
QUIC: Quick UDP Internet Connections

David Hasselquist

Slides partially borrowed/inspired by [1] – [4]

Recap: UDP

» Unreliable protocol
» Simple, connectionless best effort service

» Packets may be lost or duplicated

» Packets may be delivered out of order

» Used by
» Real-time communication

» Multimedia applications

» VoIP applications

» Many protocols
▪ DNS (Domain Name Service)

▪ SNMP (Simple Network Management Protocol)

▪ NTP (Network Time Protocol)

▪ …

IP

TCP UDP

HTTP SMTP
DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper radio fiber

The IP hourglass: Internet’s “thin waist”

Recap: UDP

» Advantages

» Simple

» No setup/handshake needed (no RTT incurred)

» Helps with reliability (checksum)

» If reliable transfer needed

» Add additional functionalities on top

of UDP at the application layer

(e.g., reliability, congestion control)

IP

TCP UDP

HTTP SMTP
DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper radio fiber

The IP hourglass: Internet’s “thin waist”

What is QUIC?

» New network transport protocol
» Introduced by Google for HTTPS transport

» Reliability built in user-space on top of UDP
» Connection establishment

» Loss detection and error control

» Congestion control

» Authentication and encryption

» From QUIC specification:
» “Readers familiar with TCP’s loss detection and congestion control will find

algorithms here that parallel well-known TCP ones.”

What is QUIC?

» Application layer protocol
» Often said to be multilayer

» Improves application and HTTP performance
» YouTube Video Rebuffers: 15 – 18%

» Google Search Latency: 3.6 – 8%

» Mostly for high latency users

» Widespread adoption
» Google, Apple, Facebook, Microsoft

» YouTube, Facebook, Instagram, Teams, Office

» Chrome, Firefox, Edge, Safari

» iOS, MacOS

» …

IP

TCP UDP

HTTP SMTP
QUIC DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper radio fiber

The IP hourglass: Internet’s “thin waist”

What is QUIC?

» Originally gQUIC

» Continued by the IETF to become HTTP/3 standard

Google Search trends

Issues with TCP

» Improvements have not seen wide deployment

» Middleboxes key issue

▪ Packet headers not protected end-to-end

▪ Firewalls block unfamiliar traffic

▪ Network Address Translators (NATs) rewrite transport header

» Built into OS, requires new OS version

» Updates take long time to cascade

» Many different versions in use

» Simple protocol changes take up to a decade to see significant deployment

Issues with TCP

» Handshake delay (long connection setup)

» Costs of TCP+TLS layering

» Network bandwidth has increased, but speed of light remains constant

» Most connections on the internet are short transfers

» Head-of-line blocking

QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding

QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding

Deployability and evolvability

» Google controls both server and client software
» Google services and Chrome / mobile apps

» Enables rapid deployment

» Internet as the testbed

» Important to be deployable on the internet as is
» Nodes, routers, firewalls view a QUIC packet as a regular UDP packet

» Choice of UDP → user-space

» Important to be able to quickly change the protocol
» Avoid dependence on vendors and network operators

» Encrypt and authenticate as much as possible → middleboxes cannot tamper

» Rapidly deploy new versions

» Rapidly fallback to TCP if something goes wrong

QUIC deployment

» 2013 – Introduction by Google
» Enabled for Google dev team

» 2014 – Small scale testing
» Enabled for less than 0.025% of Google

Chrome users

QUIC deployment

» 2013 – Introduction by Google
» Enabled for Google dev team

» 2014 – Small scale testing
» Enabled for less than 0.025% of Google

Chrome users

» 2015 – Large scale deployment
» 11% of Google’s egress traffic

QUIC deployment

» 2013 – Introduction by Google
» Enabled for Google dev team

» 2014 – Small scale testing
» Enabled for less than 0.025% of Google

Chrome users

» 2015 – Large scale deployment
» 11% of Google’s egress traffic

QUIC deployment

» 2013 – Introduction by Google
» Enabled for Google dev team

» 2014 – Small scale testing
» Enabled for less than 0.025% of Google

Chrome users

» 2015 – Large scale deployment
» 11% of Google’s egress traffic

Rare corner cases:

Unencrypted 0-RTT

QUIC deployment

» 2013 – Introduction by Google
» Enabled for Google dev team

» 2014 – Small scale testing
» Enabled for less than 0.025% of Google

Chrome users

» 2015 – Large scale deployment
» 11% of Google’s egress traffic

» 2016 – Larger scale deployment
» Over 30% of Google’s egress traffic

(estimated to be 7% of all internet)

Rare corner cases:

Unencrypted 0-RTT

QUIC deployment

» 2019
» Over 50% of Google’s egress traffic

» Over 80% of Facebook’s API requests from the primary mobile application

» Support for cURL

» …

» 2020
» Support for Safari

» Facebook migration of apps and server infrastructure – 75% of all its traffic

» …

» 2021
» Support for Firefox

» …

» 2022: Widespread adoption

» Google, Apple, Facebook, Microsoft

» YouTube, Facebook, Instagram, Teams, Office

» Chrome, Firefox, Edge, Safari

» iOS, MacOS

» …

QUIC deployment versions

» Rapid deployment and evolution

QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding

Recap: TLS

» Widely deployed security protocol above the transport layer

» Supported by all major browsers and web servers

» Provides an API that any application can use

» Provides

» Confidentiality: via symmetric encryption

» Integrity: via cryptographic hashing

» Authentication: via public key cryptography

» Evolution from SSL

Recap: TLS 1.3 handshake (1 RTT)

» Client TLS hello msg

» Key agreement protocol, parameters

» Indicates cipher suites it supports

client hello:
▪ supported cipher suites
▪ DH key agreement

protocol, parameters

1

client server

1

1 RTT

Recap: TLS 1.3 handshake (1 RTT)

» Client TLS hello msg

» Key agreement protocol, parameters

» Indicates cipher suites it supports

» Server TLS hello msg chooses

» Key agreement protocol, parameters

» Cipher suite

» Server-signed certificate

client hello:
▪ supported cipher suites
▪ DH key agreement

protocol, parameters

1

server hello:
▪ selected cipher suite
▪ DH key agreement

protocol, parameters

2

client server

1

2

1 RTT

Recap: TLS 1.3 handshake (1 RTT)

» Client TLS hello msg

» Key agreement protocol, parameters

» Indicates cipher suites it supports

» Server TLS hello msg chooses

» Key agreement protocol, parameters

» Cipher suite

» Server-signed certificate

» Client
» checks server certificate
» generates key

» can now make application request

(e.g., HTTPS GET)

client hello:
▪ supported cipher suites
▪ DH key agreement

protocol, parameters

1

server hello:
▪ selected cipher suite
▪ DH key agreement

protocol, parameters

2

3

client server

1

2

3
Application

data (request)

1 RTT

Recap: TLS 1.3 handshake (0 RTT)

» Initial hello message contains

encrypted application data

» “Resuming” earlier connection

between client and server
» Using cached data

» Calculate initial session encryption

keys before setting up new connection

» Expired cache causes 1 RTT

» Vulnerable to replay attacks
» Acceptable for HTTP GET or client

requests not modifying server state

client hello:
▪ supported cipher suites
▪ DH key agreement

protocol, parameters
▪ application data (request)

server hello:
▪ selected cipher suite
▪ DH key agreement

protocol, parameters
▪ application data (reply)

client server

1

2

0 RTT

TCP + TLS: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

data

» TCP + TLS

» 2 serial handshakes before data

» TCP (reliability, congestion control)

» TLS (authentication, cryptography)

2 RTT

QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

data

QUIC handshake

data

» TCP + TLS

» 2 serial handshakes before data

» TCP (reliability, congestion control)

» TLS (authentication, cryptography)

» QUIC
» Reliability, congestion control,

authentication, cryptography

» Combines cryptographic and transport
handshakes (1 layer)

» 1 handshake at worst

2 RTT 1 RTT

QUIC: Connection establishment

QUIC handshake

data

QUIC handshake data

1 RTT 0 RTT

» Mostly 0-RTT (~88 %), sometimes 1 RTT

Handshake latency

QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding

HTTP/1.1

» Introduced multiple, pipelined GETs over single TCP connection

» Server responds in-order

» Uses FCFS (first-come-first-served) scheduling for GET requests

» FCFS results in small object may have to wait for transmission

» Head-of-line (HOL) blocking behind large objects

» Loss recovery (retransmitting lost TCP segments) stalls object

transmission

HTTP/1.1: HOL blocking

» Client requests 1 large object (e.g., video file) and 3 smaller objects

» Objects delivered in order → O2, O3, O4 wait behind O1 → HOL blocking

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2

O3
O4

HTTP/2

» Key goal: decreased delay in multi-object HTTP requests

» Increased flexibility at server in sending objects to client

» Methods, status codes, most header fields unchanged from HTTP 1.1

» Transmission order of requested objects based on client-specified object priority

(not necessarily FCFS)

» Push unrequested objects to client

» Divide objects into frames, schedule frames to mitigate HOL blocking

HTTP/2: mitigating HOL blocking

» HTTP/2: objects divided into frames, frame transmission interleaved

» O2, O3, O4 delivered quickly, O1 slightly delayed

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2

O3
O4

O3

O1

HTTP/2 to HTTP/3

» HTTP/2 over single TCP connection means:

» recovery from packet loss still stalls all object transmissions

» as in HTTP 1.1, browsers have incentive to open multiple parallel TCP connections

to reduce stalling, increase overall throughput

» HTTP/2 provides no security over vanilla TCP connection

» HTTP/3 adds security, per object error- and congestion-control (more

pipelining) over UDP

Streams and multiplexing

» Streams
» Lightweight abstraction within a connection

» In context of HTTP/3: different stream for each object on a web page

» Multiple application-level streams multiplexed over single QUIC

connection
» Can quickly add new streams

» Reliable data transfer for each stream separately

» Per stream flow control

» Common congestion control

» Avoids head-of-line blocking in TCP

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
a
n
sp
o
rt

a
p
p
lic
a
ti
o
n

(b) HTTP/3 (HTTP/2 with QUIC: no HOL blocking)

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP
GET

HTTP
GET

HTTP
GET

QUIC Cong. Cont.

QUIC
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC
encrypt

QUIC
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC
encrypt

QUIC
encrypt

error!

HTTP
GET HTTP

GET
HTTP
GET

QUIC: streams: parallelism, no HOL blocking

QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding

Better loss recovery and flexible congestion control

» Better loss recovery

» Unique packet number

» Avoid retransmission ambiguity

» Flexible congestion control

» Receiver timestamp for better RTT estimates

» No specific congestion control

» Draft says TCP NewReno, but mostly CUBIC used

» As fair as TCP

QUIC features

» Deployability and evolvability

» Low-latency secure connection establishment

» Streams and multiplexing

» Better loss recovery and flexible congestion control

» Resilience to NAT-rebinding

Resilience to NAT-rebinding

» 64-bit to 160-bit connection ID

» Instead of IP + port pairs

» Survives NAT timeout and NAT rebinding

» More aggressive for UDP than TCP

» Improves migration, handovers to new IP

» Improves multipath

QUIC packet structure

» Long header packets

» Initial connection establishment

» Short header packets

» Transmit data

Research on QUIC

» Langley et al., The QUIC Transport Protocol: Design and Internet-Scale

Deployment, Proc. ACM SIGCOMM, 2017

» 600 citations

» ACM SIGCOMM Workshop on Evolution, Performance, and Interoperability of

QUIC (EPIQ)

» Zhilong Zheng et al., Xlink: Qoe-driven multi-path quic transport in large-scale

video services, Proc. ACM SIGCOMM, 2021.

» Johannes Zirngibl, et al., It's over 9000: analyzing early QUIC deployments with

the standardization on the horizon, Proc IMC, 2021.

EPIQ

» 2018

» Moving fast at scale: Experience deploying IETF QUIC at Facebook

» Real-time Audio-Visual Media Transport over QUIC

» The QUIC Fix for Optimal Video Streaming

» Towards QUIC debuggability

» Observing the Evolution of QUIC Implementations

» Interoperability-Guided Testing of QUIC Implementations using Symbolic Execution

» nQUIC: Noise-Based QUIC Packet Protection

» A Stream-Aware Multipath QUIC Scheduler for Heterogeneous Paths

EPIQ

» 2019

» 0 papers accepted out of 15 submitted

EPIQ

» 2020

» As QUIC as TCP, Optimizing QUIC and HTTP/3 CPU usage

» Testing QUIC with packetdrill

» Automating QUIC Interoperability Testing

» Same Standards, Different Decisions: A Study of QUIC and HTTP/3 Implementation

Diversity

» Making QUIC Quicker With NIC Offload

» Scalable High Efficiency Video Coding based HTTP Adaptive Streaming over QUIC

» Analyzing the Adoption of QUIC From a Mobile Development Perspective

EPIQ

» 2021

» QUIC usage at Microsoft

» QUIC usage at Apple

» Verifying QUIC implementations using Ivy

» Days of Future Past: An Optimization-based Adaptive Bitrate Algorithm over HTTP/3

» Tracking the QUIC Spin Bit on Tofino

» The Search of the Path MTU with QUIC

» Evaluation of QUIC-based MASQUE Proxying

» Congestion Control for Real-time Media over QUIC

References

» [1] Langley et al., The QUIC Transport Protocol: Design and Internet-Scale Deployment, Proc. ACM
SIGCOMM, 2017.

» [2] David Hasselquist et al., QUIC Throughput and Fairness over Dual Connectivity, Proc. IEEE
MASCOTS Workshop, 2020.

» [3] Ian Swett. As QUIC as TCP, Optimizing QUIC and HTTP/3 CPU usage, Proc. EPIQ keynote, 2020.

» [4] James Kurose and Keith Ross, Computer networks: A top down approach featuring the internet, 2021.

