure is saved in the RML Abstract
Syntax Tree (AST). A reordering phase is performed in order to arrange the
declarations in the correct order of dependencies. The static elaboration phase is
performing type inference and it checks the program correctness. After the static
elaboration phase the current RML AST representation is transated to FOL (a
language similar to First Order Logic) representation. On this representation
optimizations that improve determinism are applied and the result is translated to
CPS (Continuation Passing Style) via a Pattern-Matching Compiler. Optimizations
like constant and copy propagation and aso inlining are applied to CPS. The CPS
representation is translated to a low level imperative representation (Code) that has
explicit memory management, data construction and control flow. In the last phase
the Codeistranslated to ANSI-C. All these phases are depicted in Figure 6-1.

The RML system has two runtime systems. one for fast execution and one for
profiling and some logging of the runtime internals.

6.5 Debugger Design and Implementation

The design of the debugger had the following requirements as starting points:

e Conventional debugger functionality (breakpoints, variable value
inspections, call chain, stack trace, etc.)

e Inspection/printing of large values.

o Typequerying facilities for variables, relations, datatypes.

e Specid features for failure discovery (In RML, when a relation fails, the
entire specification can also fail. Because of this, is very important to have
specia functionality for discovering where and under what conditions such
failure took place.)

e Modular design for easy integration with other tools and graphical user
interfaces.

e Reuse of the existing rm12c compiler and runtime system.

These requirement specifications were driven by existing tool implementation (the
rml2c compiler and the runtime system) and easy future extensions and
integration. Also, extensive user knowledge and experience when writing RML
specifications was used to derive the debugger requirements.

According to the requirements, the only changes of the rm12c compiler and
runtime system to support debugging were:

e Addition of a new phase that instruments the RML AST with debugging
nodes. This phase istriggered from acommand line parameter.

e Small changes to the static elaboration phase to output a program database
with names and types for all the language identifiers. This program database
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is used from external tools such as the RML Project Browser and the RML
debugging runtime system to query for types of identifiers.
e Addition of anew runtime which has debugging functionality.

The new tools that were developed to aid the debugging task were the RML Data
Browser, the Emacs Mode for RML debugging and the Post Mortem Analysis tool.

6.5.1 Overview

The RML integrated environment with debugging and the various interactions
between the components are presented in Figure 6-2.

In the following we only describe the use of the toolbox with regards to
debugging. The RML Project Browser is a navigator for RML specifications that
ease the browsing of relations and datatypes.

module Dump
with “absyn.rml”
relation dump: Absyn.Program => ()

rml2c compiler ‘ RML Project Browser

Emacs Mode

for
RML Debugging

:> RML Data Value Browser

Executable
with
Debugging

Linking with one of
the
RML runtimes

Execution
Recording in
XML

Post Mortem
Analysis Tool

Figure 6-2. Tool coupling within the RML integrated environment with debugging.

The rml12c compiler takes as input an RML specification. The specification is
instrumented with debug nodes. Then, the normal compilation phases are applied
until C code is generated. The generated C code is compiled and linked with the
debugging runtime system. Also, the compiler dumps the program database at the
end of static elaboration phase, after performing type inference.
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When started, the executable reads in the program database and waits for user
commands. Thisis agood time to set breakpoints using commands or helpers from
Emacs Mode for RML Debugging. Then the execution can be resumed. At
breakpoints one can print variable values directly in the standard output or they can
be sent to the RML Data Vaue Browser for thorough inspection.

User commands are available in the debugger for recording of the execution in
an XML trace. The XML trace can be analyzed post-mortem using XML tools. In
this way, when a certain relation fails and generates the failure of the entire
specification, one can understand when and why that happens by a post-mortem
analysis of the execution trace.

6.5.2 Design Decisions

This section discusses the design decisions that were taken in the design process of
our debugging toals.

6.5.2.1 Debugging Instrumentation

The RML compiler has several intermediate representations on which aggressive
optimizations are applied. Because of this, debugging approaches that keep a
mapping between intermediate representations and store reverse transformations of
optimizations were out of the question. The best available approach was to apply
debugging instrumentation at the RML AST level.

6.5.2.2 External program database

In order to present variable values using user-defined data structure one has to do
type reconstruction at runtime. There were two possibilities of keeping a program
database with the defined relations, variables, types and datatypes:

e Storing the needed information obtained after type inference in SML data
structures and generating C code with this information in the Code to C
phase of the compilation.

e Exporting the needed information to external files which can be read later
by the runtime system.

We choose the second alternative because this kind of information is also useful in
powerful RML IDE (which includes the RML Project Browser) that provides code
assist (IntelliSense), displaying of types when hovering over variables and relations,
pattern writing wizards, project browser, etc. We have aready started to develop
such IDE for RML and we will report on thiswork in afuture article.
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6.5.2.3 External Data Value Browser

After implementing the printing of variable values to standard output it soon
became apparent that for large values such displaying is unreadable. As an
dternative we have implemented a very simple but practical value browser
prototype. One nice feature: the browser provides immediate information about
where tin the specification code each part of the data structure was defined. Future
work on this prototype could provide new functionality i.e. for searching, and
analyses of the variables.

6.5.2.4 Why not an interpreter?

Interpreters are good when one wants hands on development with fast feedback.
However, they are quite slow, because optimizations cannot be applied if one wants
to give a clear feedback to the user. Also, we already had the compiler. As a future
project we will consider implementing an interpreter.

6.5.3 Instrumentation function

In this section we define the transformations that are performed by the
instrumentation function over the RML AST. The instrumentation function is
simple but very effective. In order to define this function we need to explain in
more detail some parts of the RML language. The detailed RML specification can
be found in (PELAB 1994-2005 [86], Pettersson 1995 [88], 1999 [90]).

RML modules have two parts. the interface specification (which defines the
signatures that are to be exported from the current module) and the actua
declaration of relations, private module types, datatypes, relations and global
values. Clauses (rules and axioms) can be grouped together in relations. Rules have
three parts: the matching pattern, premises, and results. Axioms are just rules
without premises.

Premises (also called goals) can be of the following types:

Bindings let pat = exp

Unification | var = exp

Relation calls | longIdentifier (expseq) => patseqg

Negation not premise

Sequence premise & premise

Table 6-1. RML premise types. These constructs are swept for
variables to be registered with the debugging runtime system.
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Clauses (rules and axioms) have the following form:

rule <premises

var (pat) => result
axiom var (pat) => result

Premises can be optional in rules or a sequence of premises. Axioms are just rules
without premises.
The debugging instrumentation Instr function transforms only premises in the
following way:
Instr (premise) =
RML.register in(parameters) &

RML.debug(...) & premise &
RML.register out (results)

For a sequence of premises the result variables from last executed premise, together
with the parameter of the next premise, are registered with the debugging
framework. Then the debugger function RML . debug (. . .) checks for breakpoints,
user commands or single-stepping. The debug function has as parameters the
source filename, the line/column number of the premise, and the premise textua
representation.

As one can see for each premise a sequence of three premises are generated. We
could have got the live variables for a premise from the runtime system, but we use
instead call premises that register these in/out variables. We used this approach
because in the runtime system some variables are not present due to optimizations
and also a mapping should have been kept that map existing source code variable
names to positional parameters of relations. The parameters of variable registration
functions are built by sweeping the premises for variables that appear in expressions
or patterns.

6.5.4 Type reconstruction in the runtime system

The debugging runtime system is loading the program database files at startup and
stores them in some internal structures. When the program is executed in the
RML.debug (. ..) function the filename and the line/column position of the current
execution point are known. With this knowledge and the name of the variable to be
printed the program database information is searched for a rule that frames this
point and contains the variable. The variable type is then retrieved.

The variable values are stored in the RML runtime heap as tagged pointers or
immediate values. Immediate values are only integers. All other values are boxed
and tagged. The tags contain information about the structure and elements of the
values.
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Starting from the variable type and the variable pointer which was registered using
the register_in/register_out functions the variable value is traversed. At the same
time the variable type is unfolded and the new type components are mapped to the
current variable components.

6.5.5 Debugger implementation
The implementation of the debugger follows the design closely.

6.5.5.1 The rml2c compiler addition

In the rm12c compiler we implemented the instrumentation phase as a separate
Standard ML module that has as input the RML AST and as output the transformed
RML AST with the debug nodes added. This additional phase is triggered by a
command line parameter to the rm12c compiler. Also, the instrumentation can be
applied selectively module or relation wise in order to instrument only the
problematic parts of the specification and achieve afaster debugging execution.

In the static elaboration phase, after type inference is performed we saved the
type information (that was normally discarded) in an identifier dictionary based on
balanced search trees. At the end of the phase we write this information to the
program database file in a flat format composed of: the identifier type, the file
where it appears, the identifier, the line/column number and its type. A small
portion of the program database file for our expl.rml example specification is
presented in the appendix (section 6.12).

6.5.5.2 The debugging runtime system

All the low-level runtime debugger functionality is implemented in C. The user
commands are read by a command parser and the program database is read using
another parser. The parsers are implemented using Flex (Lex) (GNU 2005 [46]) and
Bison (Yacc) (GNU 2005 [47]) and the readline library (GNU 2005 [48]) (for
history, command input handling, etc).

The program database is read and stored internally in the runtime as a list. An
ordering phase is then performed to have the information indexed over module
name (filename) and line number.

The RML.debug(...) relation is implemented aso in C and uses the RML
foreign function interface. The relation checks if a breakpoint was reached and in
that case stops the execution, prints the next premise to be executed and waits for
user commands. The relations RML.register in("var name", var, ...)
and RML.register out ("var name", var, ...) save the live variable
information in internal arrays as (variable name, pointer to variable value) pairs.
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Only registered variables can be printed or sent to the external variable value
browser.

The printing or sending of the variable values is realized by recursive functions
that traverse both the value structure and the value type at the same time. The type
of certain variable is retrieved from the program database information by matching
the file, the name of the variable and the positional frame of the rule. These
traversing and displaying functions take into consideration the printing depth, which
is a debugger setting and can be changed using commands. Sockets are used when
variable values are sent to the external browser.

6.5.5.3 The data value browser

The browser is implemented in Java to have the same high portability as the RML
system. The browser waits to read variable value information from sockets and
displays them in atree structure constructed by using the traversal depth.

Syntax highlighting of RML files is performed by the browser, using a similar
Emacs RML Mode style to keep the users on familiar grounds.

6.5.5.4 The Post-Mortem analysis tool

In this tool, at the moment we have only implemented a Failure analyzer that helps
users understand where and why their specification failed. The analyzer is
implemented in Java and replays the specification execution by navigation in the
saved XML trace. One can stop, go back and forward in time, display variable
values, etc. In general users start from the end of the execution and go back to
where their specification failed.

Thetrace files can be quite large, in the order of several hundred megabytes. To
overcome this problem we gave the users the possibility to configure the tracer
using asmall specification file that contains:

e Module, relation and/or rule to be traced.
e Selection of variable names to include only their value in the trace.

Thisfileisread by the tracer function and al the information is filtered accordingly.

We plan to implement more analyses and automated debugging in the future.
Also, tuning of the specification data structures and its operational properties could
be suggested by trace analysis.

6.6 Debugger Functionality

The Emacs RML debug mode is implemented as a speciaization of the Grand
Unified Debugger (GUD) interface (gud-mode) from Emacs (GNU 2005 [45]).
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Because the RML debug mode is based on the GUD interface, some of the
commands have the same familiar key bindings.

The actual commands sent to the debugger are also presented together with
GUD commands preceded by the RML debugger prompt: rmldbes.

If the debugger commands have severa aternatives these are presented using
the notation:alt1|alt2. The optiona command components are presented using
notation: [optionall.

In the Emacs interface: M-x stands for holding down the Mmeta key (mapped to
alt in general) and pressing the key after the dash, here x, c¢-x stands for holding
down the control (ctrl) key and pressing x, <RET> IS equivalent with
pressing the Enter key and <spc»> with pressing Space key.

The next subsections present a debugging session on the RML example
specification presented in subsection 6.4.1.

6.6.1 Starting the RML Debugging Subprocess

The command for starting the RML debugger under Emacs:

M-x rmldb <RET> executable <RET>

6.6.2 Setting/Deleting Breakpoints

A part of a session using this type of commands is shown in Figure 6-3. The
presentation of the commands follows.
To set abreakpoint on the line the cursor (point) is at:

C-x <SPC>
rmldb@> break on file:lineno|string <RET>

To delete a breakpoint placed on the current source code line (gud-remove):

C-c C-d

C-x C-a C-d

rmldb@> break off file:lineno|string <RET>
Instead of writing break one can use aternatives br |break| breakpoint.
Alternatively one can delete/display al breakpoints using:

rmldb@> cl|clear <RET>
rmldb@> sh|show <RET>
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emacs@kafka.carafe.ida.lin.se -10] x|

File Edit Options Buffers Tools Complete InfOut Signals Help

@ X 0 QG X ?

[
* Evaluation of an addition node ADDop iz w3, if w3 iz the result of
* adding the evaluated results of its children el and &2
* Subtraction. multiplication. divizion operatorz hawve =imilar specs.
=)
Tule evaliel) => vl =&

evglieZ) = v2 =&

yl+wzd =» u3

evalt ADDopiel.e2) )} => w3

rullle evzliell = vl =&
evglieZ) => v2 &
wl-vd =» w3

evall SUBopiel.eZ) » =3 w3

rule evaliel) = vl =
evalieZ) =» w2 =&

yleyd => y3
——i-- expl.rnl {RML 3= -L 30--CA--F8H === == ———mmm oo m oo oo o 4
Current. directory iz “Jrml-2,2 /exanplesexpls

[Init]

rmldbi@> - BEML debugger

raldibi@yr - 2002-2005. PELABSIDASLLIY,. adrpolids.liu,.=ze
rnldb@> - debugging process 3040

ronldbl@> - on ttyisdew ttyd

Breskpoint on: [expl.rml:16] added to breskpoints list,
Breaskpoint. ont [expl,rml:24] added to breskpoints list,
Breakpoint oni [expl,rml:30] added to breskpoints list,
i ldb@>show

---------- CURREMT BREAKPOIMTS ---------

#0 -> expl,.rmlile

#1 -> expl.rmli2d

#2 - expl,rml:30

rmlcdb@rclear
Breaskpoints list cleared
rmLdbE>
l—_!—lz** *gudx {Debuggerrund—-L18--CF-—All-——=——————————————— o —— o

Figure 6-3. Using breakpoints.

6.6.3 Stepping and Running

To perform one step (gud-step) in the RML code:

C-c C-s

C-x C-a C-s

rmldbe> st|step <RET>
rmldb@> <RET>
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To continue after a step or abreakpoint (qud-cont):

C-c C-r
C-x C-a C-r
rmldb@> ru|run <RET>

Examples of using these commands are presented in Figure 6-4.

macs@kafka.carafe.ida.liu.se 10| =]

File Edit Options Buffers Tools Complete In/Out Signals Help

Cwx LGS ?

evalt ADlopiel.e2) ) =F w3

rJle evaliell => vl =z
eval{eZ) = w2 =&
wl-v2 => 3

evall SUBoplel.e2) 3 => w3

rle evaliell = vl =
eval{e2} => v2 &
Ml=u2 =» W3

evall Mllopiel.e2) 3 => w3

rJle evaliell => vl =z
eval{eZ) = w2 =&
wlsiv2 => 3

evall DIVopiel.e2) 3 => w3

--:-- expl.rnl {RML ¥ —-| 38-—CB--B0%-—=======—= - oo

expl,rml:d3,2levalfoallieval iel2y = {(v23
rmlodbEHrun

Breakpoint [0], on expl.rml:lf reached
expl,rml:l6,3Reval@axionieval {IMTconst {ivali} =» {iwval}
rmldb@>step

expl,rmnldd, ZevalBoall:PML, int_divivl w2 => (W32
rmldb@>step

expl.rmnl:37.2BevalBoallievaliey = {v2}
m Lefl@ >

Breakpoint [0]. on expl.rnl:lE reached
expl.rml:l6, 3@evalBaxionieval (INTconst (ivalid => {(iwal’

m Lefl@ >
expl.rml:38,28evalBoalliFML ., int_muliwl, w2} =2 (w3
m Lol >
——ixx wgud% tDebugger irunt--1 62--C¥--Bot—-—-------—-

M filelexpl.rnllislinel38].scolumnl1].elinel 38].ecolumnl 12]

Figure 6-4. Stepping and running.
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.emacs@kafka.carafeida.liuse -0l x|

File Edit Options Buffers Tools Complete In/Out Signals Help

@ x LRGP ?

eval{ ADlopliel.e2) ) =F w3

rule evaliel) =» vl &
ewalieZ!d => w2 =
wl-v2 => V3

eval{ SUBoplel.e2) ) =F w3

rule evaliel) = vl &
evalieZ) = v2 &
Hixw2 => u3

evall MULopiel.eZ} 3 =r w3

L | Tule evalielr => vl =&
-—:-- expl.rnl {RML}--L38--CB--B0H -~ === === ———-———————— |
rmldbErprint vl
HOTE that the depth of printing i= set tor 10
Resultz:[not in current context]
Paramsters:
YARIABLE w1 HAS TYPE: int
wl=81int
rmldbErprint v2
NOTE that the depth of printing iz =zet to: 10
Result=:
YARIAELE +2 HAS TYFE: int
yZ=31int
Farameters:
YARIAELE +2 HAS TYFE: int
Vv2=3int
rmldbErdisplay vl
HOTE that the depth of printing iz set to: 10
Resultz:[not in current context]

Farameters:
YARIABLE w1 HAS TYFE: int
wl=81int
Variable: [wl] added to display varishile list,
rmldbErdisplay
------ LIST OF DISPLAY YARIABLES ------
#0 -» vl
rmldbErundisplay
List of display variables cleared,
runldb@:
lil:** *gud* {Debugger trun i —-1 88--C7 ——Bot.———-——-—-—— |

Figure 6-5. Examining data.

6.6.4 Examining Data

There are no GUD key bindings for these commands but they are inspired from the
GNU Project debugger (GDB) [2].
To print the contents/size of a variable one can write:

rmldb@> pr|print variable name <RET>
rmldb@> sz|sizeof variable name <RET»>
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at the debugger prompt. The sizeis displayed in bytes.
Variable values to be printed can be of a complex type and very large. One can
restrict the depth of printing using:

rmldb@> [set] de|depth integer <RET»>

Moreover, we have implemented an external data value browser written in Java
called rMLDataviewer to browse the contents of such alarge variable. To send the
contents of a variable to the externa viewer for inspection one can use the
command:

rmldb@> bw|browse|gr|graph var name <RET>

at the debugger prompt. The debugger will try to connect to the RMLDataviewer
and send the contents of the variable. The externa data browser has to be started a
priori. If the debugger cannot connect to the external viewer within a specified
timeout a warning message will be displayed. More about the external
RMLDataViewer tool can be found in section 6.7.

If the variable which one tries to print does not exist in the current scope, a
notifying warning message will be displayed.

Automatic printing of variables at every step or breakpoint can be specified by
adding avariableto adisplay list:

rmldbe> di|display variable name <RET>
Removing a display variable from the display list:

rmldb@> un|undisplay variable name <RET>
To print the entire display list or to remove al variablesfromiit:

rmldbe> di|display <RET>
rmldb@> un|undisplay <RET>

Printing the current live variables (variables available in the scope):
rmldbe> li|live|livevars <RET»>

Instructing the debugger to print or to disable the print of the live variable names at
each step/breakpoint:

rmldbe> [set] 1li|live|livevars on|off]<RET>

Figure 6-5 shows examples of some of these commands within a debugging session.
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6.6.5 Additional commands

Additional commands provide functionality for displaying the call chain, the stack
contents, the runtime status, etc. A session using some of these commands is
presented in Figure 6-6.

emacs@kafka.carafe.ida.liu.se i ] 3]

File Edit Options Buffers Tools Complete InfOut Signals Help

e x & PP

(=
* Evaluation of an addition node ADDop is v3. if w3 is the result of
* adding the evaluated results of its children el and =2
* Subtraction, multiplication. divizion operators have similar specs,
®1
I rule evaliel) => vl =&
Bvalte2) => w2 &
wl+y2 =5 W3

evalt AlDopiel.e2) )} => w3

——3-- expl.rnl e e s e 1
expl,rmlile,3Revallaxionieval (INTconst (ivall) => (ivall
rnldbE>skep

expl,rnl:25,2Bevallcallievalie2) => (W2}

rmldbE bt

—————————————— STACK —----------——-

#0003 =p#0020 expl,rnl:24,8.24,15 relation[evall.goallcallievaliely =» (wld]
#0002 sp#0016 expl,rnli24,8,.24,15 relation[evall.zoallcallievalisel) =» (vir]
#0001 sp#0012 expl,rnl:24,3.24,15 relation[evall.goallcallievaliell =» (wl)]
#0000 p#d008 expl,rnli30,2,320,15 relation[evall,goallcallievalisly =» {(wii]

MOTE: you can see the also the actual call chain

ruldb@Ersettings

————————————————————— CURREMT SETTIMGS--------——=--—==-——--———---
max backtrace entries: 0 {full=0, default=0}

max call chain entriesi 100 full=0, default=100}
depth of variable print: 10 (Full=0. default=10)

cut strings when print at: 50 (Full=0, default=50}
execut ion typee: step

print names of livevars each step: false

Variables printed at esach step/breskpoint:

------ LIST OF DISPLAY WARIABLES -----—-

Mo display variasbles are set

breakpoints:

—————————— CURREMT BREAKPOIMTS ---------

#0 -» expl,rml:30

#1 - expl,rml:2d

#2 - expl,rmlid2

#3 -» expl,rml;dd

ttys Sdew/ttyd

RML runtime status:

[HEAP: 0 minor collections. O major collections, O words currently in use]
[HEAP: 8 words allocated to young. 32 words allocated to current, O heap exp @
anzions performed]

[HEAP: O words allocated into RML heap from C (From mk_# functions}

[STACK: 20 words currently in use (23 words max. GE536 words totall]
[ARRAY: O words currently in use in the array traill

[TRAIL: O words currently in usel

[MOTOR: 32 tailcalls performed]

Live wariables:Result=:[ivall [wi] - Parameters:[e2]
T m 1@
--ixx  kguds {Debugger irun ==L 42 --C7-—Al]l——======——————————m 1

Figure 6-6. Additional debugging commands.
The stack trace can be displayed using:
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rmldbe> bt|backtrace <RET>

Because the contents of the stack can be quite large, one can print afiltered view of
it:

rmldbe@> fbt|fbacktrace filter string <RET>

Also, one can restrict the numbers of entries the debugger is storing using:

rmldb@> maxbt |maxbacktrace integer <RET>

Also, the call chain is available in the debugger. Similar commands as for the
backtrace are available for call chain trace.
For displaying the status of the RML runtime:

rmldbe> sts|stat|status <RET>

The status of the RML runtime comprises information regarding the garbage
collector, allocated memory, stack usage, etc.
The current debugging settings can be displayed using:

rmldbe> stg|settings <RET>

The settings printed are, i.e.: the maximum remembered stack entries, the depth of
variable printing, the current breakpoints, the live variables, the list of the display
variables and the status of the runtime system.

One can invoke the debugging help or exit the debugger by issuing:

rmldb@> he|help <RET>
rmldbe> qu|quit|ex|exit|by|bye <RET>

6.7 The Data Value Browser

The RMLDataViewer is a browser for variable values and a new addition to our
debugging tools for RML. The need for such a tool became apparent when
debugging specifications that use very large data structures (for example abstract
syntax tree definitions for a certain language).

From the executable, at the debugging prompt one can invoke a browse
command which sends the queried variable value for displaying in the external
browser. The variable values can be limited in depth using set depth command. In
thisway only needed parts of the variable value are sent.
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IJ:'|—J p § print depth: 10 Fyp

|| RML Data Viewer

sy Pragram ! file: main.rml P position: 4 ' ive range: 4263
IJ:'|—_| Absyn PROGRAM[Z] fMype: ((abayvh Class list, Ahsyn)Withing == (Absyn Program]) §file: absyr
f]—_l LIST riype: Absyh Class list 7 file: RML [ posttion: 0.0.0.0 ) degth: 1

;l Absyn CLASS[E] fHype: ((string, bool, bool, bool, Absyn Restriction, Ahsyn ClazsDef) -
;l Abayn CLASS[E] Mype: ((string, bool, bool, bool, Absyn Restriction, Ahsyn ClazsDef) -
= _| Absyn CLASS[E] ftype: ((string, bool, bool, boal, Absyn Restriction, Ahsyn ClazsDef) =

# STRING ftype: string J file: Division fposition: 0.0.0.0 [ depth; 3
# talse itype: bool §file: RML §postion: 0.0.0.0 f depth: 3
® falze Mtype: bool ! file: RML [ position: 0.0.0.0  depth; 3
# falze Mtype: boaol [ file: RML [ postion: 0.0.0.0 1 depth: 3

| o
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rule

run tornado cg ogf) == true

& Parser.parse f => p

& 5Code.elaboratceip) == p'

& Inst.instantiatei(p') == d

(*a transform if flac(f, d} == d *)
& Absyn. last_classhname (p) => chame
& Tornado.generate codel(p,.d,chame)

t.ranslat.e_file [£]

{(*Print _print_buf "Parsingin" & 1
iz _modelica file{f)

& Parser.parse f => p
& Debuy. fprint {"dunp ",

BT e Parsed program

_frall (tdunpgraphviz', DunpGraphviz. dunp, pl

feoall ("dunp”, Dunp. duawmp, pl

_fprint ("info",

_fprint ("info", ———glabhoratingin")

e_alahorate |:1;| 1 == =} !

Figure 6-7. Browser for variable values showing the current
execution point (bottom) and the variable value (top).

The variable values are displayed in the browser as trees. The trees are collapsed,
but one can expand them further until the needed information is found. The children
of the root are the browsed variable names. When users click on the variable names
the bottom part of the browser shows (using tabs) the file where the execution point
is’'was when the variable was sent to the browser. This functionality is presented in
Figure 6-7. To make it easy for users to understand their variables, the browser
shows datatype definitions connections to pieces of variable values like in Figure

6-8.
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i RMLDataViewer o] x|
| | RML Data Viswer
IJ:'I—_| p ! print depth; 10 Stype: Absyn Prograrm f file: main.rml f position: 42522 425 .22 ¥ live range: 426.3.486.3
IJ:'|—_| Abayn PROGRAM[Z] ftype: ((Absyn.Class list, Absynwithing == (&bzyn Program)) [ file: absynrml § position:
;| LIST ftype: Lbayn.Class list §file: RML £ position: 0.0.0.0/ depth: 1
[+] JAbsyn CLASS[E] ftype: ((string, boal, bool, baal, Absyn Restriction, Absyn ClazsDef) == (Ahayn Cla
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# falze /type: hool / file: RML § position: 0.0.0.0 7 depth: 3

# falze /type: hool / file: RML § positior: 0.0.0.0 7 depth; 3 -
4 | »

Helpl main.rmll absyn.rml

L]

1** Within statements *)

datatype Within = WITHIN of PFath | TOF

(** — Classes *}
1% 4 plass definition consists of a name, a flag to indicate if this *)
1** class is declared as “partial', the declared class restriction, *)
1** and the body of the declaration. *)
datatype Class = BRSNS

* bool (* Partial *)

* bool (* Final *)

* bool {* Encapsulated *)
* Bestriction (* Bestricion *)
* ClassDhef {* EBody *)

1** The "ClassDef' type contains the definition part of a class *)
(** declaration. The definition is either explicit, with a list of *)
P** parts (“public', “protected', “equationc' and talgorithm'), or it *)
1** iz a definition derived from awncther class or an emameration type. *)
1** For a deriwed type, the type contains the name of the derived class and
an optional *) LI

Figur e 6-8. When datatype constructors are selected, the bottom part presents
their source code definitions for easy understanding of the displayed values.

The screens were captured while debugging the OpenModélica (Fritzson et al. 2002
[37], PELAB 2002-2005 [87]) compiler specification and the variable value
consists of the abstract syntax tree of the Modelica (Modelica-Association 1996-
2005 [75]) language.

6.8 The Post-Mortem Analysis Tool

As pointed out in the debugger design and implementation, one can record parts of
or the entire execution trace of the specification in an XML file. The trace can then
be analyzed by tools that point out specific issues.
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In our post-mortem analysis environment we have developed a tool called Failure
analyzer. The Failure analyzer is areplay debugger which is able to walk back and
forth in time, display variable values, execution points, etc. When their specification
fails the users can run this analyzer over the recorded trace, start from the end of the
execution and go back and investigate where the execution has failed and why. This
tool was very important for our users, because, for large specifications, is not trivia
to understand where and why your specification failed.

The Failure analyzer tool is similar to the data value browser, but has buttons for
navigation in time, setting/deleting breakpoints and displaying values.

6.9 Performance Evaluation

In this section we make performance evauation of our debugging strategy on three
real-world semantic specifications that define compilers for extended Pascal
(petral), a small functional language (MiniML (Clément et al. 1986 [25])) and a
large Modelica compiler (OpenModelica). The first two specifications are part of
the examples bundled with the RML system (PELAB 1994-2005 [86], Pettersson
1995 [88], 1999 [90]) and the Modelica compiler was implemented in the
OpenModelica project (Fritzson et a. 2002 [37], PELAB 2002-2005 [87]) and is
also available for download at the project address. The semantic specifications
were compiled to two versions of executables one in release mode and one in
debugging mode. The compilers were then used to compile programs and the
compilation performance was measured.

We have tested the performance of our debugger on an Intel Pentium Mobile at
1.5Ghz with 480 MB of RAM memory. We compared code growth, execution time,
stack consumption, and number of relation calls.

If we consider that a premise (one call) is executed in O(1) then the complexity
of the cal combined with the instrumentation will be O(number of variables from
the premise)+O(premise)+O(call to the step function) which is a complexity in the
order of the numbers of variables present in the specification.

6.9.1 Code growth

Table 6-2 below shows the additional number of lines of code added during code
instrumentation. The code growth is between 1.3 and 1.7 which is quite limited. We
can see that for very large specifications like the OpenModelica compiler the code
grows less than for smaller specifications. The code growth was measured on the
files obtained from the abstract syntax tree unparsing before and after the
instrumentation. The comments were ignored.
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test/mode normal debug
(debug/normal)
petrol (1.63) 2513 4083
miniml (1.57) 1112 1747
OpenModélica (1.36) 57186 77961

Table 6-2. Size (#lines) without and with instrumentation.

6.9.2 The execution time

The execution time was al so measured and the results are presented below.

test/mode normal debug
(debug/nor mal) (seconds) (seconds)
petrol (24.63) 0.12 2.96
miniml (11.19) 6.14 68.71
OpenModelica (20.55) 0.20 411

Table 6-3. Running time without and with debugging.

Table 6-3 presents a performance evaluation of our debugger. As one can notice,
the programs compiled in debug mode are between 10 and 25 times slower than the
programs compiled without debugging. We find this very acceptable, as thisis the
first prototype and we can get more speedup from various optimizations we can
apply to the debugging code. For the user, the delay times due to the added
debugging code are practical. We can note also that very large specifications can be
debugged without too much penalty.

6.9.3 Stack consumption

We have investigated the stack consumption needed during debugging versus the
normal memory consumption. The results are summarized in Table 6-4.

test/mode normal debug

(debug/normal) (words) (words)
petrol (1.19) 249 297
miniml (1.01) 8966 9126
OpenModelica (1.06) 1447 1543

Table 6-4. Used stack without and with debugging.
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It is normal that the debugging version of the runtime needs more stack because it
has more calls. This can be seen in the next subsection in Table 6-5. However, one
can see that the stack grow due to debugging is small, which means that high level
optimization (that improve determinism) in the rm12c compiler are very effective.

6.9.4 Number of relation calls

Presented in Table 6-5 is the total number of relations called during execution. Here
one can see that the debugger is using a large number of calls to register variables
and to check breakpoints or steps.

test/mode normal debug
(debug/normal)
petrol (6.30) 350305 2209984
miniml (16.30) 2809705 45805284
OpenM odélica (5.30) 510321 2706378

Table 6-5. Number of performed relation calls.

6.10 Conclusions and Future Work

In this paper we have presented our practica debugging framework for Natural
Semantics. The debugging design, implementation and usage (functionality) was
detailed.

We can report that some of our RML users that have debugged their
specifications using this debugging framework have given us positive feedback and
also various suggestions for improvement.

While this is a good start, many improvements can be made to this framework.
As future direction we plan to improve the debugger execution speed, implement
time traveling without the need of execution tracing, define more post-mortem
analyses. One of our goals is to integrate of al our tools in an integrated
development environment (IDE) for RML based on the Eclipse platform
(EclipseFoundation 2001-2005 [32]). We are aready in the preliminary phases of
designing and implementing such RML IDE.
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6.12 Appendix

An excerpt from a program database file (saved as expl.rdb) for our expl.rml
specification is given below. The first character defines the kind of the identifier:

variable, type, datatype constructor or relation.

<

: expl
expl

<

BFraaoaaoaQaaoa -

expl.
expl.
expl.
expl.
expl.
expl.
expl.
expl.

.rml:
.rml:

rml:
rml:
rml:
rml:
rml:
rml:
rml:
rml:

R oUWk 30w

.12,
.21.
.21.
.21.
.21.
.21.

21

4.10

0 Ul Wk 30w

.14 |expl.
.25|expl.
.25|expl.
.25|expl
.28|expl.
.25|expl.
.25|expl.

Exp

MULop: (expl.Exp, expl.
DIVop: (expl.Exp, expl.
.ADDop: (expl.Exp, expl.
INTconst:int => expl.
SUBop: (expl.Exp, expl.
NEGop:expl.Exp => expl.Exp
.14 .13 |expl.eval:expl.Exp => int

16.24.16.27|range[16.3.16.38] |eval [ival:int]
28.25.28.26|range[24.3.28.35] |eval [e2:expl.Exp]

Exp)
Exp)
Exp)
Exp

EXp)

=> expl.
expl.
> expl.

expl.

Exp
Exp
Exp

Exp



Chapter 7

Related research contributions

7.1 Introduction

In this chapter we give short summaries of additional publications that complete (or
bring more detail level) thisthesisin the proposed research goal.

7.2 A Functionality Coverage Analysis of Industrially
Used Ontology Languages

Olof Johansson, Adrian Pop, Peter Fritzson: A Functionality Coverage Analysis of
Industrially Used Ontology Languages, In Proceedings of the Model Driven
Architecture: Foundations and Applications (MDAFA2004), June 10-11, 2004,
Linkoping, Sweden.

In this article we compare three industrially used ontologies at the functionality
level. Ontology development for engineering applications and domains is a time
consuming negotiation and development process that takes years to complete,
involving many domain experts and tool vendors that must agree. Once agreement
is reached, an ontology serves as a common language that allows engineers and
machines to share data and knowledge. The long term goa with this work is to
share and reuse engineering ontologies amongst different programming languages
and tools, and thus facilitate engineering system integration and automated sharing
of huge amounts of engineering knowledge and product data.

The paper presents and compares ontology functionality using UML diagrams
for the software design language UML 1.5, the mathematical modeling language
Modelica 2.1, and e-business datadictionary RosettanNet technical dictionary 3.2.
The conclusion is that static, structural ontologies and product data can be shared
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amongst these languages using fully automated processes. However UML
TaggedVaues and Modelica Annotations or CommentStrings must be used in a
standardized way for full roundtrips.

7.3 Deriving a Component Model from a Language
Specification: An Example Using Natural
Semantics

Ilie Savga, Adrian Pop, Peter Fritzson: Deriving a Component Model from a
Language Specification:An Example Using Natural Semantics, Technical Report,
2004, http://www.ida.liu.se/~adrpo/reports.

Development of a component model for a given language is tedious, time-
consuming, and error-prone. Moreover, many tasks of this process have to be
repeated when modeling sets of related languages. In this paper, we propose to use
the meta-modeling approach and for a given language to derive an invasive
component model as its derived meta-model. The derivation of a component model
then becomes a horizontal extension of the corresponding language meta-model.
We argue that, in principle, any language construct can be made generic by a
mapping to a generic element of its component model. Moreover, for extensible
language constructs additional mappings can be provided to support extensible
component constructs. Using this approach, a generic and extensible component
model can be derived from a given language and used both for generic and view-
based programming.

The presented approach provides significant automation support in the
development of component models for arbitrary languages.

As an example, we show the derivation of a component model using a Natural
Semantics specification for a given language. The specification is defined using the
Relational Meta-Language (RML), which is an executable implementation of
Natural Semantics.

7.4 A Portable Debugger for Algorithmic Modelica
Code

Adrian Pop, Peter Fritzson: A Portable Debugger for Algorithmic Modelica Code,
In Proceedings of the 4th International Modelica Conference (Modelica2005),
March 7-9 , 2005, Hamburg-Harburg, Germany.

In this paper we present the first comprehensive debugger for the algorithmic subset
of the Modelica language, which augments previous work in our group on
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declarative static and dynamic debugging of equations in Modelica. This replaces
debugging of algorithmic code using primitive means such as print statements or
asserts which is complex, time-consuming, and error- prone.

The debugger is portable since it is based on transparent source code
instrumentation techniques that are independent of the implementation platform.

The usual debugging functionality found in debuggers for procedural or
traditional object-oriented languages is supported: setting and removing
breakpoints, single-stepping, inspecting variables, back-trace of stack contents,
tracing, etc.

7.5 ModelicaDB — A Tool for Searching, Analyzing,
Crossreferencing and Checking of Modelica
Libraries

Olof Johansson, Adrian Pop, Peter Fritzson: ModelicaDB - A Tool for Searching,
Analyzing, Crossreferencing and Checking of Modelica Libraries, In Proceedings
of the 4th International Modelica Conference (Modelica2005), March 7-9, 2005,
Hamburg-Harburg, Germany.

This paper presents ModelicaDB, a tool that provides several kinds of queries on
repositories of Modelica models.

The Modelica language has a growing user community that produce a large and
increasing code base of models. However, the reuse of models within the Modelica
community can be greatly hampered in the future if there are no tools to address a
number of management issues (i.e. scalable searching, analyzing, crossreferencing,
checking, etc) of such alarge repository of models.

We try to address these issues by providing the Modelica community with a
ModelicaDB database for storing models and services for querying this database to
perform awide range of model engineering tasks in a scalable fashion.

In the long-term, this work also aims at providing integration between Modelica
tools and advanced product development processes that rely on database
technology.

7.6 Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica

Peter Fritzson, Adrian Pop, Peter Aronsson: Towards Comprehensive Meta-
Modeling and Meta-Programming Capabilities in Modelica, In Proceedings of the
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4th International Modelica Conference (Modelica2005), March 7-9, 2005,
Hamburg-Harburg, Germany.

The need for integrating system modeling with tool capabilities is becoming
increasingly pronounced. For example, a set of simulation experiments may give
rise to new data that are used to systematically construct a series of new models,
e.g. for further simulation and design optimization. Using models to construct other
modelsis called meta-modeling or meta-programming.

In this paper we present extensions to the Modelica language for comprehensive
meta-programming, involving transformations of abstract syntax tree
representations of models and programs. The extensions have been implemented
and used in severa applications, and are currently being integrated into the
OpenModelica environment.
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