TDTS21 Advanced Networking

BGP and Inter-domain Routing (It's all about the Money)

Based on slides from P. Gill, D. Choffnes, J. Rexford, and A. Feldman Revised 2015, 2019, 2021 by N. Carlsson

Control plane vs. Data Plane

2

□ Control:

- Make sure that if there's a path available, data is forwarded over it
- BGP sets up such paths at the AS-level
- Data:
 - For a destination, send packet to most-preferred next hop
 - Routers forward data along IP paths

Network Layer, Control Plane

ASs, Revisited

AS Numbers

- 6
- Each AS identified by an ASN number
 - 16-bit values (latest protocol supports 32-bit ones)
 - Some blocks (e.g., 64512 65535) are reserved
- □ Currently, there are ~ 100,000 ASNs
 - □ AT&T: 5074, 6341, 7018, ...
 - **Sprint:** 1239, 1240, 6211, 6242, ...
 - LIUNET: 2843 (prefix: 130.236.0.0/16)
 - Google 15169, 36561 (formerly YT), + others
 - Facebook 32934
 - North America ASs \rightarrow <u>ftp://ftp.arin.net/info/asn.txt</u>

Inter-Domain Routing

- 7
- □ Global connectivity is at stake!
 - Thus, all ASs must use the same protocol
 - Contrast with intra-domain routing
- What are the requirements?
 - Scalability
 - Flexibility in choosing routes
 - Cost
 - Routing around failures
- Question: link state or distance vector?
 - Trick question: BGP is a path vector protocol

BGP

- Border Gateway Protocol
 - De facto inter-domain protocol of the Internet
 - Policy based routing protocol
 - Uses a Bellman-Ford path vector protocol
- Relatively simple protocol, but...
 - Complex, manual configuration
 - Entire world sees advertisements
 - Errors can screw up traffic globally
 - Policies driven by economics
 - How much \$\$\$ does it cost to route along a given path?
 - Not by performance (e.g. shortest paths)

BGP Relationships

Tier-1 ISP Peering

AS-level Topology 2003 Source: CAIDA

120

807

Peering Wars 12 **Don't Peer** Peer - You would rather have Roduco unstroam costs Peering struggles in the ISP world are extremely contentious agreements are usually confidential Example: If you are a customer of my peer why should I peer with you? You should pay me too! Incentive to keep relationships private!

Two Types of BGP Neighbors

Full iBGP Meshes

- Question: why do we need iBGP?
 - OSPF does not include BGP policy info
 - Prevents routing loops within the AS
- iBGP updates do not trigger announcements

Border Gateway Protocol

- ASes exchange info about who they can reach
 - IP prefix: block of destination IP addresses
 - AS path: sequence of ASes along the path
- Policies configured by the AS's operator
 - Path selection: which of the paths to use?
 - Path export: which neighbors to tell?

Path Vector Protocol

BGP Operations (Simplified)

17

Four Types of BGP Messages

18

- Open: Establish a peering session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: Announce new routes or withdraw previously announced routes.

announcement = IP prefix + <u>attributes values</u>

Applying Policy to Routes

Import policy

Q: What route advertisements do l accept?

- Filter unwanted routes from neighbor
 - E.g. prefix that your customer doesn't own
- Manipulate attributes to influence path selection
 - E.g., assign local preference to favored routes
- Export policy
 - Q: Which routes do I forward to whom?
 - Filter routes you don't want to tell your neighbor
 - E.g., don't tell a peer a route learned from other peer
 - Manipulate attributes to control what they see
 - E.g., make a path look artificially longer than it is

BGP Policy: Influencing Decisions

Routing Policies

Economics

- Enforce business relationships
- Pick routes based on revenue and cost
- Get traffic out of the network as early as possible

Traffic engineering

- Balance traffic over edge links
- Select routes with good end-to-end performance
- Security and scalability
 - Filter routes that seem erroneous
 - Prevent the delivery of unwanted traffic
 - Limit the dissemination of small address blocks

Route Selection Summary B 22 D Ζ **Highest Local Preference Enforce relationships Shortest AS Path** Lowest MED **Traffic engineering** Lowest IGP Cost to BGP Egress When all else fails, Lowest Router ID

break ties

Shortest AS Path != Shortest Path

Hot Potato Routing

Importing Routes

Exporting Routes

Modeling BGP

27

- AS relationships
 - Customer/provider
 - Peer
 - Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 - Follow the money!
 - Valley-free routing

Hierarchical view of routing (incorrect but frequently used)

AS Relationships: It's Complicated

28

□ GR Model is strictly hierarchical

- Each AS pair has exactly one relationship
- Each relationship is the same for all prefixes
- In practice it's much more complicated
 - Rise of widespread peering
 - Regional, per-prefix peerings
 - Tier-1's being shoved out by "hypergiants"
 - IXPs dominating traffic volume
- Modeling is very hard, very prone to error
 - Huge potential impact for understanding Internet behavior

BGP: The Internet's Routing Protocol

A simple model of AS-level business relationships.

BGP: The Internet's Routing Protocol (2)

We call the rest (15%) ISPs.

BGP: The Internet's Routing Protocol (3)

BGP sets up paths from ASes to destination IP prefixes.

A model of BGP routing policies:

Prefer cheaper paths. Then, prefer shorter paths.

- 33
- Proposed by Gao & Rexford 20 years ago
- Based on practices employed by a large ISP
- Provide an intuitive model of path selection and export policy

LocalPref: Prefer customer paths over peer paths over provider paths Prefer shorter paths Arbitrary tiebreak

Proposed by Gao & Rexford 20 years ago Announcements **Provider Provider** Customer

Path Selection:

- LocalPref: Prefer customer paths over peer paths over provider paths
- Prefer shorter paths 2.
- 3. Arbitrary tiebreak

Export Policy:

- Export customer path to all neighbors.
- Export peer/provider path 2. to all customers.

- Normal operation
- Origin AS announces prefix
- Route announcements propagate between ASes
- Helps ASes learn about "good" paths to reach prefix

- Normal operation
- Origin AS announces prefix
- Route announcements propagate between ASes
- Helps ASes learn about "good" paths to reach prefix

Helps ASes learn about "good" paths to reach prefix

—

same type, typically pick "shorter" path

66.174.0.0/16

- When business agreements (money flow) of same type, typically pick "shorter" path
- Or more specific prefix (subprefix attack)

66.174.0.0/16

- When business agreements (money flow) of same type, typically pick "shorter" path
- Or more specific prefix (subprefix attack)

66.174.0.0/16

- Difficult to check true ownership of prefixes
- When business agreements (money flow) of same type, typically pick "shorter" path
- Or more specific prefix (subprefix attack)
- Apr. 2010: ChinaTel announces 50K prefixes

Collaboration important

Collaboration important

Collaboration important

Example attacks

"Characterizing Large-scale Routing Anomalies: A Case Study of the China Telecom Incident", Hiran et al., Proc. PAM 2013

A new Internet model

- Flatter and much more densely interconnected Internet
- Disintermediation between content and "eyeball" networks
- New commercial models between content, consumer and transit

How do ASes connect?

76

- Point of Presence (PoP)
 - Usually a room or a building (windowless)
 - One router from one AS is physically connected to the other
 - Often in big cities
 - Establishing a new connection at PoPs can be expensive

Internet eXchange Points

- Facilities dedicated to providing presence and connectivity for large numbers of ASes
- Many fewer IXPs than PoPs
- Economies of scale

IXPs Definition

77

Industry definition (according to Euro-IX)

A physical network infrastructure operated by a single entity with the purpose to **facilitate** the **exchange** of Internet traffic between **Autonomous Systems**

The number of Autonomous Systems connected should be at least three and there **must** be a **clear** and **open policy** for others to **join**.

https://www.euro-ix.net/what-is-an-ixp

Internet eXchange Points

Inside an IXP

79

- 1 Force10 Terascale E1200
- 2 Multiple 10G-Connections
- 3 Force10 Exascale E1200i
- 4 Multiple 10G-Connections
- 5 DWDM MUX 32 Channel
- 6 Lynx LightLeader Master Unit
- 7 Dark Fiber Working Line
- 8 Dark Fiber Protection Line
- 9 Lynx LightLeader Slave Unit
- 10 DWDM MUX 32 Channel
- 11 2xBrocade MLX32 and 1xForce10 Exascale 1200i per Core

Robust infrastructure with redundency

http://www.de-cix.net/about/topology/
IXPs worldwide

80

https://prefix.pch.net/applications/ixpdir/

Revised model 2012+

Inter-Domain Routing Summary

- BGP4 is the only inter-domain routing protocol currently in use world-wide
- Issues?
 - Lack of security
 - Ease of misconfiguration
 - Poorly understood interaction between local policies
 - Poor convergence
 - Lack of appropriate information hiding
 - Non-determinism
 - Poor overload behavior

Why are these still issues?

90

- Backward compatibility
- Buy-in / incentives for operators
- Stubbornness

Very similar issues to IPv6 deployment

More slides ...

Consolidation of Content

Case Study: Google

Graph of weighted averaged grouped ASNs

Flattening: Paths with no Tier 1s The Flattening Internet Topology: Natural Evolution, Unsightly

Barnacles or Contrived Collapse?, Proc. PAM 2008

Routes with Zero Tier 1 ISPs 60% of paths with no tier 1 ISP (30 out of 50)

Relative degree of top content providers The Flattening Internet Topology: Natural Evolution, Unsightly

96

The Flattening Internet Topology: Natural Evolution, Unsightly Barnacles or Contrived Collapse?, Proc. PAM 2008

These numbers are actually way lower than the true degree of these ASes

What Problem is BGP Solving?

Underlying Problem	Distributed Solution
Shortest Paths	RIP, OSPF, IS-IS, etc.
ŚŚŚ	BGP

□ Knowing ??? can:

- Aid in the analysis of BGP policy
- Aid in the design of BGP extensions
- Help explain BGP routing anomalies
- Give us a deeper understanding of the protocol

The Stable Paths Problem

□ An instance of the SPP:

- Graph of nodes and edges
- Node 0, called the origin
- A set of permitted paths from each node to the origin
- Each set of paths is ranked

A Solution to the SPP

100

A solution is an assignment of permitted paths to each node

Solutions need not use the shortest paths, or form a spanning tree

their neighbors

Simple SPP Example

Good Gadget

SPP May Have Multiple Solutions

Bad Gadget

- That was only one round of oscillation!
- This keeps going, infinitely
- Problem stems from:
 - Local (not global) decisions
 - Ability of one node to improve its path selection

SPP Explains BGP Divergence

- □ BGP is not guaranteed to converge to stable routing
 - Policy inconsistencies may lead to "livelock"
 - Protocol oscillation

BGP is Precarious

Can BGP Be Fixed?

Unfortunately, SPP is NP-complete

These approaches are complementary

