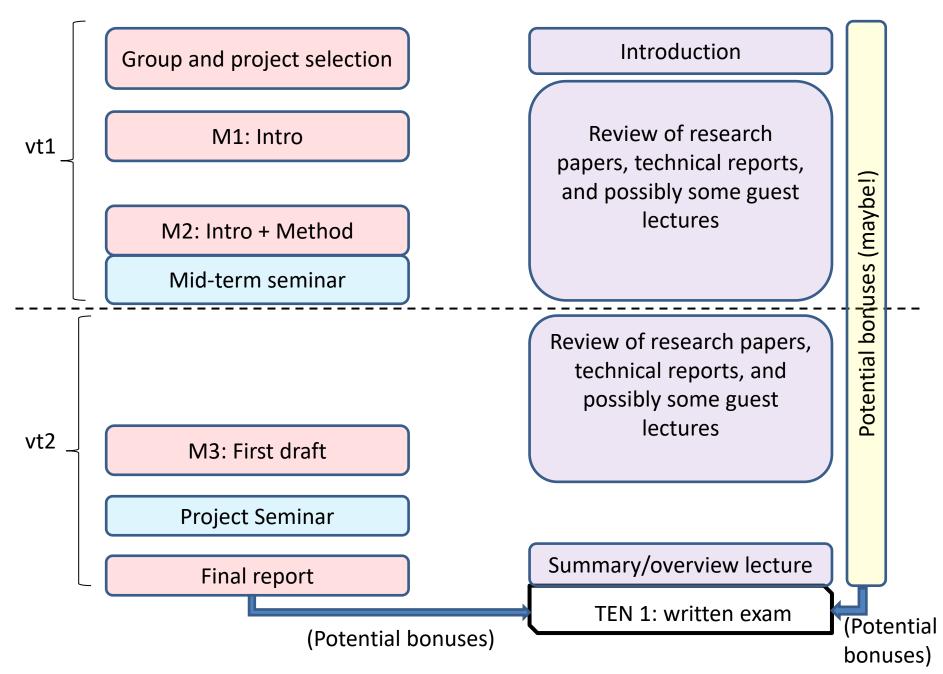
Welcome to ... TDTS21 Advanced Networking

Niklas Carlsson, Associate Professor http://www.ida.liu.se/~nikca89/

People

- Examiner and lecturer
 - Niklas Carlsson, Associate Professor
 Research area: Design, modeling, and performance evaluation of distributed systems and networks
- Course secretary

– Helene Pers


- Director of studies
 - Patrick Lambrix

Structure of the Course

- Reading and analyzing research papers
 - Design and evaluation of protocols and applications
 - Summarize, critique, and compare papers
- Classroom time
 - Brief overview of background material
 - Discuss and debate research papers
- Research project
 - Milestones and deliverables

Theory

Example: Research paper lectures

- Overview (some introduction to topic)
- Discussion of research papers
 - Expected to have read at different depths
 - Typically, roughly one "deep" read and one "lighter" read per week
- Lead the discussion for some paper(s)
 - Some papers picked by students, other by examiner
 - Deeper discussion: At least two students assigned
 - Brief overview: Possibly individual papers here (based on interest)

- Who you are
- What program
- Interest in topics? [allowed to change later ...]
- ===
- Janos, Joakim, Philip, Jakob S, Carl Magnus, Matteus, Robert, Tommy, David, Jacob W, Alexander, Arthur, Adam, Oceane, Lukas

Why Take This Course?

- How many of you have checked your e-mail, FB, text ...
 - Today?
 - In the past hour?
 - Since I started talking?

Computer networks are ubiquitous

- Networks touch every part of our daily life
 - Web search
 - Social networking
 - Watching movies
 - Ordering merchandise
 - Wasting time

2 weeks ano - 505 189 views - 173 98 GB handwidth

...but ...

Kick starting science ...

What do you have in the future?

What do you have in the future?

How does it keep going?

... well, cable into wall ...

What happens there?

What happens there?

Or maybe more realistically ...

• Work at company ...

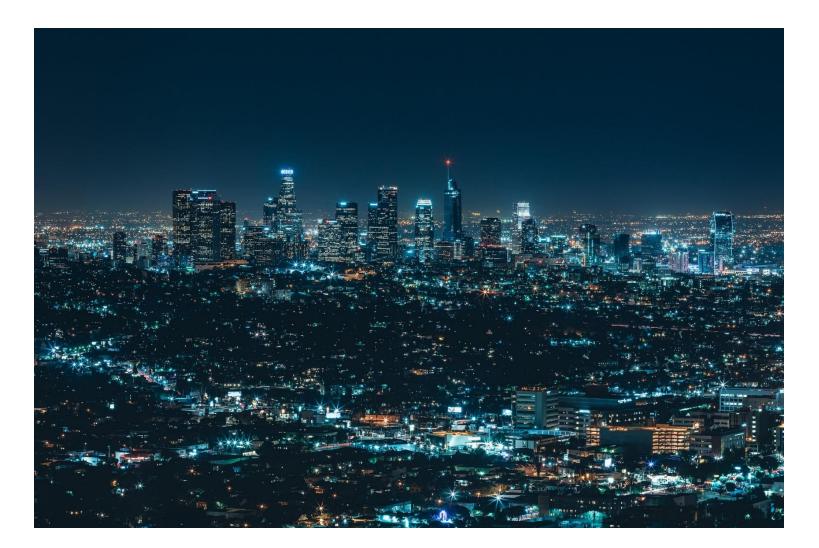
How do we build services that are ...

Efficient

Secure

Reliable

Important problem faced every day by many companies, including ...



... or ...

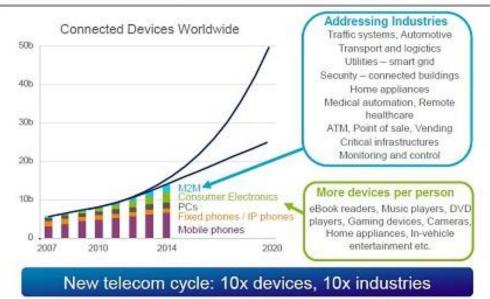
... I mean almost every company!

The Internet: An Exciting Time

- One of the most influential inventions
 - A research experiment that escaped from the lab
 - ... to be a global communications infrastructure
- Ever wider reach
 - Today: 3-4 billion users
 - Tomorrow: more users, computers, things, ...
- Near-constant innovation
 - Apps: Web, P2P, social networks, virtual worlds
 - Links: optics, WiFi, cellular, WiMax, ...

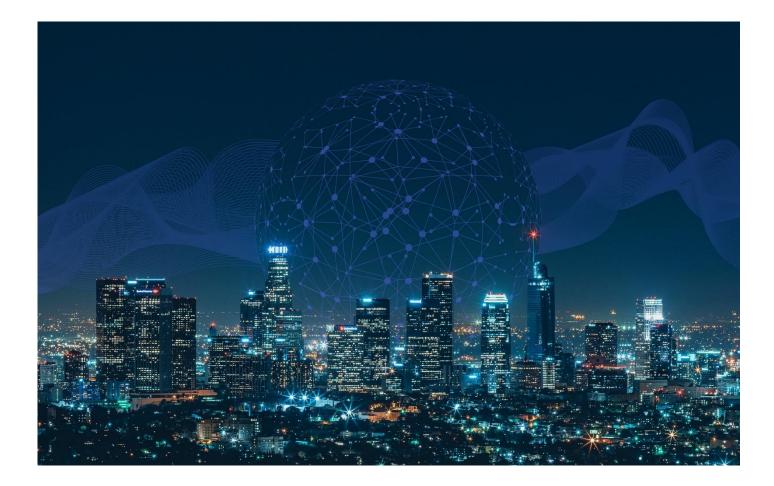
Transforming Everything

- The ways we do business
 - E-commerce, advertising, cloud computing, ...
- The way we have relationships
 - E-mail, IM, Facebook, virtual worlds, online dating
- How we think about law
 - Interstate commerce? National boundaries?
- The way we govern
 - E-voting and e-government
 - Censorship and wiretapping
- The way we fight
 - Cyber-attacks, including nation-state attacks


Taking us from "yesterday" ...

- World Wide Web (WWW)
- Remote login (telnet, rlogin, ssh)
- File transfer
- Peer-to-peer file sharing
- Cloud computing/services
- Instant messaging (chat, text messaging, etc.)
- Live and video-on-demand streaming
- Internet phone (Voice-Over-IP)
- Distributed games

... to today ...


NEW DEVICES AND NEW INDUSTRIES BRING NEW BUSINESS OPPORTUNITIES

The 2020 vision (extended)

- Everything that can be connected will be connected
- IoT and smart cities
 - Machine-to-machine
- High-definition 3D streaming to heterogeneous clients (holograms may also be on the way ...)

... and into the future ...

The Study of Networking is Cool

- Tangible, relates to reality
 - Can measure/build things
 - Can truly effect far-reaching change in the real world
- Inherently interdisciplinary
 - Well-motivated problems + rigorous solution techniques
 - Interplay with policy, economics, and social science
- Widely-read papers
 - Many of the most cited papers in CS are in networking
 - Congestion control, distributed hash tables, resource reservation, self-similar traffic, multimedia protocols,...

The Study of Networking is Cool

- Young, relatively immature field
 - Great if you like to make order out of chaos
 - Tremendous intellectual progress is still needed
 - You can help decide what networking really is
- Defining the problem is a big part of the challenge
 - Recognizing a need, formulating a well-defined problem
 - ... is at least as important as solving the problem...
- Lots of platforms for building your ideas
 - Programmability: Click, OpenFlow, NetFPGA
 - Routing software: Quagga, XORP, and Bird
 - Testbeds: Emulab, PlanetLab, Orbit, GENI, ...
 - Measurements: RouteViews, traceroute, Internet2, ...

How to Read

You May Think You Already Know How To Read, But...

This subset of slides are Based on slides by Jennifer Rexford

You Spend a Lot of Time Reading

- Reading for grad classes
- Reviewing conference submissions
- Giving colleagues feedback
- Keeping up with your field
- Staying broadly educated
- Transitioning into new areas
- Learning how to write better papers ③

It is worthwhile to learn to read effectively

Keshav's Three-Pass Approach: Step 1

- A ten-minute scan to get the general idea
 - Title, abstract, and introduction
 - Section and subsection titles
 - Conclusion
 - Bibliography
- What to learn: the five C's
 - Category: What type of paper is it?
 - Context: What body of work does it relate to?
 - Correctness: Do the assumptions seem valid?
 - Contributions: What are the main research contributions?
 - Clarity: Is the paper well-written?
- Decide whether to read further...

Keshav's Three-Pass Approach: Step 2

- A more careful, one-hour reading
 - Read with greater care, but ignore details like proofs
 - Figures, diagrams, and illustrations
 - Mark relevant references for later reading
- Grasp the content of the paper
 - Be able to summarize the main idea
 - Identify whether you can (or should) fully understand
- Decide whether to
 - Abandon reading in greater depth
 - Read background material before proceeding further
 - Persevere and continue for a third pass

Keshav's Three-Pass Approach: Step 3

- Several-hour virtual re-implementation of the work
 - Making the same assumptions, recreate the work
 - Identify the paper's innovations and its failings
 - Identify and challenge every assumption
 - Think how you would present the ideas yourself
 - Jot down ideas for future work
- When should you read this carefully?
 - Reviewing for a conference or journal
 - Giving colleagues feedback on a paper
 - Understanding a paper closely related to your research
 - Deeply understanding a classic paper in the field

http://ccr.sigcomm.org/online/?q=node/234

Other Tips for Reading Papers

- Read at the right level for what you need
 - "Work smarter, not harder"
- Read at the right time of day
 - When you are fresh, not sleepy
- Read in the right place
 - Where you are not distracted, and have enough time
- Read actively
 - With a purpose (what is your goal?)
 - With a pen or computer to take notes
- Read critically
 - Think, question, challenge, critique, ...

Again, research paper lectures

- Overview (some introduction to topic)
- Discussion of research papers
 - Primary: At least "three-pass read"
 - Secondary: At least "two-pass read"
 - Optional: At least "one-pass read"
- Lead the discussion for some paper(s)
 - Deeper discussion: At least two students assigned, expected to have done at least "three-pass read"
 - Brief overview: Possibly individual papers here (based on interest), "two-pass read" expected (but to feel prepared it may be good to do some steps from the "three-pass read")