

Background, threat model, and attacks

User perspective:

• send a request to some server

• receive a response with some data

Network perspective:

• send a request to some server

• … through the local network, your ISP’s network, the
Internet backbone, the server’s ISP’s network, …

Many actors can see your traffic, what now?

• Use encryption to protect sensitive data (HTTPS)

• Connect to a VPN if the local network is untrusted

The answer is not a definite yes.

Is that sufficient?

(Apart from the fact that it’s up to the webmaster to set
up HTTPS, and you need to trust your VPN provider…)

Analyze patterns in encrypted traffic

1. packet size – MTU? smaller? variable?

2. packet timing – when are packets sent in relation to
each other? interval between packets?

3. packet direction – are packets being sent to the
server or received by the client?

User’s goal:

1. send a request to an FTP server

2. receive the file contents in one bulk download

3. use encryption so that file contents are not exposed
to network observers

How can this be done? Technique #1 - packet sizes

Attacker’s goal:

1. analyze the traffic, learn which file is being
downloaded by the user

2. this must be done without breaking encryption

Attacker’s algorithm:

1. ground truth, connect to the server and gather a
mapping between file names and sizes (lsdir)

2. observe traffic, sum the sizes of packets sent from
server to client to approximate file size

3. classification, match with directory listing

Two of the assumptions implicit here:

• Importantly, ground truth can be obtained.

• The attacker may not have access to the server, not
know where the server is (the user is connected to
a VPN/Tor), not have permission to list files, …

• Also, the encryption algorithm must output
ciphertext similar to the plaintext in length.

• The encrypted file must be about the same size as
(or a predictable function of) the original

• A canonical type of traffic analysis attack

• Some features from the encrypted traffic are matched
against ”fingerprints” of known resources

• Thus, these features (or some) must be present every
time a particular resource is accessed

• It must also be possible to generate fingerprints:
consider the file download example

The three stages described for file downloads can be
generalized to typical fingerprinting attacks:

1. ground truth: generate fingerprints

2. observe traffic: save details about packets,
potential feature engineering / transformations

3. classification: some method to match fingerprints
with (features of) encrypted traffic

User’s goal:

1. send a request to an HTTP server

2. receive the web page’s main file (likely HTML)

3. iteratively request embedded external resources

4. use encryption so that resource contents are not
exposed to network observers

Attacker’s goal:

1. analyze the traffic, learn which web page (or, more
broadly, website) is being downloaded by the user

2. this must be done without breaking encryption

How can this be done? No longer so clear…

IP address, SNI, etc. cannot be used (VPN / Tor)

Web traffic is more of a black box:

• web pages can consist of many resources

• browser behavior, resource downloads overlap

• no obvious, intuitive way to identify websites

World size is a significant factor:

• Even if we figure out which features are useful, can we
generate a fingerprint for all websites?

• Would we have the time and computational power to match
against that many fingerprints?

• Different web pages with the same content, some have
multiple versions (localization), updates to content, …

Heuristics, hand-crafted features, and small worlds

A relatively early example attack (2016): CUMUL1

Deep learning with automatic feature extraction

State-of-the-art attack: Robust Fingerprinting2

How do the three stages come in?

• ground truth: collect fingerprints for some websites,
potentially implicitly stored in a model (gather feature
representations and train with them)

• observe traffic: generate the same feature
representations for observed web page visits

• classification: test the model

• ground truth: collect fingerprints for some websites,
potentially implicitly stored in a model (gather feature
representations and train with them)

Which websites? When and how to collect data?

Also a can of worms…

In research:

• closed- vs. open-world evaluation

• popular websites most often used

• Alexa3

• Open PageRank Initiative4

• homepages and subpages3,4

• genuine measurements from Tor exit nodes5

In reality, unclear. Some questions:

• which websites may be visited by users?

• which classifier is being used, and how does it behave
when fed different types of data?

• which network conditions do users have? how do these
change over time?

• where is the attack to be performed?

Defenses, frameworks, and more

User’s updated goal:

1. send a request to an FTP server

2. receive the file contents in one bulk download

3. use encryption so that file contents are not exposed
to network observers

4. have some defense to prevent traffic analysis from
exposing the file

A simple defense:

• locate the largest file on the server, with size X

• send extra data from server to client with every
download so that X bytes are always downloaded,
no matter which file is requested

What are the results?

• perfect protection against file fingerprinting

• high overhead: what if the biggest file is 5 GB
larger than most other files on the server?

A generalization:

• group files with similar sizes together

• send extra data from server to client with every
download so that all files in group X appear to
have some size Y (size of largest file in group)

What are the results?

• tunable defense against file fingerprinting

• trade-off between protection and overhead

These defenses provide theoretical guarantees…

…as long as no other influencing factors are present

• Requests from client to server

• Control/status messages in download protocol

• Different response delay depending on file

User’s goal:

1. send a request to an HTTP server

2. receive the web page’s main file (likely HTML)

3. iteratively request embedded external resources

4. use encryption so that resource contents are not
exposed to network observers

Web traffic is more of a black box:

• web pages can consist of many resources

• browser behavior, resource downloads overlap

• no obvious, intuitive way to identify websites

Given this, how can we defend web traffic?

Browser in half-duplex mode, proxy cooperation6

”Burst molding” to create explicit anonymity sets

 size

 direction

timing?

https://emojipedia.org/check-box-with-check
https://emojipedia.org/check-box-with-check

Tik-Tok7:

• 49.7% accuracy

• 98.4% top-2 accuracy

The cost?

• 31% bandwidth

• 34% latency

Desirable features of a defense

• high protection: mitigate fingerprinting attacks

• low latency overhead: retain user experience,
packet delays can lead to slower web page loads

• low bandwidth usage: save network capacity,
and avoid indirect effects on user experience8

Desirable features of a defense

• high protection: mitigate fingerprinting attacks

Can this be guaranteed with low overheads?

And minimal to no impact on user experience?

Research says: ”Strong Anonymity, Low Bandwidth
Overhead, Low Latency—Choose Two”11

Many defenses avoid delays entirely

• WTF-PAD9: first candidate for Tor

• burst and gap mode

• defeated, nearly useless

• FRONT10: based on observations about attacks

• two parameters, Rayleigh distribution

• defeated, nearly useless

Observations from padding defenses:

• Attacks and defenses are an arms race

• Hard-coded defenses are thus undesirable

• Padding is often randomized

Implement building blocks for defenses12

• non-deterministic finite state machines

• event-driven framework, only padding actions

• histograms/distributions for inter-packet times

Improve upon the circuit padding framework13

• probabilistic finite state machines

• many events, padding and blocking actions

• no histograms, distributions sampled often

• standalone library

Genetic programming: Tor circuit padding3

sent non-padding, sent padding

received non-padding, received padding

1. Panchenko et al. Website Fingerprinting at Internet
Scale

2. Shen et al. Subverting Website Fingerprinting
Defenses with Robust Traffic Representation

3. Pulls. Towards Effective and Efficient Padding
Machines for Tor

4. Mathews et al. SoK: A Critical Evaluation of Efficient
Website Fingerprinting Defenses

5. Jansen et al. A Measurement of Genuine Tor Traces
for Realistic Website Fingerprinting

6. Wang et al. Walkie-Talkie: An Efficient Defense
Against Passive Website Fingerprinting Attacks

7. Rahman et al. Tik-Tok: The Utility of Packet Timing
in Website Fingerprinting Attacks

8. Witwer et al. Padding-only Defenses Add Delay in
Tor

9. Juarez et al. WTF-PAD: Toward an Efficient Website
Fingerprinting Defense for Tor

10. Gong et al. Zero-delay Lightweight Defenses against
Website Fingerprinting

11. Das et al. Anonymity Trilemma: Strong Anonymity,
Low Bandwidth Overhead, Low Latency—Choose Two

12. Tor Project. Tor’s Circuit Padding Framework

13. Pulls et al. Maybenot: A Framework for Traffic
Analysis Defenses

https://www.ndss-symposium.org/wp-content/uploads/2017/09/website-fingerprinting-internet-scale.pdfhttps:/www.ndss-symposium.org/wp-content/uploads/2017/09/website-fingerprinting-internet-scale.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/website-fingerprinting-internet-scale.pdfhttps:/www.ndss-symposium.org/wp-content/uploads/2017/09/website-fingerprinting-internet-scale.pdf
https://www.usenix.org/system/files/usenixsecurity23-shen-meng.pdf
https://www.usenix.org/system/files/usenixsecurity23-shen-meng.pdf
https://arxiv.org/pdf/2011.13471
https://arxiv.org/pdf/2011.13471
https://www-users.cse.umn.edu/~hoppernj/sok_wf_def_sp23.pdf
https://www-users.cse.umn.edu/~hoppernj/sok_wf_def_sp23.pdf
https://arxiv.org/pdf/2404.07892
https://arxiv.org/pdf/2404.07892
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-wang-tao.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-wang-tao.pdf
https://arxiv.org/pdf/1902.06421
https://arxiv.org/pdf/1902.06421
https://dl.acm.org/doi/pdf/10.1145/3559613.3563207
https://dl.acm.org/doi/pdf/10.1145/3559613.3563207
https://arxiv.org/pdf/1512.00524v1
https://arxiv.org/pdf/1512.00524v1
https://www.usenix.org/system/files/sec20-gong.pdf
https://www.usenix.org/system/files/sec20-gong.pdf
https://eprint.iacr.org/2017/954.pdf
https://eprint.iacr.org/2017/954.pdf
https://github.com/pylls/padding-machines-for-tor/blob/master/notes/circuit-padding-framework.md
https://dl.acm.org/doi/pdf/10.1145/3603216.3624953
https://dl.acm.org/doi/pdf/10.1145/3603216.3624953

	Bild 1: Traffic Analysis (what, how, and how)
	Bild 2: Part 1
	Bild 3: Client-Server Model, Simplified
	Bild 4: Client-Server Model, More Detailed
	Bild 5: Client-Server Model, Implications
	Bild 6: Client-Server Model, Implications
	Bild 7: Traffic Analysis: Bypass Encryption
	Bild 8: Case Study 1: File Download
	Bild 9: Case Study 1: File Download
	Bild 10: Case Study 1: File Download
	Bild 11: Case Study 1: File Download
	Bild 12: Fingerprinting Attacks (Classification)
	Bild 13: Fingerprinting Attacks (Classification)
	Bild 14: Case Study 2: Web Page Download
	Bild 15: Case Study 2: Web Page Download
	Bild 16: Case Study 2: Web Page Download
	Bild 17: Case Study 2: Web Page Download
	Bild 18: Web Page Download, early research
	Bild 19: Web Page Download, recent research
	Bild 20: Web Page Download, evaluation
	Bild 21: Web Page Download, evaluation
	Bild 22: Web Page Download, evaluation
	Bild 23: Web Page Download, evaluation
	Bild 24: Part 2
	Bild 25: Case Study 1: File Download
	Bild 26: Case Study 1: File Download
	Bild 27: Case Study 1: File Download
	Bild 28: Theory and Practice
	Bild 29: Case Study 2: Web Page Download
	Bild 30: Case Study 2: Web Page Download
	Bild 31: A Theoretically Backed Defense: Walkie-Talkie
	Bild 32: A Theoretically Backed Defense: Walkie-Talkie
	Bild 33: Trade-offs: A Closer Look
	Bild 34: The Problem with Theory
	Bild 35: Padding-Only Defenses
	Bild 36: Padding-Only Defenses
	Bild 37: Tor Circuit Padding Framework
	Bild 38: Maybenot Framework
	Bild 39: Defense Generation
	Bild 40: Traffic Analysis (what, how, and how)
	Bild 41: References

