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Holding the Internet Together 

 Distributed cooperation for resource allocation 

 BGP: what end-to-end paths to take (for ~50K ASes) 

 TCP: what rate to send over each path (for ~3B hosts) 
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What Problem Does a Protocol Solve? 

 BGP path selection 

 Select a path that each AS on the path is willing to use 

 Adapt path selection in the presence of failures 

 TCP congestion control 

 Prevent congestion collapse of the Internet 

 Allocate bandwidth fairly and efficiently 
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Today, we will focus on TCP (and UDP) … 



Transport Layer 
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 Function: 

 Demultiplexing of data streams 

 Optional functions: 

 Creating long lived connections 

 Reliable, in-order packet delivery 

 Error detection 

 Flow and congestion control 

 Key challenges: 

 Detecting and responding to congestion 

 Balancing fairness against high utilization 
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 UDP 

 TCP 

 Congestion Control 

 Evolution of TCP 

 Problems with TCP 

Outline 6 



The Case for Multiplexing 
7 

 Datagram network 

 No circuits 

 No connections 

 Clients run many applications at 

the same time 

 Who to deliver packets to? 

 IP header “protocol” field 

 8 bits = 256 concurrent streams 

 Insert Transport Layer to handle 

demultiplexing Packet 

Network 

Data Link 

Physical 

Transport 



Demultiplexing Traffic 
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Endpoints identified by <src_ip, src_port, dest_ip, dest_port> 

Network 

Transport 

Application 

P1 P2 P3 P4 P6 P7 P5 

Host 1 Host 2 Host 3 
Unique port for 

each application 
Applications share 

the same network 

Server applications 

communicate with 

multiple clients 



Layering, Revisited 
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Physical 
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Physical 

 Lowest level end-to-end protocol  

 Transport header only read by source and destination 

 Routers view transport header as payload 
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User Datagram Protocol (UDP) 
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 Simple, connectionless datagram 

 Port numbers enable demultiplexing 

 16 bits = 65535 possible ports 

 Port 0 is invalid 

 Checksum for error detection 

 Detects (some) corrupt packets 

 Does not detect dropped, duplicated, or reordered packets 

Destination Port 

0 16 31 

Payload Length 

Source Port 

Checksum 



Uses for UDP 
11 

 Invented after TCP 

 Why? 

 Not all applications can tolerate TCP 

 Custom protocols can be built on top of UDP 

 Reliability? Strict ordering? 

 Flow control? Congestion control? 

 Examples 

 RTMP, real-time media streaming (e.g. voice, video) 

 Facebook datacenter protocol 



 UDP 

 TCP 

 Congestion Control 

 Evolution of TCP 

 Problems with TCP 

Outline 12 



Options 

Transmission Control Protocol 
13 

 Reliable, in-order, bi-directional byte streams 

 Port numbers for demultiplexing 

 Virtual circuits (connections) 

 Flow control 

 Congestion control, approximate fairness 

Destination Port 

0 16 31 

Sequence Number 

Source Port 

Acknowledgement Number 

Advertised Window 

Urgent Pointer 

Flags 

Checksum 

4 

HLen 



Connection Setup 
14 

 Why do we need connection setup? 

 To establish state on both hosts 

 Most important state: sequence numbers 

 Count the number of bytes that have been sent 

 Initial value chosen at random 

Why? 

 Important TCP flags (1 bit each) 

 SYN – synchronization, used for connection setup 

 ACK – acknowledge received data 

 FIN – finish, used to tear down connection 



Three Way Handshake 
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 Each side: 

 Notifies the other of starting sequence number 

 ACKs the other side’s starting sequence number 

Client Server 



Connection Setup Issues 
16 

 Connection confusion 

 How to disambiguate connections from the same host? 

 Random sequence numbers 

 Source spoofing 

 Kevin Mitnick 

 Need good random number generators! 

 Connection state management 

 Each SYN allocates state on the server 

 SYN flood = denial of service attack 

 Solution: SYN cookies 



Connection Tear Down 
17 

 Either side can initiate 

tear down 

 Other side may continue 

sending data 

 Half open connection 

 shutdown() 

 Acknowledge the last 

FIN 

 Sequence number + 1 

Client Server 



Sequence Number Space 
18 

 TCP uses a byte stream abstraction 

 Each byte in each stream is numbered 

 32-bit value, wraps around 

 Initial, random values selected during setup 

 Byte stream broken down into segments (packets) 

 Size limited by the Maximum Segment Size (MSS) 

 Set to limit fragmentation 

 Each segment has a sequence number 

Segment 8 Segment 9 Segment 10 

13450 14950 16050 17550 



Bidirectional Communication 
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 Each side of the connection can send and receive 

 Different sequence numbers for each direction 

Client Server Seq. Ack. Seq. Ack. 

1 23 

23 1461 

1461 753 

753 2921 Data and ACK in the 

same packet 

23 1 



Flow Control 
20 

 Problem: how many packets should a sender transmit? 

 Too many packets may overwhelm the receiver 

 Size of the receivers buffers may change over time 

 Solution: sliding window 

 Receiver tells the sender how big their buffer is 

 Called the advertised window 

 For window size n, sender may transmit n bytes without 

receiving an ACK 

 After each ACK, the window slides forward 

 



Flow Control: Sender Side 
21 

Sequence Number 

Src. Port 

Acknowledgement Number 

Window 

Urgent Pointer 

Flags 

Checksum 

HL 

Packet Sent 

Dest. Port Src. Port 

Acknowledgement Number 

Window 

Urgent Pointer 

Flags 

Checksum 

HL 

Packet Received 

Dest. Port 

Sequence Number 

ACKed Sent To Be Sent Outside Window 

Window 

Must be buffered 

until ACKed 



Sliding Window Example 
22 

Time Time 

TCP is ACK Clocked 

• Short RTT  quick ACK  window slides quickly 

• Long RTT  slow ACK  window slides slowly 



Observations 
23 

 Throughput is ~ w/RTT 

 

 Sender has to buffer all unacknowledges packets, 

because they may require retransmission 

 

 Receiver may be able to accept out-of-order packets, 

but only up to buffer limits 



 UDP 

 TCP 

 Congestion Control 

 Evolution of TCP 

 Problems with TCP 

Outline 24 



What is Congestion? 
25 

 Load on the network is higher than capacity 

 Capacity is not uniform across networks 

Modem vs. Cellular vs. Cable vs. Fiber Optics 

 There are multiple flows competing for bandwidth 

 Residential cable modem vs. corporate datacenter 

 Load is not uniform over time 

 10pm, Sunday night = Bittorrent Game of Thrones 

 



Why is Congestion Bad? 
26 

 Results in packet loss 

 Routers have finite buffers 

 Internet traffic is bursty, no buffer can prevent all drops 

 When routers get overloaded, packets will be dropped 

 Practical consequences 

 Router queues build up, delay increases 

 Wasted bandwidth from retransmissions 

 Low network “goodput” 



CONGESTION AVOIDANCE AND 

CONTROL  

                                VAN JACOBSON ‘88 

27 



Main contributions 

28 

 ??? 



Main contributions 

Seven new algorithms: 

1. RTT Variance estimation 

2. Exponential retransmit timer backoff 

3. Slow-start 

4. More aggressive receiver ack policy 

5. Dynamic window sizing on congestion 

6. Karn’s algorithm 

7. Fast retransmit 

Paper explores the first 5. 
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The Danger of Increasing Load 
30 

 Knee – point after which  

 Throughput increases very 

slow 

 Delay increases fast 

 In an M/M/1 queue 

 Delay = 1/(1 – utilization) 

 Cliff – point after which 

 Throughput  0 

 Delay  ∞ 

Congestion 
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Load 

Load 
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Knee Cliff 

Ideal point 



Cong. Control vs. Cong. Avoidance 
31 
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Knee Cliff 

Load 

Congestion Avoidance: 

Stay left of the knee 

Congestion Control: 

Stay left of the cliff 



Advertised Window, Revisited 
32 

 Does TCP’s advertised window solve congestion? 

NO 

 The advertised window only protects the receiver 

 A sufficiently fast receiver can max the window 

 What if the network is slower than the receiver? 

 What if there are other concurrent flows? 

 Key points 

 Window size determines send rate 

 Window must be adjusted to prevent congestion collapse  



Goals of Congestion Control 
33 

1. Adjusting to the bottleneck bandwidth 

2. Adjusting to variations in bandwidth 

3. Sharing bandwidth between flows 

4. Maximizing throughput 



General Approaches 
34 

 Do nothing, send packets indiscriminately 

 Many packets will drop, totally unpredictable performance 

 May lead to congestion collapse 

 Reservations 

 Pre-arrange bandwidth allocations for flows 

 Requires negotiation before sending packets 

 Must be supported by the network 

 Dynamic adjustment 

 Use probes to estimate level of congestion 

 Speed up when congestion is low 

 Slow down when congestion increases 

 Messy dynamics, requires distributed coordination 



TCP Congestion Control 
35 

 Each TCP connection has a window 

 Controls the number of unACKed packets 

 Sending rate is ~ window/RTT 

 Idea: vary the window size to control the send rate 

 Introduce a congestion window at the sender 

 Congestion control is sender-side problem 



Congestion Window (cwnd) 
36 

 Limits how much data is in transit 

 Denominated in bytes 
 

1. wnd = min(cwnd, adv_wnd); 

2. effective_wnd = wnd – 

  (last_byte_sent – last_byte_acked); 

last_byte_acked last_byte_sent 

wnd 

effective_wnd 



Two Basic Components 
37 

1. Detect congestion 

 Packet dropping is most reliably signal 

 Delay-based methods are hard and risky 

 How do you detect packet drops? ACKs 

 Timeout after not receiving an ACK 

 Several duplicate ACKs in a row (ignore for now) 

2. Rate adjustment algorithm 

 Modify cwnd 

 Probe for bandwidth 

 Responding to congestion 



Error Detection 
38 

 Checksum detects (some) packet corruption 

 Computed over IP header, TCP header, and data 

 Sequence numbers catch sequence problems 

 Duplicates are ignored 

 Out-of-order packets are reordered or dropped 

 Missing sequence numbers indicate lost packets 

 Lost segments detected by sender 

 Use timeout to detect missing ACKs 

 Need to estimate RTT to calibrate the timeout 

 Sender must keep copies of all data until ACK 

 



Retransmission Time Outs (RTO) 
39 

 Problem: time-out is linked to round trip time 

R
TO

 

R
TO

 

Timeout is 

too short 

What about if 

timeout is too 

long? 



Round Trip Time Estimation 
40 

 Original TCP round-trip estimator 

 RTT estimated as a moving average 

 new_rtt = α (old_rtt) + (1 – α)(new_sample) 

 Recommended α: 0.8-0.9 (0.875 for most TCPs) 

 RTO = function of new_rtt and new_dev_rtt  

Sample 



RTT Sample Ambiguity 
41 

 Karn’s algorithm: ignore samples for retransmitted 

segments 

R
TO
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Rate Adjustment 
42 

 Recall: TCP is ACK clocked 

 Congestion = delay = long wait between ACKs 

 No congestion = low delay = ACKs arrive quickly 

 Basic algorithm 

 Upon receipt of ACK: increase cwnd 

 Data was delivered, perhaps we can send faster 

 cwnd growth is proportional to RTT 

 On loss: decrease cwnd 

 Data is being lost, there must be congestion 

 Question: increase/decrease functions to use? 



Utilization and Fairness 
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Multiplicative Increase, Additive Decrease 
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 Not stable! 

 Veers away from 

fairness 
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Additive Increase, Additive Decrease 
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 Stable 

 But does not 

converge to 

fairness 
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Multiplicative Increase, Multiplicative Decrease 
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 Stable 

 But does not 
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Additive Increase, Multiplicative Decrease 
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 Converges to 

stable and fair 

cycle 

 Symmetric 

around y=x 
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Implementing Congestion Control 

 Maintains three variables: 

 cwnd:  congestion window 

 adv_wnd: receiver advertised window  

 ssthresh:  threshold size (used to update cwnd) 

 For sending, use: wnd = min(cwnd, adv_wnd) 

 Two phases of congestion control 

1. Slow start (cwnd < ssthresh) 

 Probe for bottleneck bandwidth 

2. Congestion avoidance (cwnd >= ssthresh) 

 AIMD 

48 
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Slow Start 

 Goal: reach knee quickly 

 Upon starting (or restarting) a connection 

 cwnd =1 

 ssthresh = adv_wnd 

 Each time a segment is ACKed, cwnd++ 

 Continues until… 

 ssthresh is reached 

 Or a packet is lost 

 Slow Start is not actually slow 

 cwnd increases exponentially 

49 
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Slow Start Example 
50 

cwnd = 1 

cwnd = 2 

cwnd = 4 

cwnd = 8 

 cwnd grows rapidly 

 Slows down when… 

 cwnd >= ssthresh 

 Or a packet drops 



Congestion Avoidance 

 AIMD mode 

 ssthresh is lower-bound guess about location of the knee 

 If cwnd >= ssthresh then  

 each time a segment is ACKed 

 increment cwnd by 1/cwnd  (cwnd += 1/cwnd). 

 So cwnd is increased by one only if all segments have 

been acknowledged 

51 



Congestion Avoidance Example 
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TCP Pseudocode 

Initially: 
 cwnd = 1; 
 ssthresh = adv_wnd; 

New ack received: 
 if (cwnd < ssthresh)  
       /* Slow Start*/ 
       cwnd = cwnd + 1; 
 else 
       /* Congestion Avoidance */ 
       cwnd = cwnd + 1/cwnd; 

Timeout: 
 /* Multiplicative decrease */ 
 ssthresh = cwnd/2; 
 cwnd = 1; 
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The Big Picture 

Time 
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 UDP 

 TCP 

 Congestion Control 

 Evolution of TCP 

 Problems with TCP 

Outline 55 



The Evolution of TCP 
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 Thus far, we have discussed TCP Tahoe 

 Original version of TCP 

 However, TCP was invented in 1974! 

 Today, there are many variants of TCP 

 Early, popular variant: TCP Reno 

 Tahoe features, plus… 

 Fast retransmit 

 Fast recovery 



TCP Reno: Fast Retransmit 
57 

 Problem: in Tahoe, if 

segment is lost, there is a 

long wait until the RTO 

 Reno: retransmit after 3 

duplicate ACKs 

cwnd = 1 

cwnd = 2 

cwnd = 4 

3 Duplicate 

ACKs 



TCP Reno: Fast Recovery 

 After a fast-retransmit set cwnd to ssthresh/2 

 i.e. don’t reset cwnd to 1 

 Avoid unnecessary return to slow start 

 Prevents expensive timeouts 

 But when RTO expires still do cwnd = 1 

 Return to slow start, same as Tahoe 

 Indicates packets aren’t being delivered at all 

 i.e. congestion must be really bad 

58 



Fast Retransmit and Fast Recovery 

 At steady state, cwnd oscillates around the optimal 

window size 

 TCP always forces packet drops 
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Many TCP Variants… 
60 

 Tahoe: the original 

 Slow start with AIMD 

 Dynamic RTO based on RTT estimate 

 Reno: fast retransmit and fast recovery 

 NewReno: improved fast retransmit 

 Reduce number of retransmissions 

 Window inflation 

 Vegas: delay-based congestion avoidance 

 And many, many, many more… 



TCP in the Real World 
61 

 What are the most popular variants today? 

 Key problem: TCP performs poorly on high bandwidth-delay 

product networks (like the modern Internet) 

 Compound TCP (Windows) 

 Based on Reno 

 Uses two congestion windows: delay based and loss based 

 Thus, it uses a compound congestion controller 

 TCP CUBIC (Linux) 

 Enhancement of BIC (Binary Increase Congestion Control) 

Window size controlled by cubic function 

 Parameterized by the time T since the last dropped packet 

 



High Bandwidth-Delay Product 
62 

 Key Problem: TCP performs poorly when 

 The capacity of the network (bandwidth) is large 

 The delay (RTT) of the network is large 

 Or, when bandwidth * delay is large 

 b * d = maximum amount of in-flight data in the network 

 a.k.a. the bandwidth-delay product 

 Why does TCP perform poorly? 

 Slow start and additive increase are slow to converge 

 TCP is ACK clocked 

 i.e. TCP can only react as quickly as ACKs are received 

 Large RTT  ACKs are delayed  TCP is slow to react 



Poor Performance of TCP Reno CC 
63 

Bottleneck Bandwidth (Mb/s) 

50 flows in both directions 

Buffer = BW x Delay 

RTT = 80 ms 

Round Trip Delay (sec) 

50 flows in both directions 

Buffer = BW x Delay 

BW = 155 Mb/s 



Goals 
64 

 Fast window growth 

 Slow start and additive increase are too slow when 

bandwidth is large 

 Want to converge more quickly 

 Maintain fairness with other TCP variants 

 Window growth cannot be too aggressive 

 Improve RTT fairness 

 TCP Tahoe/Reno flows are not fair when RTTs vary widely 

 Simple implementation 



Compound TCP Implementation 
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 Default TCP implementation in Windows 

 Key idea: split cwnd into two separate windows 

 Traditional, loss-based window 

 New, delay-based window 

 wnd = min(cwnd + dwnd, adv_wnd) 

 cwnd is controlled by AIMD 

 dwnd is the delay window 

 Rules for adjusting dwnd: 

 If RTT is increasing, decrease dwnd (dwnd >= 0) 

 If RTT is decreasing, increase dwnd 

 Increase/decrease are proportional to the rate of change 



Low 

RTT 

High 

RTT 

Compound TCP Example 

 Aggressiveness corresponds to changes in RTT 

 Advantages: fast ramp up, more fair to flows with different RTTs 

 Disadvantage: must estimate RTT, which is very challenging 
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TCP CUBIC Implementation 
67 

 Default TCP implementation in Linux 

 Replace AIMD with cubic function 

 

 

 

 B  a constant fraction for multiplicative increase 

 T  time since last packet drop 

 W_max  cwnd when last packet dropped 



TCP CUBIC Example 

 Less wasted bandwidth due to fast ramp up 

 Stable region and slow acceleration help maintain fairness 

 Fast ramp up is more aggressive than additive increase 

 To be fair to Tahoe/Reno, CUBIC needs to be less aggressive 
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Simulations of CUBIC Flows 
69 

CUBIC 

CUBIC 

Reno Reno 



Deploying TCP Variants 

 TCP assumes all flows employ TCP-like congestion control 

 TCP-friendly or TCP-compatible 

 Violated by UDP :( 

 If new congestion control algorithms are developed, they 

must be TCP-friendly 

 Be wary of unforeseen interactions 

 Variants work well with others like themselves 

 Different variants competing for resources may trigger 

unfair, pathological behavior 

70 
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Issues with TCP 
72 

 The vast majority of Internet traffic is TCP 

 However, many issues with the protocol 

 Lack of fairness 

 Synchronization of flows 

 Poor performance with small flows 

 Really poor performance on wireless networks 

 Susceptibility to denial of service 



Fairness 
73 

 Problem: TCP throughput depends on RTT 

1 Mbps 1 Mbps 

1 Mbps 
1 Mbps 

1 Mbps 

100 ms 

1000 ms 

 ACK clocking makes TCP inherently unfair 

 Possible solution: maintain a separate delay window 

 Implemented by Microsoft’s Compound TCP 



Synchronization of Flows 

 Ideal bandwidth sharing 

74 
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 Oscillating, but high overall 

utilization 

 In reality, flows synchronize 

One flow causes 

all flows to drop 

packets 

Periodic lulls of 

low utilization 



Small Flows 
75 

 Problem: TCP is biased against short flows 

 1 RTT wasted  for connection setup (SYN, SYN/ACK) 

 cwnd always starts at 1 

 Vast majority of Internet traffic is short flows 

 Mostly HTTP transfers, <100KB 

 Most TCP flows never leave slow start! 

 Proposed solutions (driven by Google): 

 Increase initial cwnd to 10 

 TCP Fast Open: use cryptographic hashes to identify 

receivers, eliminate the need for three-way handshake 



Wireless Networks 
76 

 Problem: Tahoe and Reno assume loss = congestion 

 True on the WAN, bit errors are very rare 

 False on wireless, interference is very common 

 TCP throughput ~ 1/sqrt(drop rate) 

 Even a few interference drops can kill performance 

 Possible solutions: 

 Break layering, push data link info up to TCP 

 Use delay-based congestion detection (TCP Vegas) 

 Explicit congestion notification (ECN) 



Denial of Service 
77 

 Problem: TCP connections require state 

 Initial SYN allocates resources on the server 

 State must persist for several minutes (RTO) 

 SYN flood: send enough SYNs to a server to allocate all 

memory/meltdown the kernel 

 Solution: SYN cookies 

 Idea: don’t store initial state on the server 

 Securely insert state into the SYN/ACK packet 

 Client will reflect the state back to the server 



SYN Cookies 
78 

 Did the client really send me a SYN recently? 

 Timestamp: freshness check 

 Cryptographic hash: prevents spoofed packets 

 Maximum segment size (MSS) 

 Usually stated by the client during initial SYN 

 Server should store this value… 

 Reflect the clients value back through them 

Sequence Number Timestamp 

31 0 5 

MSS 

8 

Crypto Hash of Client IP & Port 



SYN Cookies in Practice 
79 

 Advantages 

 Effective at mitigating SYN floods 

 Compatible with all TCP versions 

 Only need to modify the server 

 No need for client support 

 Disadvantages 

 MSS limited to 3 bits, may be smaller than clients actual MSS 

 Server forgets all other TCP options included with the client’s 

SYN 

 SACK support, window scaling, etc. 
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More slides … 
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What Should the Receiver ACK? 

1. ACK every packet 

2. Use cumulative ACK, where an ACK for sequence n 

implies ACKS for all k < n 

3. Use negative ACKs (NACKs), indicating which packet 

did not arrive 

4. Use selective ACKs (SACKs), indicating those that did 

arrive, even if not in order 

 SACK is an actual TCP extension 

82 
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Sequence Numbers, Revisited 
83 

 32 bits, unsigned 

 Why so big? 

 For the sliding window you need… 

 |Sequence # Space| > 2 * |Sending Window Size| 

 232 > 2 * 216 

 Guard against stray packets 

 IP packets have a maximum segment lifetime (MSL) of 120 

seconds 

 i.e. a packet can linger in the network for 2 minutes 

 Sequence number would wrap around at 286Mbps 

What about GigE? PAWS algorithm + TCP options 



Silly Window Syndrome 
84 

 Problem: what if the window size is very small? 

 Multiple, small packets, headers dominate data 

 

 

 Equivalent problem: sender transmits packets one byte 

at a time 

1. for (int x = 0; x < strlen(data); ++x) 

2.  write(socket, data + x, 1);  

Header Data Header Data Header Data Header Data 



Nagle’s Algorithm 
85 

1. If the window >= MSS and available data >= MSS: 

 Send the data 

2. Elif there is unACKed data: 

 Enqueue data in a buffer until an ACK is received 

3. Else: send the data 

 

 Problem: Nagle’s Algorithm delays transmissions 

 What if you need to send a packet immediately? 

1. int flag = 1; 

2. setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,  
 (char *) &flag, sizeof(int)); 

Send a full 

packet 

Send a non-full packet if 

nothing else is happening 



Challenge of RTO in data centers 
86 

 TCP Incast problem – E.g. Hadoop, Map Reduce, HDFS, 

GFS 
Many senders sending simultaneously to receiver 

 

Buffer at switch fills and packets are lost!  

No ACKs will come back  

Wait 

RTO 

Wait 

RTO 

Wait 

RTO 

Challenges: 

Need to break synchronization 

RTO estimation designed for wide area 

Data centers have much smaller RTT 



TCP Perspectives 

 Cerf/Kahn 

 Provide flow control 

 Congestion handled by retransmission 

 Jacobson / Karels 

 Need to avoid congestion 

 RTT estimates critical 

 Queuing theory can help 

 Winstein/Balakrishnan 

 TCP is maximizing an objective function 

 Fairness/efficiency 

 Throughput/delay 

 Let a learning program pick the best fit for your environment 
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 UDP 

 TCP 

 Congestion Control 

 Evolution of TCP 

 Common TCP options 

 Problems with TCP 

Outline 88 



Common TCP Options 
89 

 Window scaling 

 SACK: selective acknowledgement 

 Maximum segment size (MSS) 

 Timestamp 

Options 

Destination Port 

0 16 31 

Sequence Number 

Source Port 

Acknowledgement Number 

Advertised Window 

Urgent Pointer 

Flags 

Checksum 

4 

HLen 



Window Scaling 
90 

 Problem: the advertised window is only 16-bits 

 Effectively caps the window at 65536B, 64KB 

 Example: 1.5Mbps link, 513ms RTT 

(1.5Mbps * 0.513s) = 94KB 

64KB / 94KB = 68% of maximum possible speed 

 Solution: introduce a window scaling value 

 wnd = adv_wnd << wnd_scale; 

 Maximum shift is 14 bits, 1GB maximum window 



SACK: Selective Acknowledgment 
91 

 Problem: duplicate ACKs only tell us 

about 1 missing packet 

 Multiple rounds of dup ACKs needed 

to fill all holes 

 Solution: selective ACK 

 Include received, out-of-order 

sequence numbers in TCP header 

 Explicitly tells the sender about holes 

in the sequence 



Other Common Options 
92 

 Maximum segment size (MSS) 

 Essentially, what is the hosts MTU 

 Saves on path discovery overhead 

 Timestamp 

 When was the packet sent (approximately)? 

 Used to prevent sequence number wraparound 

 PAWS algorithm 


