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Recap: UDP

» Unreliable protocol
» Simple, connectionless best effort service

» Packets may be lost or duplicated

» Packets may be delivered out of order

» Used by
» Real-time communication

» Multimedia applications

» VoIP applications

» Many protocols
▪ DNS  (Domain Name Service)

▪ SNMP  (Simple Network Management Protocol)

▪ NTP  (Network Time Protocol)

▪ …
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Recap: UDP

» Advantages

» Simple

» No setup/handshake needed (no RTT incurred)

» Helps with reliability (checksum)

» If reliable transfer needed

» Add additional functionalities on top

of UDP at the application layer

(e.g., reliability, congestion control)
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What is QUIC?

» New network transport protocol
» Introduced by Google for HTTPS transport

» Reliability built in user-space on top of UDP
» Connection establishment

» Loss detection and error control

» Congestion control

» Authentication and encryption

» From QUIC specification:
» “Readers familiar with TCP’s loss detection and congestion control will find 

algorithms here that parallel well-known TCP ones.”



What is QUIC?

» Application layer protocol
» Often said to be multilayer

» Improves application and HTTP performance
» YouTube Video Rebuffers: 15 – 18%

» Google Search Latency: 3.6 – 8%

» Mostly for high latency users

» Widespread adoption
» Google, Apple, Facebook, Microsoft

» YouTube, Facebook, Instagram, Teams, Office

» Chrome, Firefox, Edge, Safari

» iOS, MacOS

» …
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What is QUIC?

» Originally gQUIC

» Continued by the IETF to become HTTP/3 standard



Google Search trends



Issues with TCP

» Improvements have not seen wide deployment

» Middleboxes key issue

▪ Packet headers not protected end-to-end

▪ Firewalls block unfamiliar traffic

▪ Network Address Translators (NATs) rewrite transport header

» Built into OS, requires new OS version

» Updates take long time to cascade

» Many different versions in use

» Simple protocol changes take up to a decade to see significant deployment



Issues with TCP

» Handshake delay (long connection setup)

» Costs of TCP+TLS layering

» Network bandwidth has increased, but speed of light remains constant

» Most connections on the internet are short transfers

» Head-of-line blocking



QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding
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Deployability and evolvability

» Google controls both server and client software
» Google services and Chrome / mobile apps

» Enables rapid deployment

» Internet as the testbed

» Important to be deployable on the internet as is
» Nodes, routers, firewalls view a QUIC packet as a regular UDP packet

» Choice of UDP → user-space

» Important to be able to quickly change the protocol
» Avoid dependence on vendors and network operators

» Encrypt and authenticate as much as possible → middleboxes cannot tamper

» Rapidly deploy new versions

» Rapidly fallback to TCP if something goes wrong



QUIC deployment

» 2013 – Introduction by Google
» Enabled for Google dev team

» 2014 – Small scale testing
» Enabled for less than 0.025% of Google 

Chrome users
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QUIC deployment

» 2013 – Introduction by Google
» Enabled for Google dev team

» 2014 – Small scale testing
» Enabled for less than 0.025% of Google 

Chrome users

» 2015 – Large scale deployment
» 11% of Google’s egress traffic

» 2016 – Larger scale deployment
» Over 30% of Google’s egress traffic 

(estimated to be 7% of all internet)

Rare corner cases: 

Unencrypted 0-RTT



QUIC deployment

» 2019
» Over 50% of Google’s egress traffic

» Over 80% of Facebook’s API requests from the primary mobile application

» Support for cURL

» …

» 2020
» Support for Safari

» Facebook migration of apps and server infrastructure – 75% of all its traffic

» …

» 2021
» Support for Firefox

» …

» 2022: Widespread adoption

» Google, Apple, Facebook, Microsoft

» YouTube, Facebook, Instagram, Teams, Office

» Chrome, Firefox, Edge, Safari

» iOS, MacOS

» …



QUIC deployment versions

» Rapid deployment and evolution



QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding



Recap: TLS

» Widely deployed security protocol above the transport layer

» Supported by all major browsers and web servers

» Provides an API that any application can use

» Provides

» Confidentiality: via symmetric encryption

» Integrity: via cryptographic hashing

» Authentication: via public key cryptography

» Evolution from SSL



Recap: TLS 1.3 handshake  (1 RTT)

» Client TLS hello msg 

» Key agreement protocol, parameters

» Indicates cipher suites it supports

client hello:
▪ supported cipher suites
▪ DH key agreement 

protocol, parameters

1

client server 

1

1 RTT
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Recap: TLS 1.3 handshake  (1 RTT)

» Client TLS hello msg 

» Key agreement protocol, parameters

» Indicates cipher suites it supports

» Server TLS hello msg chooses 

» Key agreement protocol, parameters

» Cipher suite

» Server-signed certificate

» Client
» checks server certificate
» generates key

» can now make application request 

(e.g., HTTPS GET)

client hello:
▪ supported cipher suites
▪ DH key agreement 

protocol, parameters

1

server hello:
▪ selected cipher suite
▪ DH key agreement 

protocol, parameters

2

3

client server 

1

2

3
Application 

data (request)

1 RTT



Recap: TLS 1.3 handshake  (0 RTT)

» Initial hello message contains

encrypted application data

» “Resuming” earlier connection

between client and server
» Using cached data

» Calculate initial session encryption

keys before setting up new connection

» Expired cache causes 1 RTT

» Vulnerable to replay attacks
» Acceptable for HTTP GET or client

requests not modifying server state

client hello:
▪ supported cipher suites
▪ DH key agreement 

protocol, parameters
▪ application data (request)

server hello:
▪ selected cipher suite
▪ DH key agreement 

protocol, parameters
▪ application data (reply)

client server 

1

2

0 RTT



TCP + TLS: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

data

» TCP + TLS

» 2 serial handshakes before data

» TCP (reliability, congestion control)

» TLS (authentication, cryptography)

2 RTT



QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

data

QUIC handshake

data

» TCP + TLS

» 2 serial handshakes before data

» TCP (reliability, congestion control)

» TLS (authentication, cryptography)

» QUIC
» Reliability, congestion control, 

authentication, cryptography

» Combines cryptographic and transport 
handshakes (1 layer)

» 1 handshake at worst

2 RTT 1 RTT



QUIC: Connection establishment

QUIC handshake

data

QUIC handshake data

1 RTT 0 RTT

» Mostly 0-RTT (~88 %), sometimes 1 RTT



Handshake latency



QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding



HTTP/1.1

» Introduced multiple, pipelined GETs over single TCP connection

» Server responds in-order

» Uses FCFS (first-come-first-served) scheduling for GET requests

» FCFS results in small object may have to wait for transmission  

» Head-of-line (HOL) blocking behind large objects

» Loss recovery (retransmitting lost TCP segments) stalls object 

transmission



HTTP/1.1: HOL blocking

» Client requests 1 large object (e.g., video file) and 3 smaller objects

» Objects delivered in order → O2, O3, O4 wait behind O1 → HOL blocking

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2

O3
O4



HTTP/2

» Key goal: decreased delay in multi-object HTTP requests

» Increased flexibility at server in sending objects to client

» Methods, status codes, most header fields unchanged from HTTP 1.1

» Transmission order of requested objects based on client-specified object priority 

(not necessarily FCFS)

» Push unrequested objects to client

» Divide objects into frames, schedule frames to mitigate HOL blocking



HTTP/2: mitigating HOL blocking

» HTTP/2: objects divided into frames, frame transmission interleaved

» O2, O3, O4 delivered quickly, O1 slightly delayed

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2

O3
O4

O3

O1



HTTP/2 to HTTP/3

» HTTP/2 over single TCP connection means:

» recovery from packet loss still stalls all object transmissions

» as in HTTP 1.1, browsers have incentive to open multiple parallel TCP connections 

to reduce stalling, increase overall throughput

» HTTP/2 provides no security over vanilla TCP connection

» HTTP/3 adds security, per object error- and congestion-control (more 

pipelining) over UDP



Streams and multiplexing

» Streams
» Lightweight abstraction within a connection

» In context of HTTP/3: different stream for each object on a web page

» Multiple application-level streams multiplexed over single QUIC 

connection
» Can quickly add new streams

» Reliable data transfer for each stream separately

» Per stream flow control

» Common congestion control

» Avoids head-of-line blocking in TCP
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Better loss recovery and flexible congestion control

» Better loss recovery

» Unique packet number

» Avoid retransmission ambiguity

» Flexible congestion control

» Receiver timestamp for better RTT estimates

» No specific congestion control

» Draft says TCP NewReno, but mostly CUBIC used

» As fair as TCP



QUIC features
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Resilience to NAT-rebinding

» 64-bit to 160-bit connection ID

» Instead of IP + port pairs

» Survives NAT timeout and NAT rebinding

» More aggressive for UDP than TCP

» Improves migration, handovers to new IP

» Improves multipath



QUIC packet structure

» Long header packets

» Initial connection establishment

» Short header packets

» Transmit data



Research on QUIC

» Langley et al., The QUIC Transport Protocol: Design and Internet-Scale 

Deployment, Proc. ACM SIGCOMM, 2017

» 600 citations

» ACM SIGCOMM Workshop on Evolution, Performance, and Interoperability of 

QUIC (EPIQ)

» Zhilong Zheng et al., Xlink: Qoe-driven multi-path quic transport in large-scale 

video services, Proc. ACM SIGCOMM, 2021.

» Johannes Zirngibl, et al., It's over 9000: analyzing early QUIC deployments with 

the standardization on the horizon, Proc IMC, 2021.



EPIQ

» 2018

» Moving fast at scale: Experience deploying IETF QUIC at Facebook

» Real-time Audio-Visual Media Transport over QUIC

» The QUIC Fix for Optimal Video Streaming

» Towards QUIC debuggability

» Observing the Evolution of QUIC Implementations

» Interoperability-Guided Testing of QUIC Implementations using Symbolic Execution

» nQUIC: Noise-Based QUIC Packet Protection

» A Stream-Aware Multipath QUIC Scheduler for Heterogeneous Paths



EPIQ

» 2019

» 0 papers accepted out of 15 submitted



EPIQ

» 2020

» As QUIC as TCP, Optimizing QUIC and HTTP/3 CPU usage

» Testing QUIC with packetdrill

» Automating QUIC Interoperability Testing

» Same Standards, Different Decisions: A Study of QUIC and HTTP/3 Implementation 

Diversity

» Making QUIC Quicker With NIC Offload

» Scalable High Efficiency Video Coding based HTTP Adaptive Streaming over QUIC

» Analyzing the Adoption of QUIC From a Mobile Development Perspective



EPIQ

» 2021

» QUIC usage at Microsoft

» QUIC usage at Apple

» Verifying QUIC implementations using Ivy

» Days of Future Past: An Optimization-based Adaptive Bitrate Algorithm over HTTP/3

» Tracking the QUIC Spin Bit on Tofino

» The Search of the Path MTU with QUIC

» Evaluation of QUIC-based MASQUE Proxying

» Congestion Control for Real-time Media over QUIC
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