
TDTS21 Advanced Networking

Lecture 3: Transport, including TCP and

congestion control …

Based on slides from D. Choffnes, P. Gill, and S. Katti

Revised Spring 2015 by N. Carlsson

Holding the Internet Together

 Distributed cooperation for resource allocation

 BGP: what end-to-end paths to take (for ~50K ASes)

 TCP: what rate to send over each path (for ~3B hosts)

2

AS 1

AS 2

AS 3

AS 4

What Problem Does a Protocol Solve?

 BGP path selection

 Select a path that each AS on the path is willing to use

 Adapt path selection in the presence of failures

 TCP congestion control

 Prevent congestion collapse of the Internet

 Allocate bandwidth fairly and efficiently

3

What Problem Does a Protocol Solve?

 BGP path selection

 Select a path that each AS on the path is willing to use

 Adapt path selection in the presence of failures

 TCP congestion control

 Prevent congestion collapse of the Internet

 Allocate bandwidth fairly and efficiently

4

Today, we will focus on TCP (and UDP) …

Transport Layer
5

 Function:

 Demultiplexing of data streams

 Optional functions:

 Creating long lived connections

 Reliable, in-order packet delivery

 Error detection

 Flow and congestion control

 Key challenges:

 Detecting and responding to congestion

 Balancing fairness against high utilization

Application

Transport

Network

Data Link

Physical

 UDP

 TCP

 Congestion Control

 Evolution of TCP

 Problems with TCP

Outline 6

The Case for Multiplexing
7

 Datagram network

 No circuits

 No connections

 Clients run many applications at

the same time

 Who to deliver packets to?

 IP header “protocol” field

 8 bits = 256 concurrent streams

 Insert Transport Layer to handle

demultiplexing Packet

Network

Data Link

Physical

Transport

Demultiplexing Traffic
8

Endpoints identified by <src_ip, src_port, dest_ip, dest_port>

Network

Transport

Application

P1 P2 P3 P4 P6 P7 P5

Host 1 Host 2 Host 3
Unique port for

each application
Applications share

the same network

Server applications

communicate with

multiple clients

Layering, Revisited
9

Application

Transport

Network

Data Link

Physical

Host 1 Router Host 2

Physical

 Lowest level end-to-end protocol

 Transport header only read by source and destination

 Routers view transport header as payload

Application

Transport

Network

Data Link

Physical

Network

Data Link

Layers communicate peer-

to-peer

User Datagram Protocol (UDP)
10

 Simple, connectionless datagram

 Port numbers enable demultiplexing

 16 bits = 65535 possible ports

 Port 0 is invalid

 Checksum for error detection

 Detects (some) corrupt packets

 Does not detect dropped, duplicated, or reordered packets

Destination Port

0 16 31

Payload Length

Source Port

Checksum

Uses for UDP
11

 Invented after TCP

 Why?

 Not all applications can tolerate TCP

 Custom protocols can be built on top of UDP

 Reliability? Strict ordering?

 Flow control? Congestion control?

 Examples

 RTMP, real-time media streaming (e.g. voice, video)

 Facebook datacenter protocol

 UDP

 TCP

 Congestion Control

 Evolution of TCP

 Problems with TCP

Outline 12

Options

Transmission Control Protocol
13

 Reliable, in-order, bi-directional byte streams

 Port numbers for demultiplexing

 Virtual circuits (connections)

 Flow control

 Congestion control, approximate fairness

Destination Port

0 16 31

Sequence Number

Source Port

Acknowledgement Number

Advertised Window

Urgent Pointer

Flags

Checksum

4

HLen

Connection Setup
14

 Why do we need connection setup?

 To establish state on both hosts

 Most important state: sequence numbers

 Count the number of bytes that have been sent

 Initial value chosen at random

Why?

 Important TCP flags (1 bit each)

 SYN – synchronization, used for connection setup

 ACK – acknowledge received data

 FIN – finish, used to tear down connection

Three Way Handshake
15

 Each side:

 Notifies the other of starting sequence number

 ACKs the other side’s starting sequence number

Client Server

Connection Setup Issues
16

 Connection confusion

 How to disambiguate connections from the same host?

 Random sequence numbers

 Source spoofing

 Kevin Mitnick

 Need good random number generators!

 Connection state management

 Each SYN allocates state on the server

 SYN flood = denial of service attack

 Solution: SYN cookies

Connection Tear Down
17

 Either side can initiate

tear down

 Other side may continue

sending data

 Half open connection

 shutdown()

 Acknowledge the last

FIN

 Sequence number + 1

Client Server

Sequence Number Space
18

 TCP uses a byte stream abstraction

 Each byte in each stream is numbered

 32-bit value, wraps around

 Initial, random values selected during setup

 Byte stream broken down into segments (packets)

 Size limited by the Maximum Segment Size (MSS)

 Set to limit fragmentation

 Each segment has a sequence number

Segment 8 Segment 9 Segment 10

13450 14950 16050 17550

Bidirectional Communication
19

 Each side of the connection can send and receive

 Different sequence numbers for each direction

Client Server Seq. Ack. Seq. Ack.

1 23

23 1461

1461 753

753 2921 Data and ACK in the

same packet

23 1

Flow Control
20

 Problem: how many packets should a sender transmit?

 Too many packets may overwhelm the receiver

 Size of the receivers buffers may change over time

 Solution: sliding window

 Receiver tells the sender how big their buffer is

 Called the advertised window

 For window size n, sender may transmit n bytes without

receiving an ACK

 After each ACK, the window slides forward

Flow Control: Sender Side
21

Sequence Number

Src. Port

Acknowledgement Number

Window

Urgent Pointer

Flags

Checksum

HL

Packet Sent

Dest. Port Src. Port

Acknowledgement Number

Window

Urgent Pointer

Flags

Checksum

HL

Packet Received

Dest. Port

Sequence Number

ACKed Sent To Be Sent Outside Window

Window

Must be buffered

until ACKed

Sliding Window Example
22

Time Time

TCP is ACK Clocked

• Short RTT  quick ACK  window slides quickly

• Long RTT  slow ACK  window slides slowly

Observations
23

 Throughput is ~ w/RTT

 Sender has to buffer all unacknowledges packets,

because they may require retransmission

 Receiver may be able to accept out-of-order packets,

but only up to buffer limits

 UDP

 TCP

 Congestion Control

 Evolution of TCP

 Problems with TCP

Outline 24

What is Congestion?
25

 Load on the network is higher than capacity

 Capacity is not uniform across networks

Modem vs. Cellular vs. Cable vs. Fiber Optics

 There are multiple flows competing for bandwidth

 Residential cable modem vs. corporate datacenter

 Load is not uniform over time

 10pm, Sunday night = Bittorrent Game of Thrones

Why is Congestion Bad?
26

 Results in packet loss

 Routers have finite buffers

 Internet traffic is bursty, no buffer can prevent all drops

 When routers get overloaded, packets will be dropped

 Practical consequences

 Router queues build up, delay increases

 Wasted bandwidth from retransmissions

 Low network “goodput”

CONGESTION AVOIDANCE AND

CONTROL

 VAN JACOBSON ‘88

27

Main contributions

28

 ???

Main contributions

Seven new algorithms:

1. RTT Variance estimation

2. Exponential retransmit timer backoff

3. Slow-start

4. More aggressive receiver ack policy

5. Dynamic window sizing on congestion

6. Karn’s algorithm

7. Fast retransmit

Paper explores the first 5.

29

The Danger of Increasing Load
30

 Knee – point after which

 Throughput increases very

slow

 Delay increases fast

 In an M/M/1 queue

 Delay = 1/(1 – utilization)

 Cliff – point after which

 Throughput  0

 Delay  ∞

Congestion

Collapse

Load

Load

G
o
o
d
p

ut

D
e
la

y

Knee Cliff

Ideal point

Cong. Control vs. Cong. Avoidance
31

Congestion

Collapse

G
o
o
d
p

ut

Knee Cliff

Load

Congestion Avoidance:

Stay left of the knee

Congestion Control:

Stay left of the cliff

Advertised Window, Revisited
32

 Does TCP’s advertised window solve congestion?

NO

 The advertised window only protects the receiver

 A sufficiently fast receiver can max the window

 What if the network is slower than the receiver?

 What if there are other concurrent flows?

 Key points

 Window size determines send rate

 Window must be adjusted to prevent congestion collapse

Goals of Congestion Control
33

1. Adjusting to the bottleneck bandwidth

2. Adjusting to variations in bandwidth

3. Sharing bandwidth between flows

4. Maximizing throughput

General Approaches
34

 Do nothing, send packets indiscriminately

 Many packets will drop, totally unpredictable performance

 May lead to congestion collapse

 Reservations

 Pre-arrange bandwidth allocations for flows

 Requires negotiation before sending packets

 Must be supported by the network

 Dynamic adjustment

 Use probes to estimate level of congestion

 Speed up when congestion is low

 Slow down when congestion increases

 Messy dynamics, requires distributed coordination

TCP Congestion Control
35

 Each TCP connection has a window

 Controls the number of unACKed packets

 Sending rate is ~ window/RTT

 Idea: vary the window size to control the send rate

 Introduce a congestion window at the sender

 Congestion control is sender-side problem

Congestion Window (cwnd)
36

 Limits how much data is in transit

 Denominated in bytes

1. wnd = min(cwnd, adv_wnd);

2. effective_wnd = wnd –

 (last_byte_sent – last_byte_acked);

last_byte_acked last_byte_sent

wnd

effective_wnd

Two Basic Components
37

1. Detect congestion

 Packet dropping is most reliably signal

 Delay-based methods are hard and risky

 How do you detect packet drops? ACKs

 Timeout after not receiving an ACK

 Several duplicate ACKs in a row (ignore for now)

2. Rate adjustment algorithm

 Modify cwnd

 Probe for bandwidth

 Responding to congestion

Error Detection
38

 Checksum detects (some) packet corruption

 Computed over IP header, TCP header, and data

 Sequence numbers catch sequence problems

 Duplicates are ignored

 Out-of-order packets are reordered or dropped

 Missing sequence numbers indicate lost packets

 Lost segments detected by sender

 Use timeout to detect missing ACKs

 Need to estimate RTT to calibrate the timeout

 Sender must keep copies of all data until ACK

Retransmission Time Outs (RTO)
39

 Problem: time-out is linked to round trip time

R
TO

R
TO

Timeout is

too short

What about if

timeout is too

long?

Round Trip Time Estimation
40

 Original TCP round-trip estimator

 RTT estimated as a moving average

 new_rtt = α (old_rtt) + (1 – α)(new_sample)

 Recommended α: 0.8-0.9 (0.875 for most TCPs)

 RTO = function of new_rtt and new_dev_rtt

Sample

RTT Sample Ambiguity
41

 Karn’s algorithm: ignore samples for retransmitted

segments

R
TO

R
TO

S
a
m

p
le

 Sample?

Rate Adjustment
42

 Recall: TCP is ACK clocked

 Congestion = delay = long wait between ACKs

 No congestion = low delay = ACKs arrive quickly

 Basic algorithm

 Upon receipt of ACK: increase cwnd

 Data was delivered, perhaps we can send faster

 cwnd growth is proportional to RTT

 On loss: decrease cwnd

 Data is being lost, there must be congestion

 Question: increase/decrease functions to use?

Utilization and Fairness
43

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Max

throughput

for flow 2

Zero

throughput

for flow 1 Max

throughput

for flow 1

Zero

throughput

for flow 2

Less than full

utilization

More than full

utilization

(congestion)

Ideal point

• Max efficiency

• Perfect fairness

Equal

throughput

(fairness)

Multiplicative Increase, Additive Decrease

44

 Not stable!

 Veers away from

fairness

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Additive Increase, Additive Decrease

45

 Stable

 But does not

converge to

fairness

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Multiplicative Increase, Multiplicative Decrease

46

 Stable

 But does not

converge to

fairness

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Additive Increase, Multiplicative Decrease

47

 Converges to

stable and fair

cycle

 Symmetric

around y=x

Flow 1 Throughput

Fl
o
w

 2
 T

h
ro

ug
hp

ut

Implementing Congestion Control

 Maintains three variables:

 cwnd: congestion window

 adv_wnd: receiver advertised window

 ssthresh: threshold size (used to update cwnd)

 For sending, use: wnd = min(cwnd, adv_wnd)

 Two phases of congestion control

1. Slow start (cwnd < ssthresh)

 Probe for bottleneck bandwidth

2. Congestion avoidance (cwnd >= ssthresh)

 AIMD

48

48

Slow Start

 Goal: reach knee quickly

 Upon starting (or restarting) a connection

 cwnd =1

 ssthresh = adv_wnd

 Each time a segment is ACKed, cwnd++

 Continues until…

 ssthresh is reached

 Or a packet is lost

 Slow Start is not actually slow

 cwnd increases exponentially

49

Load

G
o
o
d
p
u
t

Knee Cliff

Slow Start Example
50

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

 cwnd grows rapidly

 Slows down when…

 cwnd >= ssthresh

 Or a packet drops

Congestion Avoidance

 AIMD mode

 ssthresh is lower-bound guess about location of the knee

 If cwnd >= ssthresh then

 each time a segment is ACKed

 increment cwnd by 1/cwnd (cwnd += 1/cwnd).

 So cwnd is increased by one only if all segments have

been acknowledged

51

Congestion Avoidance Example
52

0

2

4

6

8

10

12

14

t=
0

t=
2

t=
4

t=
6

Round Trip Times

cw
nd

 (
in

 s
e
g

m
e
nt

s)

Slow

Start

cwnd >= ssthresh

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

ssthresh = 8

TCP Pseudocode

Initially:
 cwnd = 1;
 ssthresh = adv_wnd;

New ack received:
 if (cwnd < ssthresh)
 /* Slow Start*/
 cwnd = cwnd + 1;
 else
 /* Congestion Avoidance */
 cwnd = cwnd + 1/cwnd;

Timeout:
 /* Multiplicative decrease */
 ssthresh = cwnd/2;
 cwnd = 1;

53

The Big Picture

Time

cw
nd

Timeout

Slow Start

Congestion

Avoidance

54

ssthresh

 UDP

 TCP

 Congestion Control

 Evolution of TCP

 Problems with TCP

Outline 55

The Evolution of TCP
56

 Thus far, we have discussed TCP Tahoe

 Original version of TCP

 However, TCP was invented in 1974!

 Today, there are many variants of TCP

 Early, popular variant: TCP Reno

 Tahoe features, plus…

 Fast retransmit

 Fast recovery

TCP Reno: Fast Retransmit
57

 Problem: in Tahoe, if

segment is lost, there is a

long wait until the RTO

 Reno: retransmit after 3

duplicate ACKs

cwnd = 1

cwnd = 2

cwnd = 4

3 Duplicate

ACKs

TCP Reno: Fast Recovery

 After a fast-retransmit set cwnd to ssthresh/2

 i.e. don’t reset cwnd to 1

 Avoid unnecessary return to slow start

 Prevents expensive timeouts

 But when RTO expires still do cwnd = 1

 Return to slow start, same as Tahoe

 Indicates packets aren’t being delivered at all

 i.e. congestion must be really bad

58

Fast Retransmit and Fast Recovery

 At steady state, cwnd oscillates around the optimal

window size

 TCP always forces packet drops

59

Time

cw
nd

Timeout

Slow Start

Congestion Avoidance

Fast Retransmit/Recovery

ssthresh

Timeout

Many TCP Variants…
60

 Tahoe: the original

 Slow start with AIMD

 Dynamic RTO based on RTT estimate

 Reno: fast retransmit and fast recovery

 NewReno: improved fast retransmit

 Reduce number of retransmissions

 Window inflation

 Vegas: delay-based congestion avoidance

 And many, many, many more…

TCP in the Real World
61

 What are the most popular variants today?

 Key problem: TCP performs poorly on high bandwidth-delay

product networks (like the modern Internet)

 Compound TCP (Windows)

 Based on Reno

 Uses two congestion windows: delay based and loss based

 Thus, it uses a compound congestion controller

 TCP CUBIC (Linux)

 Enhancement of BIC (Binary Increase Congestion Control)

Window size controlled by cubic function

 Parameterized by the time T since the last dropped packet

High Bandwidth-Delay Product
62

 Key Problem: TCP performs poorly when

 The capacity of the network (bandwidth) is large

 The delay (RTT) of the network is large

 Or, when bandwidth * delay is large

 b * d = maximum amount of in-flight data in the network

 a.k.a. the bandwidth-delay product

 Why does TCP perform poorly?

 Slow start and additive increase are slow to converge

 TCP is ACK clocked

 i.e. TCP can only react as quickly as ACKs are received

 Large RTT  ACKs are delayed  TCP is slow to react

Poor Performance of TCP Reno CC
63

Bottleneck Bandwidth (Mb/s)

50 flows in both directions

Buffer = BW x Delay

RTT = 80 ms

Round Trip Delay (sec)

50 flows in both directions

Buffer = BW x Delay

BW = 155 Mb/s

Goals
64

 Fast window growth

 Slow start and additive increase are too slow when

bandwidth is large

 Want to converge more quickly

 Maintain fairness with other TCP variants

 Window growth cannot be too aggressive

 Improve RTT fairness

 TCP Tahoe/Reno flows are not fair when RTTs vary widely

 Simple implementation

Compound TCP Implementation
65

 Default TCP implementation in Windows

 Key idea: split cwnd into two separate windows

 Traditional, loss-based window

 New, delay-based window

 wnd = min(cwnd + dwnd, adv_wnd)

 cwnd is controlled by AIMD

 dwnd is the delay window

 Rules for adjusting dwnd:

 If RTT is increasing, decrease dwnd (dwnd >= 0)

 If RTT is decreasing, increase dwnd

 Increase/decrease are proportional to the rate of change

Low

RTT

High

RTT

Compound TCP Example

 Aggressiveness corresponds to changes in RTT

 Advantages: fast ramp up, more fair to flows with different RTTs

 Disadvantage: must estimate RTT, which is very challenging

66

Time

cw
nd

Timeout

Slow Start

Timeout
Slower

cwnd

growth

Faster

cwnd

growth

TCP CUBIC Implementation
67

 Default TCP implementation in Linux

 Replace AIMD with cubic function

 B  a constant fraction for multiplicative increase

 T  time since last packet drop

 W_max  cwnd when last packet dropped

TCP CUBIC Example

 Less wasted bandwidth due to fast ramp up

 Stable region and slow acceleration help maintain fairness

 Fast ramp up is more aggressive than additive increase

 To be fair to Tahoe/Reno, CUBIC needs to be less aggressive

68

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

Fast ramp

up

Stable

Region

Slowly accelerate to

probe for bandwidth

Simulations of CUBIC Flows
69

CUBIC

CUBIC

Reno Reno

Deploying TCP Variants

 TCP assumes all flows employ TCP-like congestion control

 TCP-friendly or TCP-compatible

 Violated by UDP :(

 If new congestion control algorithms are developed, they

must be TCP-friendly

 Be wary of unforeseen interactions

 Variants work well with others like themselves

 Different variants competing for resources may trigger

unfair, pathological behavior

70

71

Issues with TCP
72

 The vast majority of Internet traffic is TCP

 However, many issues with the protocol

 Lack of fairness

 Synchronization of flows

 Poor performance with small flows

 Really poor performance on wireless networks

 Susceptibility to denial of service

Fairness
73

 Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps

1 Mbps
1 Mbps

1 Mbps

100 ms

1000 ms

 ACK clocking makes TCP inherently unfair

 Possible solution: maintain a separate delay window

 Implemented by Microsoft’s Compound TCP

Synchronization of Flows

 Ideal bandwidth sharing

74

cw
nd

cw
nd

cw
nd

 Oscillating, but high overall

utilization

 In reality, flows synchronize

One flow causes

all flows to drop

packets

Periodic lulls of

low utilization

Small Flows
75

 Problem: TCP is biased against short flows

 1 RTT wasted for connection setup (SYN, SYN/ACK)

 cwnd always starts at 1

 Vast majority of Internet traffic is short flows

 Mostly HTTP transfers, <100KB

 Most TCP flows never leave slow start!

 Proposed solutions (driven by Google):

 Increase initial cwnd to 10

 TCP Fast Open: use cryptographic hashes to identify

receivers, eliminate the need for three-way handshake

Wireless Networks
76

 Problem: Tahoe and Reno assume loss = congestion

 True on the WAN, bit errors are very rare

 False on wireless, interference is very common

 TCP throughput ~ 1/sqrt(drop rate)

 Even a few interference drops can kill performance

 Possible solutions:

 Break layering, push data link info up to TCP

 Use delay-based congestion detection (TCP Vegas)

 Explicit congestion notification (ECN)

Denial of Service
77

 Problem: TCP connections require state

 Initial SYN allocates resources on the server

 State must persist for several minutes (RTO)

 SYN flood: send enough SYNs to a server to allocate all

memory/meltdown the kernel

 Solution: SYN cookies

 Idea: don’t store initial state on the server

 Securely insert state into the SYN/ACK packet

 Client will reflect the state back to the server

SYN Cookies
78

 Did the client really send me a SYN recently?

 Timestamp: freshness check

 Cryptographic hash: prevents spoofed packets

 Maximum segment size (MSS)

 Usually stated by the client during initial SYN

 Server should store this value…

 Reflect the clients value back through them

Sequence Number Timestamp

31 0 5

MSS

8

Crypto Hash of Client IP & Port

SYN Cookies in Practice
79

 Advantages

 Effective at mitigating SYN floods

 Compatible with all TCP versions

 Only need to modify the server

 No need for client support

 Disadvantages

 MSS limited to 3 bits, may be smaller than clients actual MSS

 Server forgets all other TCP options included with the client’s

SYN

 SACK support, window scaling, etc.

80

More slides …
81

What Should the Receiver ACK?

1. ACK every packet

2. Use cumulative ACK, where an ACK for sequence n

implies ACKS for all k < n

3. Use negative ACKs (NACKs), indicating which packet

did not arrive

4. Use selective ACKs (SACKs), indicating those that did

arrive, even if not in order

 SACK is an actual TCP extension

82

82

Sequence Numbers, Revisited
83

 32 bits, unsigned

 Why so big?

 For the sliding window you need…

 |Sequence # Space| > 2 * |Sending Window Size|

 232 > 2 * 216

 Guard against stray packets

 IP packets have a maximum segment lifetime (MSL) of 120

seconds

 i.e. a packet can linger in the network for 2 minutes

 Sequence number would wrap around at 286Mbps

What about GigE? PAWS algorithm + TCP options

Silly Window Syndrome
84

 Problem: what if the window size is very small?

 Multiple, small packets, headers dominate data

 Equivalent problem: sender transmits packets one byte

at a time

1. for (int x = 0; x < strlen(data); ++x)

2. write(socket, data + x, 1);

Header Data Header Data Header Data Header Data

Nagle’s Algorithm
85

1. If the window >= MSS and available data >= MSS:

 Send the data

2. Elif there is unACKed data:

 Enqueue data in a buffer until an ACK is received

3. Else: send the data

 Problem: Nagle’s Algorithm delays transmissions

 What if you need to send a packet immediately?

1. int flag = 1;

2. setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
 (char *) &flag, sizeof(int));

Send a full

packet

Send a non-full packet if

nothing else is happening

Challenge of RTO in data centers
86

 TCP Incast problem – E.g. Hadoop, Map Reduce, HDFS,

GFS
Many senders sending simultaneously to receiver

Buffer at switch fills and packets are lost!

No ACKs will come back 

Wait

RTO

Wait

RTO

Wait

RTO

Challenges:

Need to break synchronization

RTO estimation designed for wide area

Data centers have much smaller RTT

TCP Perspectives

 Cerf/Kahn

 Provide flow control

 Congestion handled by retransmission

 Jacobson / Karels

 Need to avoid congestion

 RTT estimates critical

 Queuing theory can help

 Winstein/Balakrishnan

 TCP is maximizing an objective function

 Fairness/efficiency

 Throughput/delay

 Let a learning program pick the best fit for your environment
87

 UDP

 TCP

 Congestion Control

 Evolution of TCP

 Common TCP options

 Problems with TCP

Outline 88

Common TCP Options
89

 Window scaling

 SACK: selective acknowledgement

 Maximum segment size (MSS)

 Timestamp

Options

Destination Port

0 16 31

Sequence Number

Source Port

Acknowledgement Number

Advertised Window

Urgent Pointer

Flags

Checksum

4

HLen

Window Scaling
90

 Problem: the advertised window is only 16-bits

 Effectively caps the window at 65536B, 64KB

 Example: 1.5Mbps link, 513ms RTT

(1.5Mbps * 0.513s) = 94KB

64KB / 94KB = 68% of maximum possible speed

 Solution: introduce a window scaling value

 wnd = adv_wnd << wnd_scale;

 Maximum shift is 14 bits, 1GB maximum window

SACK: Selective Acknowledgment
91

 Problem: duplicate ACKs only tell us

about 1 missing packet

 Multiple rounds of dup ACKs needed

to fill all holes

 Solution: selective ACK

 Include received, out-of-order

sequence numbers in TCP header

 Explicitly tells the sender about holes

in the sequence

Other Common Options
92

 Maximum segment size (MSS)

 Essentially, what is the hosts MTU

 Saves on path discovery overhead

 Timestamp

 When was the packet sent (approximately)?

 Used to prevent sequence number wraparound

 PAWS algorithm

