
TDTS21 Advanced Networking

Lecture: Transport, including TCP and

congestion control …

Based on slides from D. Choffnes, P. Gill, and S. Katti

Revised Spring 2019, 2021 by N. Carlsson

Holding the Internet Together

 Distributed cooperation for resource allocation

 BGP: what end-to-end paths to take (for ~O(100K) ASes)

 TCP: what rate to send over each path (for ~O(1B) hosts)

2

AS 1

AS 2

AS 3

AS 4

What Problem Does a Protocol Solve?

 BGP path selection

 Select a path that each AS on the path is willing to use

 Adapt path selection in the presence of failures

 TCP congestion control

 Prevent congestion collapse of the Internet

 Allocate bandwidth fairly and efficiently

3

What Problem Does a Protocol Solve?

 BGP path selection

 Select a path that each AS on the path is willing to use

 Adapt path selection in the presence of failures

 TCP congestion control

 Prevent congestion collapse of the Internet

 Allocate bandwidth fairly and efficiently

4

Today, we will focus on TCP (and UDP) …

Transport Layer
5

 Function:

 Demultiplexing of data streams

 Optional functions:

 Creating long lived connections

 Reliable, in-order packet delivery

 Error detection

 Flow and congestion control

 Key challenges:

 Detecting and responding to congestion

 Balancing fairness against high utilization

Application

Transport

Network

Data Link

Physical

❑ UDP

❑ TCP

❑ Congestion Control

❑ Evolution of TCP

❑ Problems with TCP

Outline6

Demultiplexing Traffic
8

Endpoints identified by <src_ip, src_port, dest_ip, dest_port>

Network

Transport

Application

P1 P2 P3 P4 P6 P7P5

Host 1 Host 2 Host 3
Unique port for

each application
Applications share

the same network

Server applications

communicate with

multiple clients

User Datagram Protocol (UDP)
10

 Simple, connectionless datagram

 Port numbers enable demultiplexing

 16 bits = 65535 possible ports

 Port 0 is invalid

 Checksum for error detection

 Detects (some) corrupt packets

 Does not detect dropped, duplicated, or reordered packets

Destination Port

0 16 31

Payload Length

Source Port

Checksum

Uses for UDP
11

 Invented after TCP

 Why?

 Not all applications can tolerate TCP

 Custom protocols can be built on top of UDP

 Reliability? Strict ordering?

 Flow control? Congestion control?

 Examples

 DNS, …

 RTMP, real-time media streaming (e.g. voice, video)

 Facebook datacenter protocol

 QUIC

❑ UDP

❑ TCP

❑ Congestion Control

❑ Evolution of TCP

❑ Problems with TCP

Outline12

Options

Transmission Control Protocol
13

 Reliable, in-order, bi-directional byte streams

 Port numbers for demultiplexing

 Virtual circuits (connections)

 Flow control

 Congestion control, approximate fairness

Destination Port

0 16 31

Sequence Number

Source Port

Acknowledgement Number

Advertised Window

Urgent Pointer

Flags

Checksum

4

HLen

Connection Setup
14

 Why do we need connection setup?

 To establish state on both hosts

 Most important state: sequence numbers

◼ Count the number of bytes that have been sent

◼ Initial value chosen at random

 Important TCP flags (1 bit each)

 SYN – synchronization, used for connection setup

 ACK – acknowledge received data

 FIN – finish, used to tear down connection

Three Way Handshake
15

 Each side:

 Notifies the other of starting sequence number

 ACKs the other side’s starting sequence number

Client Server

Connection Setup Issues
16

 Connection confusion

 How to disambiguate connections from the same host?

 Random sequence numbers

 Source spoofing

 Kevin Mitnick

 Need good random number generators!

 Connection state management

 Each SYN allocates state on the server

 SYN flood = denial of service attack

 Solution: SYN cookies

Connection Tear Down
17

 Either side can initiate

tear down

 Other side may continue

sending data

 Half open connection

 shutdown()

 Acknowledge the last

FIN

 Sequence number + 1

Client Server

Sequence Number Space
18

 TCP uses a byte stream abstraction

 Each byte in each stream is numbered

 32-bit value, wraps around

 Initial, random values selected during setup

 Byte stream broken down into segments (packets)

 Size limited by the Maximum Segment Size (MSS)

 Set to limit fragmentation

 Each segment has a sequence number

Segment 8 Segment 9 Segment 10

13450 14950 16050 17550

Bidirectional Communication
19

 Each side of the connection can send and receive

 Different sequence numbers for each direction

Client ServerSeq. Ack. Seq. Ack.

1 23

23 1461

1461 753

753 2921Data and ACK in the

same packet

23 1

Flow Control
20

 Problem: how many packets should a sender transmit?

 Too many packets may overwhelm the receiver

 Size of the receiver’s buffers may change over time

 Solution: sliding window

 Receiver tells the sender how big their buffer is

 Called the advertised window

 For window size n, sender may transmit n bytes without

receiving an ACK

 After each ACK, the window slides forward

Flow Control: Sender Side
21

Sequence Number

Src. Port

Acknowledgement Number

Window

Urgent Pointer

Flags

Checksum

HL

Packet Sent

Dest. PortSrc. Port

Acknowledgement Number

Window

Urgent Pointer

Flags

Checksum

HL

Packet Received

Dest. Port

Sequence Number

ACKed Sent To Be Sent Outside Window

Window

Must be buffered

until ACKed

Sliding Window Example
22

Time Time

TCP is ACK Clocked

• Short RTT → quick ACK → window slides quickly

• Long RTT → slow ACK → window slides slowly

Observations
23

 Throughput is ~ w/RTT

 Sender has to buffer all unacknowledges packets,

because they may require retransmission

 Receiver may be able to accept out-of-order packets,

but only up to buffer limits

❑ UDP

❑ TCP

❑ Congestion Control

❑ Evolution of TCP

❑ Problems with TCP

Outline24

What is Congestion?
25

 Load on the network is higher than capacity

 Capacity is not uniform across networks

◼Modem vs. Cellular vs. Cable vs. Fiber Optics

 There are multiple flows competing for bandwidth

◼ Residential cable modem vs. corporate datacenter

 Load is not uniform over time

◼ 10pm, Sunday night = Bittorrent Game of Thrones

Why is Congestion Bad?
26

 Results in packet loss

 Routers have finite buffers

 Internet traffic is bursty, no buffer can prevent all drops

 When routers get overloaded, packets will be dropped

 Practical consequences

 Router queues build up, delay increases

 Wasted bandwidth from retransmissions

 Low network “goodput”

CONGESTION AVOIDANCE AND

CONTROL

VAN JACOBSON ‘88

27

Main contributions

Seven new algorithms:

1. RTT Variance estimation

2. Exponential retransmit timer backoff

3. Slow-start

4. More aggressive receiver ack policy

5. Dynamic window sizing on congestion

6. Karn’s algorithm

7. Fast retransmit

Paper explores the first 5.

28

The Danger of Increasing Load
29

 Knee – point after which

 Throughput increases very

slow

 Delay increases fast

 In an M/M/1 queue

 Delay = 1/(1 – utilization)

 Cliff – point after which

 Throughput → 0

 Delay → ∞

Congestion

Collapse

Load

Load

G
o
o
d
p
ut

D
e
la

y

Knee Cliff

Ideal point

Cong. Control vs. Cong. Avoidance
30

Congestion

Collapse

G
o
o
d
p

ut

Knee Cliff

Load

Congestion Avoidance:

Stay left of the knee

Congestion Control:

Stay left of the cliff

Advertised Window, Revisited
31

 Does TCP’s advertised window solve congestion?

NO

 The advertised window only protects the receiver

 A sufficiently fast receiver can max the window

 What if the network is slower than the receiver?

 What if there are other concurrent flows?

 Key points

 Window size determines send rate

 Window must be adjusted to prevent congestion collapse

Goals of Congestion Control
32

1. Adjusting to the bottleneck bandwidth

2. Adjusting to variations in bandwidth

3. Sharing bandwidth between flows

4. Maximizing throughput

General Approaches
33

 Do nothing, send packets indiscriminately

 Many packets will drop, totally unpredictable performance

 May lead to congestion collapse

 Reservations

 Pre-arrange bandwidth allocations for flows

 Requires negotiation before sending packets

 Must be supported by the network

 Dynamic adjustment

 Use probes to estimate level of congestion

 Speed up when congestion is low

 Slow down when congestion increases

 Messy dynamics, requires distributed coordination

TCP Congestion Control
34

 Each TCP connection has a window

 Controls the number of unACKed packets

 Sending rate is ~ window/RTT

 Idea: vary the window size to control the send rate

 Introduce a congestion window at the sender

 Congestion control is sender-side problem

Congestion Window (cwnd)
35

 Limits how much data is in transit

 Denominated in bytes

1. wnd = min(cwnd, adv_wnd);

2. effective_wnd = wnd –

(last_byte_sent – last_byte_acked);

last_byte_acked last_byte_sent

wnd

effective_wnd

Two Basic Components
36

1. Detect congestion

 Packet dropping is most reliably signal

◼ Delay-based methods are hard and risky

 How do you detect packet drops? ACKs

◼ Timeout after not receiving an ACK

◼ Several duplicate ACKs in a row (ignore for now)

2. Rate adjustment algorithm

 Modify cwnd

 Probe for bandwidth

 Responding to congestion

Error Detection
37

 Checksum detects (some) packet corruption

 Computed over IP header, TCP header, and data

 Sequence numbers catch sequence problems

 Duplicates are ignored

 Out-of-order packets are reordered or dropped

 Missing sequence numbers indicate lost packets

 Lost segments detected by sender

 Use timeout to detect missing ACKs

 Need to estimate RTT to calibrate the timeout

 Sender must keep copies of all data until ACK

Retransmission Time Outs (RTO)
38

 Problem: time-out is linked to round trip time

R
TO

R
TO

Timeout is

too short

What about if

timeout is too

long?

Round Trip Time Estimation
39

 Original TCP round-trip estimator

 RTT estimated as a moving average

 new_rtt = α (old_rtt) + (1 – α)(new_sample)

 Recommended α: 0.8-0.9 (0.875 for most TCPs)

 RTO = function of new_rtt and new_dev_rtt

Sample

RTT Sample Ambiguity
40

 Karn’s algorithm: ignore samples for retransmitted

segments

R
TO

R
TO

S
a

m
p
le Sample?

Rate Adjustment
41

 Recall: TCP is ACK clocked

 Congestion = delay = long wait between ACKs

 No congestion = low delay = ACKs arrive quickly

 Basic algorithm

 Upon receipt of ACK: increase cwnd

◼ Data was delivered, perhaps we can send faster

◼ cwnd growth is proportional to RTT

 On loss: decrease cwnd

◼ Data is being lost, there must be congestion

 Question: increase/decrease functions to use?

Utilization and Fairness
42

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Max

throughput

for flow 2

Zero

throughput

for flow 1 Max

throughput

for flow 1

Zero

throughput

for flow 2

Less than full

utilization

More than full

utilization

(congestion)

Ideal point

• Max efficiency

• Perfect fairness

Equal

throughput

(fairness)

Multiplicative Increase, Additive Decrease

43

 Not stable!

 Veers away from

fairness

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Additive Increase, Additive Decrease

44

 Stable

 But does not

converge to

fairness

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Multiplicative Increase, Multiplicative Decrease

45

 Stable

 But does not

converge to

fairness

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Additive Increase, Multiplicative Decrease

46

 Converges to

stable and fair

cycle

 Symmetric

around y=x

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Implementing Congestion Control

 Maintains three variables:

 cwnd: congestion window

 adv_wnd: receiver advertised window

 ssthresh: threshold size (used to update cwnd)

 For sending, use: wnd = min(cwnd, adv_wnd)

 Two phases of congestion control

1. Slow start (cwnd < ssthresh)

◼ Probe for bottleneck bandwidth

2. Congestion avoidance (cwnd >= ssthresh)

◼ AIMD

47

47

Slow Start

 Goal: reach knee quickly

 Upon starting (or restarting) a connection

 cwnd =1

 ssthresh = adv_wnd

 Each time a segment is ACKed, cwnd++

 Continues until…

 ssthresh is reached

 Or a packet is lost

 Slow Start is not actually slow

 cwnd increases exponentially

48

Load

G
o
o
d
p
u
t

Knee Cliff

Slow Start Example
49

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

 cwnd grows rapidly

 Slows down when…

 cwnd >= ssthresh

 Or a packet drops

Congestion Avoidance

 AIMD mode

 ssthresh is lower-bound guess about location of the knee

 If cwnd >= ssthresh then

each time a segment is ACKed

increment cwnd by 1/cwnd (cwnd += 1/cwnd).

 So cwnd is increased by one only if all segments have

been acknowledged

50

Congestion Avoidance Example
51

0

2

4

6

8

10

12

14

t=
0

t=
2

t=
4

t=
6

Round Trip Times

cw
nd

(i
n

se
g

m
e
nt

s)

Slow

Start

cwnd >= ssthresh

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

ssthresh = 8

TCP Pseudocode

Initially:
cwnd = 1;
ssthresh = adv_wnd;

New ack received:
if (cwnd < ssthresh)

/* Slow Start*/
cwnd = cwnd + 1;

else
/* Congestion Avoidance */
cwnd = cwnd + 1/cwnd;

Timeout:
/* Multiplicative decrease */
ssthresh = cwnd/2;
cwnd = 1;

52

The Big Picture

Time

cw
nd

Timeout

Slow Start

Congestion

Avoidance

53

ssthresh

❑ UDP

❑ TCP

❑ Congestion Control

❑ Evolution of TCP

❑ Problems with TCP

Outline54

The Evolution of TCP
55

 Thus far, we have discussed TCP Tahoe

 Original version of TCP

 However, TCP was invented in 1974!

 Today, there are many variants of TCP

 Early, popular variant: TCP Reno

 Tahoe features, plus…

 Fast retransmit

 Fast recovery

TCP Reno: Fast Retransmit
56

 Problem: in Tahoe, if

segment is lost, there is a

long wait until the RTO

 Reno: retransmit after 3

duplicate ACKs

cwnd = 1

cwnd = 2

cwnd = 4

3 Duplicate

ACKs

TCP Reno: Fast Recovery

 After a fast-retransmit set cwnd to ssthresh/2

 i.e. don’t reset cwnd to 1

 Avoid unnecessary return to slow start

 Prevents expensive timeouts

 But when RTO expires still do cwnd = 1

 Return to slow start, same as Tahoe

 Indicates packets aren’t being delivered at all

 i.e. congestion must be really bad

57

Fast Retransmit and Fast Recovery

 At steady state, cwnd oscillates around the optimal

window size

 TCP always forces packet drops

58

Time

cw
nd

Timeout

Slow Start

Congestion Avoidance

Fast Retransmit/Recovery

ssthresh

Timeout

Many TCP Variants…
59

 Tahoe: the original

 Slow start with AIMD

 Dynamic RTO based on RTT estimate

 Reno: fast retransmit and fast recovery

 NewReno: improved fast retransmit

 Reduce number of retransmissions

 Window inflation

 Vegas: delay-based congestion avoidance

 And many, many, many more…

TCP in the Real World
60

 What are the most popular variants today?

 Key problem: TCP performs poorly on high bandwidth-delay
product networks (like the modern Internet)

 Compound TCP (Windows)

◼ Based on Reno

◼ Uses two congestion windows: delay based and loss based

◼ Thus, it uses a compound congestion controller

 TCP CUBIC (Linux)

◼ Enhancement of BIC (Binary Increase Congestion Control)

◼ Window size controlled by cubic function

◼ Parameterized by the time T since the last dropped packet

 Other: BBR TCP, multi-path TCP, and QUIC (UDP-based), and
various data center solutions, for example, …

High Bandwidth-Delay Product
61

 Key Problem: TCP performs poorly when

 The capacity of the network (bandwidth) is large

 The delay (RTT) of the network is large

 Or, when bandwidth * delay is large

◼ b * d = maximum amount of in-flight data in the network

◼ a.k.a. the bandwidth-delay product

 Why does TCP perform poorly?

 Slow start and additive increase are slow to converge

 TCP is ACK clocked

◼ i.e. TCP can only react as quickly as ACKs are received

◼ Large RTT → ACKs are delayed → TCP is slow to react

Goals
62

 Fast window growth

 Slow start and additive increase are too slow when

bandwidth is large

 Want to converge more quickly

 Maintain fairness with other TCP variants

 Window growth cannot be too aggressive

 Improve RTT fairness

 TCP Tahoe/Reno flows are not fair when RTTs vary widely

 Simple implementation

Compound TCP Implementation
63

 Default TCP implementation in Windows

 Key idea: split cwnd into two separate windows

 Traditional, loss-based window

 New, delay-based window

 wnd = min(cwnd + dwnd, adv_wnd)

 cwnd is controlled by AIMD

 dwnd is the delay window

 Rules for adjusting dwnd:

 If RTT is increasing, decrease dwnd (dwnd >= 0)

 If RTT is decreasing, increase dwnd

 Increase/decrease are proportional to the rate of change

Low

RTT

High

RTT

Compound TCP Example

 Aggressiveness corresponds to changes in RTT

 Advantages: fast ramp up, more fair to flows with different RTTs

 Disadvantage: must estimate RTT, which is very challenging

64

Time

cw
nd

Timeout

Slow Start

Timeout
Slower

cwnd

growth

Faster

cwnd

growth

TCP CUBIC Implementation
65

 Default TCP implementation in Linux

 Replace AIMD with cubic function

 B → a constant fraction for multiplicative increase

 T → time since last packet drop

 W_max➔ cwnd when last packet dropped

TCP CUBIC Example

 Less wasted bandwidth due to fast ramp up

 Stable region and slow acceleration help maintain fairness

 Fast ramp up is more aggressive than additive increase

 To be fair to Tahoe/Reno, CUBIC needs to be less aggressive

66

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

Fast ramp

up

Stable

Region

Slowly accelerate to

probe for bandwidth

Simulations of CUBIC Flows
67

CUBIC

CUBIC

RenoReno

BBR (Add slide(s) …)
68

Deploying TCP Variants

 TCP assumes all flows employ TCP-like congestion control

 TCP-friendly or TCP-compatible

 Violated by UDP :(

 If new congestion control algorithms are developed, they

must be TCP-friendly

 Be wary of unforeseen interactions

 Variants work well with others like themselves

 Different variants competing for resources may trigger

unfair, pathological behavior

69

70

Issues with TCP
71

 The vast majority of Internet traffic is TCP

 However, many issues with the protocol

 Lack of fairness

 Synchronization of flows

 Poor performance with small flows

 Really poor performance on wireless networks

 Susceptibility to denial of service

Fairness
72

 Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps

1 Mbps
1 Mbps

1 Mbps

100 ms

1000 ms

 ACK clocking makes TCP inherently unfair

 Possible solution: maintain a separate delay window

 Implemented by Microsoft’s Compound TCP

Synchronization of Flows

 Ideal bandwidth sharing

73

cw
nd

cw
nd

cw
nd

 Oscillating, but high overall

utilization

 In reality, flows synchronize

One flow causes

all flows to drop

packets

Periodic lulls of

low utilization

Small Flows
74

 Problem: TCP is biased against short flows

 1 RTT wasted for connection setup (SYN, SYN/ACK)

 cwnd always starts at 1

 Vast majority of Internet traffic is short flows

 Mostly HTTP transfers, <100KB

 Most TCP flows never leave slow start!

 Proposed solutions (driven by Google):

 Increase initial cwnd to 10

 TCP Fast Open: use cryptographic hashes to identify

receivers, eliminate the need for three-way handshake

Wireless Networks
75

 Problem: Tahoe and Reno assume loss = congestion

 True on the WAN, bit errors are very rare

 False on wireless, interference is very common

 TCP throughput ~ 1/sqrt(drop rate)

 Even a few interference drops can kill performance

 Possible solutions:

 Break layering, push data link info up to TCP

 Use delay-based congestion detection (TCP Vegas)

 Explicit congestion notification (ECN)

Denial of Service
76

 Problem: TCP connections require state

 Initial SYN allocates resources on the server

 State must persist for several minutes (RTO)

 SYN flood: send enough SYNs to a server to allocate all

memory/meltdown the kernel

 Solution: SYN cookies

 Idea: don’t store initial state on the server

 Securely insert state into the SYN/ACK packet

 Client will reflect the state back to the server

SYN Cookies
77

 Did the client really send me a SYN recently?

 Timestamp: freshness check

 Cryptographic hash: prevents spoofed packets

 Maximum segment size (MSS)

 Usually stated by the client during initial SYN

 Server should store this value…

 Reflect the clients value back through them

Sequence NumberTimestamp

310 5

MSS

8

Crypto Hash of Client IP & Port

SYN Cookies in Practice
78

 Advantages

 Effective at mitigating SYN floods

 Compatible with all TCP versions

 Only need to modify the server

 No need for client support

 Disadvantages

 MSS limited to 3 bits, may be smaller than clients actual MSS

 Server forgets all other TCP options included with the client’s

SYN

◼ SACK support, window scaling, etc.

79

More slides …
80

What Should the Receiver ACK?

1. ACK every packet

2. Use cumulative ACK, where an ACK for sequence n

implies ACKS for all k < n

3. Use negative ACKs (NACKs), indicating which packet

did not arrive

4. Use selective ACKs (SACKs), indicating those that did

arrive, even if not in order

 SACK is an actual TCP extension

81

81

Sequence Numbers, Revisited
82

 32 bits, unsigned

 Why so big?

 For the sliding window you need…

 |Sequence # Space| > 2 * |Sending Window Size|

 232 > 2 * 216

 Guard against stray packets

 IP packets have a maximum segment lifetime (MSL) of 120

seconds

◼ i.e. a packet can linger in the network for 2 minutes

 Sequence number would wrap around at 286Mbps

◼What about GigE? PAWS algorithm + TCP options

Silly Window Syndrome
83

 Problem: what if the window size is very small?

 Multiple, small packets, headers dominate data

 Equivalent problem: sender transmits packets one byte

at a time

1. for (int x = 0; x < strlen(data); ++x)

2. write(socket, data + x, 1);

Header Data Header Data Header Data Header Data

Nagle’s Algorithm
84

1. If the window >= MSS and available data >= MSS:

Send the data

2. Elif there is unACKed data:

Enqueue data in a buffer until an ACK is received

3. Else: send the data

 Problem: Nagle’s Algorithm delays transmissions

 What if you need to send a packet immediately?

1. int flag = 1;

2. setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
(char *) &flag, sizeof(int));

Send a full

packet

Send a non-full packet if

nothing else is happening

Challenge of RTO in data centers
85

 TCP Incast problem – E.g. Hadoop, Map Reduce, HDFS,

GFS
Many senders sending simultaneously to receiver

Buffer at switch fills and packets are lost!

No ACKs will come back

Wait

RTO

Wait

RTO

Wait

RTO

Challenges:

Need to break synchronization

RTO estimation designed for wide area

Data centers have much smaller RTT

TCP Perspectives

 Cerf/Kahn

 Provide flow control

 Congestion handled by retransmission

 Jacobson / Karels

 Need to avoid congestion

 RTT estimates critical

 Queuing theory can help

 Winstein/Balakrishnan

 TCP is maximizing an objective function

◼ Fairness/efficiency

◼ Throughput/delay

 Let a learning program pick the best fit for your environment
86

❑ UDP

❑ TCP

❑ Congestion Control

❑ Evolution of TCP

❑ Common TCP options

❑ Problems with TCP

Outline87

Common TCP Options
88

 Window scaling

 SACK: selective acknowledgement

 Maximum segment size (MSS)

 Timestamp

Options

Destination Port

0 16 31

Sequence Number

Source Port

Acknowledgement Number

Advertised Window

Urgent Pointer

Flags

Checksum

4

HLen

Window Scaling
89

 Problem: the advertised window is only 16-bits

 Effectively caps the window at 65536B, 64KB

 Example: 1.5Mbps link, 513ms RTT

(1.5Mbps * 0.513s) = 94KB

64KB / 94KB = 68% of maximum possible speed

 Solution: introduce a window scaling value

 wnd = adv_wnd << wnd_scale;

 Maximum shift is 14 bits, 1GB maximum window

SACK: Selective Acknowledgment
90

 Problem: duplicate ACKs only tell us

about 1 missing packet

 Multiple rounds of dup ACKs needed

to fill all holes

 Solution: selective ACK

 Include received, out-of-order

sequence numbers in TCP header

 Explicitly tells the sender about holes

in the sequence

Other Common Options
91

 Maximum segment size (MSS)

 Essentially, what is the hosts MTU

 Saves on path discovery overhead

 Timestamp

 When was the packet sent (approximately)?

 Used to prevent sequence number wraparound

 PAWS algorithm

QUIC (Add slide(s) …)
92

