
HTTPS, TLS, and Certificates

Niklas Carlsson, Linköping University

Web security

HTTPS and the

Lock Icon

Goals for this lecture

Brief overview of HTTPS:

• How the SSL/TLS protocol works (very briefly)

• How to use HTTPS

Integrating HTTPS into the browser

• Lots of user interface problems to watch for

Threat Model: Network Attacker

Network Attacker:

• Controls network infrastructure: Routers, DNS

• Eavesdrops, injects, blocks, and modifies packets

Examples:

• Wireless network at Internet Café

• Internet access at hotels (untrusted ISP)

TLS overview: (1) DH key exchange

Anonymous key exchange secure against eavesdropping:

The Diffie-Hellman protocol in a group G = {1, g, g2, g3, …, gq-1}

Browser Alice Server Bob

a ⟵ {1,…,q} b ⟵ {1,…,q}

B = gb ∈ G

PreMasterSecret = gab = (gb)a = Ba = (ga)b = Ab

A = ga ∈ G

PMS = Ba PMS = Ab

Used to establish a shared secret

Group G is publicly known

TLS overview: (2) Certificates

How does Alice (browser) obtain PKBob ?

CA

PK and

proof “I am Bob”

Browser
Alice

SKCA

check

proofissue Cert with SKCA :

Bob’s
key is PKBob’s

key is PK

choose

(SK,PK)

Server Bob

PKCA

Verify

cert

Bob uses Cert for an extended period (e.g. one year)

PKCA

Motivation and high-level problem

• Private and confidential communication important

• Billions of devices

• Millions of services

• Certification Authorities (CAs) issue certificates

• Proof of identity (signed with their private key)

E.g., HTTPS does HTTP over TLS

Motivation and high-level problem

• Private and confidential communication important

• Billions of devices

• Millions of services

• Certification Authorities (CAs) issue certificates

• Proof of identity (signed with their private key)

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Motivation and high-level problem

• Private and confidential communication important

• Billions of devices

• Millions of services

• Certification Authorities (CAs) issue certificates

• Proof of identity (signed with their private key)

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Motivation and high-level problem

• Private and confidential communication important

• Billions of devices

• Millions of services

• Certification Authorities (CAs) issue certificates

• Proof of identity (signed with their private key)

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

User need to trust FB’s public key is FBs

Motivation and high-level problem

• Private and confidential communication important

• Billions of devices

• Millions of services

• Certification Authorities (CAs) issue certificates

• Proof of identity (signed with their private key)

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

User need to trust FB’s public key is FB’s

Certification of public keys

Certification of public keys

Certification of public keys

Browser Server

Certification of public keys

• Browsers have trust stores with root certs (of CAs)

R

R CA

Browser Server

Certification of public keys

• Browsers have trust stores with root certs (of CAs)

R

R CA

Browser Server

CA R

R

Certification of public keys

• Browsers have trust stores with root certs (of CAs)

R

R CA

Browser Server

Certification of public keys

• Browsers have trust stores with root certs (of CAs)

• CAs use private key to sign certs for servers/domains

• Certs are proof that public key belongs to server/domain

R L

LCA

Browser Server

Certification of public keys

• Browsers have trust stores with root certs (of CAs)

• CAs use private key to sign certs for servers/domains

• Certs are proof that public key belongs to server/domain

• Signature of certs can be validated using keys in root store

R L

CA

Browser Server

L

Certification of public keys

• Browsers have trust stores with root certs (of CAs)

• CAs use private key to sign certs for servers/domains

• Certs are proof that public key belongs to server/domain

• Signature of certs can be validated using keys in root store

R L

R LCA

Browser Server

L

Certification of public keys

R L

R LCA

Browser Server

L

This is server X’s

public key, signed

with private key

of CA

Trust store include

CA’s root cert (and

public key)

Certification of public keys

• Browsers have trust stores with root certs (of CAs)

• CAs use private key to sign certs for servers/domains

• Certs are proof that public key belongs to server/domain

• Signature of certs can be validated using keys in root store

• In practice, many

• Many CAs, servers

• Varying trust+security

R L

R LCA

Browser Server

L

Certification of public keys

• Browsers have trust stores with root certs (of CAs)

• CAs use private key to sign certs for servers/domains

• Certs are proof that public key belongs to server/domain

• Signature of certs can be validated using keys in root store

• In practice, many

• Many CAs, servers

• Varying trust+security

Sample certificate:

(by CA)

Certificates on the web

Subject’s CommonName can be:

• An explicit name, e.g. cs.stanford.edu , or

• A wildcard cert, e.g. *.stanford.edu or cs*.stanford.edu

matching rules:

“*” must occur in leftmost component, does not match “.”

example: *.a.com matches x.a.com but not y.x.a.com

(as in RFC 2818: “HTTPS over TLS”)

Certificate Authorities (CAs) and root/trust stores

Browsers accept

certificates from a

large number of CAs

Top level CAs ≈ 60

Intermediate CAs ≈ 1200

⋮

⋮

Trust landscape

• Delegation of trust to intermediates (Ii)

• Browsers trust that the servers that can present certs (Li)
that map to (trusted) root certs are who they claim to be

• Impersonation

• Any trusted CA (Ri) or intermediate (Ii) can issue rogue certs

• Very difficult to know all certs issued in once name

[Korzhitskii & Carlsson, 2020]

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…]

CertVerify: Enc[SigS(data)] , Finished

Client Server

secret

key

Finished

session-keys HKDF(DHkey, nonceC , nonceS)

certS

Encrypted ApplicationData

Encrypted ApplicationData

Diffie-Hellman key exchange

Most common: server authentication only

TLS 1.3 session setup: optimization (and caution)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…]

CertVerify: Enc[SigS(data)] , Finished

Client Server

secret

key

Finished

session-keys HKDF(DHkey, nonceC , nonceS)

certS

Encrypted ApplicationData

Encrypted ApplicationData

Most common: server authentication only

Data encrypted using a pre-shared key

Caution: 0-RTT data is vulnerable to replay

⇒ data should have no side effects

(i.e. GET but not POST)

, Enc[0-RTT data]

Properties

Nonces: prevent replay of an old session

Forward secrecy: server compromise does not expose old sessions

Some identity protection: certificates are sent encrypted

One sided authentication:

• Browser identifies server using server-cert

• TLS has support for mutual authentication

• Rarely used: requires a client pk/sk and client-cert

Gmail

HTTPS for all web traffic?

Old excuses:

• Crypto slows down web servers (not true anymore)

• Some ad-networks still do not support HTTPS

• reduced revenue for publishers

Since July 2018: Chrome marks HTTP sites as insecure

Chrome’s gradual blocking of mixed content

https://blog.chromium.org/2020/02/protecting-users-from-insecure.html

HTTPS in the Browser

The lock icon: TLS indicator

Intended goal:

• Provide user with identity of page origin

• Indicate to user that page contents were not

viewed or modified by a network attacker

When is the (basic) lock icon displayed

All elements on the page fetched using HTTPS

For all elements:

• HTTPS cert issued by a CA trusted by browser

• HTTPS cert is valid (e.g. not expired)

• Domain in URL matches:
CommonName or SubjectAlternativeName in cert

The lock UI: Extended Validation (EV) Certs

Harder to obtain than regular certs

• requires human at CA to approve cert request

• no wildcard certs (e.g. *.stanford.edu)

Helps block “semantic attacks”: www.bankofthevvest.com

This UI is ineffective: removed from Chrome in 2019.

A general UI attack: picture-in-picture

Trained users are more likely to fall victim to this [JSTB’07]

HTTPS and login pages: incorrect usage

Suppose user lands on HTTP

login page.

• say, by typing HTTP URL

into address bar

<form method="post"

action="https://onlineservices.wachovia.com/..."

View source:

(old site)

HTTPS and login pages: guidelines

General guideline:

Response to http://login.site.com

should be Location: https://login.site.com

(redirect)Should be the response

to every HTTP request …

Problems with HTTPS

and the Lock Icon

Problems with HTTPS and the Lock Icon

1. Upgrade from HTTP to HTTPS

2. Forged certs

3. Mixed content: HTTP and HTTPS on the same page

4. Does HTTPS hide web traffic?

• Problems: traffic analysis, compression attacks

1. HTTP ⇒ HTTPS upgrade

Common use pattern:

• browse site over HTTP; move to HTTPS for checkout

• connect to bank over HTTP; move to HTTPS for login

SSL_strip attack: prevent the upgrade [Moxie’08]

 ⟶

Location: https://... ⟶ Location: http://... (redirect)

<form action=https://… > ⟶ <form action=http://…>

web
server

attacker

SSLHTTP

Tricks and Details

Tricks: drop-in a clever fav icon (older browsers)

⇒ fav icon no longer presented in address bar

Number of users who detected HTTP downgrade: 0

⟶

Defense: Strict Transport Security (HSTS)

Header tells browser to always connect over HTTPS

Subsequent visits must be over HTTPS (self signed certs result in an error)

• Browser refuses to connect over HTTP or if site presents an invalid cert

• Requires that entire site be served over valid HTTPS

HSTS flag deleted when user “clears private data” : security vs. privacy

web
server

Strict-Transport-Security: max-age=63072000; includeSubDomains

(ignored if not over HTTPS)

Preloaded HSTS list

https://hstspreload.org/

Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

Preload list hard-coded in Chrome source code. Examples:

Google, Paypal, Twitter, Simple, Linode, Stripe, Lastpass, …

CSP: upgrade-insecure-requests

The problem: many pages use

• Makes it difficult to migrate a section of a site to HTTPS

Solution: gradual transition using CSP

Content-Security-Policy: upgrade-insecure-requests

2. Certificates: wrong issuance

2011: Comodo and DigiNotar CAs hacked, issue certs for Gmail, Yahoo! Mail, …

2013: TurkTrust issued cert. for gmail.com (discovered by pinning)

2014: Indian NIC (intermediate CA trusted by the root CA IndiaCCA) issue certs

for Google and Yahoo! domains

Result: (1) India CCA revoked NIC’s intermediate certificate

(2) Chrome restricts India CCA root to only seven Indian domains

2016: WoSign (Chinese CA) issues cert for GitHub domain (among other issues)

Result: WoSign certs no longer trusted by Chrome and Firefox

⇒ enables eavesdropping w/o a warning on user’s session

Man in the middle attack using rogue cert

Attacker proxies data between user and bank.

Sees all traffic and can modify data at will.

bankattackerClientHello ClientHello

BankCertBadguyCert

ServerCert (Bank)ServerCert (rogue)

GET https://bank.com

SSL key exchange SSL key exchange

k1 k1 k2 k2

HTTP data enc with k1 HTTP data enc with k2

(cert for Bank by a valid CA)

What to do? (many good ideas)

1. Public-key pinning (static pins)

• Hardcode list of allowed CAs for certain sites (Gmail, facebook, …)

• Browser rejects certs issued by a CA not on list

• Now deprecated (because often incorrectly used in practice)

2. Certificate Transparency (CT): [LL’12]

• idea: CA’s must advertise a log of all certs. they issued

• Browser will only use a cert if it is published on (two) log servers

• Server attaches a signed statement from log (SCT) to certificate

• Companies can scan logs to look for invalid issuance

Motivation and high-level problem

• Private and confidential communication important

• Billions of devices

• Millions of services

• Certification Authorities (CAs) issue certificates

• Proof of identity (signed with their private key)

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Motivation and high-level problem

• If CAs in our trust (root) store (e.g., Symantec/
Verisign) tells us that a public key belongs to Google,
our browsers (and us) trust that this is the case

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Motivation and high-level problem

• If CAs in our trust (root) store (e.g., Symantec/
Verisign) tells us that a public key belongs to Google,
our browsers (and us) trust that this is the case

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Trusted CA

This is Google’s

public key …

Motivation and high-level problem

• However, mistakes happen ...
• E.g., in Oct. 2015, Google discovered (using CT) that

Symantec had issued test certificates for 76 domains
that they did not own (including Google domains) and
another 2,458 unregistered domains …

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Symantec

(Trusted CA)

This is Google’s

public key …

Some

server

CT: Emerging trust-monitoring solution

• Since then, Google has demanded that Symantec logs
all their certificates in public (append-only) CT logs

• Since Jan. 2015, the Chrome browser requires all EV
certificates be logged in 1 Google log and 1 other log

• Mozilla planning to make similar demands

• Both Chrome and Mozilla expected to implement policies
for DV certificates too …

CT: Emerging trust-monitoring solution

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Symantec

(Trusted CA)

This is Google’s

public key …

Some

server

CT: Emerging trust-monitoring solution

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Symantec

(Trusted CA)

This is Google’s

public key …

Some

server

CT log

CT: Emerging trust-monitoring solution

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Symantec

(Trusted CA)

This is Google’s

public key …

Some

server

... and here is a

proof that the cert

has been logged.

CT log

S

S

CT: Emerging trust-monitoring solution

E.g., HTTPS does HTTP over TLS

User need to trust Google’s public key is Google’s

Symantec

(Trusted CA)

Certificate

Some

server

Signed Certificate

Timestamp (SCT)

L S

Signed Certificate Timestamps (SCTs)

• SCTs delivered three different ways
• X.509v3 extension

• TLS extension

• OSCP stapling

Certification Transparency (CT)

Certification Transparency (CT)

Log
Log

Log
Log

L
S

S

S

• Logs

• Public record of certs

• Append only (Merkle trees)

• Create SCTs

• SCTs

• Proof cert is logged

Certification Transparency (CT)

Log
Log

Log
Log

L
S

S

S

• Logs

• Public record of certs

• Append only (Merkle trees)

• Create SCTs

• SCTs

• Proof cert is logged

Certification Transparency (CT)

Log
Log

Log
Log

L
S

S

S

• Logs

• Public record of certs

• Append only (Merkle trees)

• Create SCTs

• SCTs

• Proof cert is logged

Certification Transparency (CT)

Log
Log

Log
Log

L
S

S

S

• Logs

• Public record of certs

• Append only (Merkle trees)

• Create SCTs

• SCTs

• Proof cert is logged

Three SCT delivery methods

Three SCT delivery methods

Three SCT delivery methods

Three SCT delivery methods

CT requirements

April 30, 2018: CT required by chrome

• Required for all certificates with a path to a trusted root CA

(not required for an installed root CA)

• Otherwise: HTTPS errors

Cert for crypto.stanford.edu

published on five logs:

cloudflare_nimbus2018

google_argon2018,

google_aviator

google_pilot, google_rocketeer

3. Mixed Content: HTTP and HTTPS

Page loads over HTTPS, but contains content over HTTP

(e.g. <script src=“http://.../script.js>)

⇒ Active network attacker can hijack session

by modifying script en-route to browser

IE7: Old Chrome:

never write this

Mostly ignored by users …

https://badssl.com (Chrome 73, 2019)

Mixed script: <script src="http://mixed-script.badssl.com/nonsecure.js"></script>

Mixed form: <form action="http://http.badssl.com/resources/submit.html">

(script is blocked, click to load)

Form loaded, but no HTTPS indicator

4. Peeking through SSL: traffic analysis

• Network traffic reveals length of HTTPS packets

• TLS supports up to 256 bytes of padding

• Interactions expose specific internal state of the page and internal state

of the client ...

E.g., BUFFEST (Krishnamoorthi et al. 2017)

Niklas Carlsson (niklas.carlsson@liu.se)

www.ida.liu.se/~nikca89/

Credits and some more slides

These slides heavily borrow from slides by Dan Boneh and research-

presentation slides of some of our prior works, including
• Nikita Korzhitskii and Niklas Carlsson, Characterizing the Root Landscape of Certificate Transparency Logs, Proc.

IFIP Networking, Paris, France, June 2020, pp. 190--198.

• Carl Nykvist, Linus Sjostrom, Josef Gustafsson, and Niklas Carlsson, Server-side Adoption of Certificate

Transparency, Proc. Passive and Active Measurement Conference (PAM), Berlin, Germany, Mar. 2018.

• Josef Gustafsson, Gustaf Overier, Martin Arlitt, and Niklas Carlsson, A First Look at the CT Landscape: Certificate

Transparency Logs in Practice, Proc. Passive and Active Measurement Conference (PAM), Sydney, Australia,

Mar. 2017, pp. 87-99.

• Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic and Eric Petajan, BUFFEST: Predicting Buffer

Conditions and Real-time Requirements of HTTP(S) Adaptive Streaming Clients, Proc. ACM Multimedia Systems

(ACM MMSys), Taipei, Taiwan, June 2017, pp. 76--87.

Certification Transparency (CT)

RR

Browser

L

CA
CA

CA
CA

CA
CA

CA
CA

CA
CA

R

R R

CA
CA

CA
CA

CA
CA

CA
CA

CA

L

L

LR

R

Server

Certification Transparency (CT)

Certification Transparency (CT)

• Logs

• Public record of certs

• Append only (Merkle trees)

• Servers get SCTs

• SCTs proof cert is logged

• Monitors

• Assert log content

• Auditors

• Assert log behavior

Log
Log

Log
Log

Log
Log

Log
Monitor

Log
Log

Log
Auditor

L
S

S

S

Certification Transparency (CT)

• Logs

• Public record of certs

• Append only (Merkle trees)

• Servers get SCTs

• SCTs proof cert is logged

• Monitors

• Assert log content

• Auditors

• Assert log behavior

Log
Log

Log
Log

Log
Log

Log
Monitor

Log
Log

Log
Auditor

L
S

S

S

Certification Transparency (CT)

• Logs

• Public record of certs

• Append only (Merkle trees)

• Servers get SCTs

• SCTs proof cert is logged

• Monitors

• Assert log content

• Auditors

• Assert log behavior

Log
Log

Log
Log

Log
Log

Log
Monitor

Log
Log

Log
Auditor

L
S

S

S

Certification Transparency (CT)

• Logs

• Public record of certs

• Append only (Merkle trees)

• Servers get SCTs

• SCTs proof cert is logged

• Monitors

• Assert log content

• Auditors

• Assert log behavior

Log
Log

Log
Log

Log
Log

Log
Monitor

Log
Log

Log
Auditor

L
S

S

S

Certification Transparency (CT)

• Logs

• Public record of certs

• Append only (Merkle trees)

• Servers get SCTs

• SCTs proof cert is logged

• Monitors

• Assert log content

• Auditors

• Assert log behavior

Log
Log

Log
Log

Log
Log

Log
Monitor

Log
Log

Log
Auditor

L
S

S

S

Certification Transparency (CT)

• Logs

• Public record of certs

• Append only (Merkle trees)

• Servers get SCTs

• SCTs proof cert is logged

• Monitors

• Assert log content

• Auditors

• Assert log behavior

Log
Log

Log
Log

Log
Log

Log
Monitor

Log
Log

Log
Auditor

L
S

S

S

Certification Transparency (CT)

• Logs

• Public record of certs

• Append only (Merkle trees)

• Servers get SCTs

• SCTs proof cert is logged

• Monitors

• Assert log content

• Auditors

• Assert log behavior

Log
Log

Log
Log

Log
Log

Log
Monitor

Log
Log

Log
Auditor

L
S

S

S

