
TDTS21 Advanced Networking

Lecture 2: Hosts, the Internet architecture,

and the E2E arguments …

Based on slides from D. Choffnes, P. Gill, and J. Rexford

Revised Spring 2015 by N. Carlsson

The Host

End hosts …

3

Host-Network Division of Labor

 Network

Best-effort packet delivery

Between two (or more) end-point addresses

 Hosts

 Everything else

host
host

network

The Role of the End Host

 Network discovery and bootstrapping

How does the host join the network?

How does the host get an address?

 Interface to networked applications

What interface to higher-level applications?

How does the host realize that abstraction?

 Distributed resource sharing

What roles does the host play in network resource

allocation decisions?

4

Three Kinds of Identifiers

Host Name IP Address MAC Address

Example www.cs.princeton.edu 128.112.7.156 00-15-C5-49-04-A9

Size Hierarchical, human

readable, variable

length

Hierarchical,

machine readable,

32 bits (in IPv4)

Flat, machine

readable, 48 bits

Read by Humans, hosts IP routers Switches in LAN

Allocation,

top-level

Domain, assigned

by registrar (e.g., for

.edu)

Variable-length

prefixes, assigned by

ICANN, RIR, or ISP

Fixed-sized blocks,

assigned by IEEE to

vendors (e.g., Dell)

Allocation,

low-level

Host name, local

administrator

Interface, by DHCP

or an administrator

Interface, by vendor

5

Learning a Host’s Address

 Who am I?

 Hard-wired: MAC address

 Static configuration: IP interface configuration

 Dynamically learned: IP address configured by DHCP

 Who are you?

 Hard-wired: IP address in a URL, or in the code

 Dynamically looked up: ARP or DNS
6

me you

adapter adapter

7

Mapping Between Identifiers

 Dynamic Host Configuration Protocol (DHCP)

 Given a MAC address, assign a unique IP address

 … and tell host other stuff about the Local Area Network

 To automate the boot-strapping process

 Address Resolution Protocol (ARP)

 Given an IP address, provide the MAC address

 To enable communication within the Local Area Network

 Domain Name System (DNS)

 Given a host name, provide the IP address

 Given an IP address, provide the host name

8

Dynamic Host Configuration Protocol

arriving

client DHCP server

Host learns

IP address,

Subnet mask,

Gateway address,

DNS server(s),

and a lease time.

9

Address Resolution Protocol (ARP)

 Every host maintains an ARP table

 (IP address, MAC address) pair

 Consult the table when sending a packet

 Map destination IP address to destination MAC address

 Encapsulate and transmit the data packet

 But, what if the IP address is not in the table?

 Sender broadcasts: “Who has IP address 1.2.3.156?”

 Receiver responds: “MAC address 58-23-D7-FA-20-B0”

 Sender caches the result in its ARP table

10

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

Domain Name System

Host at cis.poly.edu wants

IP address for

gaia.cs.umass.edu

Recursive query: #1

Iterative queries: #2, 4, 6

Questions

 Should addresses correspond to the interface (point of

attachment) or to the host?

 Why do we have all three identifiers? Do we need all

three?

 What should be done to prevent spoofing of addresses?

11

INTERFACE TO

APPLICATIONS

12

Socket Abstraction

 Best-effort packet delivery is a clumsy abstraction

 Applications typically want higher-level abstractions

 Messages, uncorrupted data, reliable in-order delivery

 Applications communicate using “sockets”

 Stream socket: reliable stream of bytes (like a file)

 Message socket: unreliable message delivery 13

socket socket

User process User process

Operating

System
Operating

System

14

Two Basic Transport Features

 Demultiplexing: port numbers

 Error detection: checksums

Web server

(port 80)

Client host

Server host 128.2.194.242

Echo server

(port 7)

Service request for

128.2.194.242:80

(i.e., the Web server)
OS Client

IP payload

detect corruption

Two Main Transport Layers

 User Datagram Protocol (UDP)

 Just provides demultiplexing and error detection

 Header fields: port numbers, checksum, and length

 Low overhead, good for query/response and multimedia

 Transmission Control Protocol (TCP)

 Adds support for a “stream of bytes” abstraction

 Retransmitting lost or corrupted data

 Putting out-of-order data back in order

 Preventing overflow of the receiver buffer

 Adapting the sending rate to alleviate congestion

 Higher overhead, good for most stateful applications
15

16

Life in the 1970s…

 Multiple unconnected networks

ARPAnet, data-over-cable, packet satellite (Aloha),

packet radio, …

 Heterogeneous designs

Addressing, max packet size, handling of lost/corrupted

data, fault detection, routing, …

17 ARPAnet satellite net

Handling Heterogeneity

 Where to handle heterogeneity?

 Application process? End hosts? Packet switches?

 Compatible process and host conventions

 Obviate the need to support all combinations

 Retain the unique features of each network

 Avoid changing the local network components

 Introduce the notion of a gateway

18

Internetwork Layer and Gateways

Internetwork Layer

 Internetwork appears as
a single, uniform entity

 Despite the heterogeneity
of the local networks

 Network of networks

Gateway

 “Embed internetwork packets
in local packet format or
extract them”

 Route (at internetwork level)
to next gateway

19 ARPAnet satellite net

gateway

THE DESIGN PHILOSOPHY OF THE

DARPA INTERNET PROTOCOLS

 CLARK ‘88

20

Goals of the Internet Architecture (Clark ‘88)

21

1. Connect existing networks

2. Robust in face of failures (not nuclear war…)

3. Support multiple types of services

4. Accommodate a variety of networks

5. Allow distributed management

6. Easy host attachment

7. Cost effective

8. Allow resource accountability

Robust
22

1. As long as the network is not partitioned, two endpoints
should be able to communicate

2. Failures (excepting network partition) should not interfere
with endpoint semantics (why?)

 Maintain state only at end-points

 Fate-sharing, eliminates network state restoration
 If information associated with an entity is lost, then the entity itself must

have been lost

 stateless network architecture (no per-flow state)

 Routing state is held by network (why?)

 No failure information is given to ends (why?)

Types of Services
23

 Use of the term “communication services” already

implied that they wanted application-neutral network

 Realized TCP wasn’t needed (or wanted) by some

applications

 Separated TCP from IP, and introduced UDP

 What’s missing from UDP?

Variety of Networks
24

 Incredibly successful!

 Minimal requirements on networks

 No need for reliability, in-order, fixed size packets, etc.

 IP over everything

 Then: ARPANET, X.25, DARPA satellite network..

 Now: ATM, SONET, WDM…

25

Real Goals

1. Something that works…..

2. Connect existing networks

3. Survivability (not nuclear war…)

4. Support multiple types of services

5. Accommodate a variety of networks

6. Allow distributed management

7. Easy host attachment

8. Cost effective

9. Allow resource accountability

26

Internet Motto

We reject kings, presidents, and voting.

 We believe in rough consensus and running code.”

 David Clark

Questions

 What priority order would a
commercial design have?

 What would a commercially
invented Internet look like?

 What goals are missing from this
list?

 Which goals led to the success of
the Internet?

1. Something that works…..

2. Connect existing networks

3. Survivability (not nuclear
war…)

4. Support multiple types of
services

5. Accommodate a variety of
networks

6. Allow distributed
management

7. Easy host attachment

8. Cost effective

9. Allow resource accountability

27

 Layering
 The OSI Model

 Communicating
 The End-to-End Argument

Outline 28

The ISO OSI Model
29

OSI: Open Systems Interconnect Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Application

Presentation

Session

Transport

Network

Data Link

Physical

Host 1 Switch Host 2

Physical

All devices implement

the first three layers
Layers communicate

peer-to-peer

Layers communicate

peer-to-peer

Encapsulation
30

How does data move through the layers?

Application

Presentation

Session

Transport

Network

Data Link

Physical

Data

Data

Real Life Analogy
31

Postal Service

Label contains

routing info
Un-packing

Doesn’t know

contents of letter

Doesn’t know how the

Postal network works

Network Stack in Practice
32

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Application

Presentation

Session

Transport

Network

Data Link

Physical

Host 1 Switch Host 2

Physical

Video Client

UDP

Video Server

UDP

FTP Client

TCP

IP

Ethernet

IP

Ethernet

FTP Server

TCP

IP

Ethernet 802.11n 802.11n 802.11n

Encapsulation, Revisited
33

Web

Server

TCP

IP

Ethernet

HTTP

Header

TCP

Header

IP

Header

Ethernet

Header

Ethernet

Trailer

Web

Page

HTTP

Header

Web

Page

TCP

Header

HTTP

Header

Web

Page

IP

Header

TCP

Header

HTTP

Header

Web

Page

TCP Segment

IP Datagram

Ethernet Frame

The Hourglass
34

IPv4

TCP, UDP, ICMP

HTTP, FTP, RTP, IMAP, Jabber, …

Ethernet, 802.11x, DOCSIS, …

Fiber, Coax, Twisted Pair, Radio, …

• One Internet layer means all networks

interoperate

• All applications function on all networks

• Room for development above and below IP

• But, changing IP is insanely hard

Think about the

difficulty of

deploying IPv6…

Orthogonal Planes
35

Application

Presentation

Session

Transport

IP

Data Link

Physical

BGP RIP OSPF Control Plane

Well cover this

later…

Control plane: How Internet paths are established

Orthogonal Planes
36

Application

Transport

Network

Data Link

Network

Data Link

Host 1 Switch(es) Host 2

Application

Transport

Network

Data Link

Data plane: How data is forwarded over Internet paths

Reality Check
37

 The layered abstraction is very nice

 Does it hold in reality?

No.

Firewalls

 Analyze application

layer headers

Transparent Proxies

 Simulate application

endpoints within the

network

NATs

 Break end-to-end

network reachability

 Layering
 The OSI Model

 Communicating
 The End-to-End Argument

Outline 38

From Layers to Eating Cake
39

 IP gives us best-effort datagram forwarding

 So simple anyone can do it

 Large part of why the Internet has succeeded

 …but it sure isn’t giving us much

 Layers give us a way to compose functionality

 Example: HTTP over TCP for Web browsers with reliable
connections

 …but they do not tell us where (in the network) to
implement the functionality

Where to Place Functionality
40

 How do we distribute functionality across devices?

 Example: who is responsible for security?

Switch Switch
Router

?
?

?
?

?

 “The End-to-End Arguments in System Design”

 Saltzer, Reed, and Clark

 The Sacred Text of the Internet

 Endlessly debated by researchers and engineers

J. Saltzer, D. Reed, and D. Clark

“END-TO-END ARGUMENTS

IN SYSTEM DESIGN”
(ACM TRANS. ON COMPUTER SYSTEMS, NOVEMBER 1984)

Basic Observation
42

 Some applications have end-to-end requirements

 Security, reliability, etc.

 Implementing this stuff inside the network is hard

 Every step along the way must be fail-proof

 Different applications have different needs

 End hosts…

 Can’t depend on the network

 Can satisfy these requirements without network level support

End-to-End Argument

 Operations should occur only at the end points

 … unless needed for performance optimization

43

2 4

5
3

1

Many things can go wrong: disk errors, software

errors, hardware errors, communication errors, …

Tradeoffs

 Put functionality at each hop

All applications pay the price

 End systems still need to check for errors

 Place functionality only at the ends

 Slower error detection

 End-to-end retransmission wastes bandwidth

 Compromise solution?

 Reliable end-to-end transport protocol (TCP)

Plus file checksums to detect file-system errors
44

Example: Reliable File Transfer
45

 Solution 1: Make the network reliable

 Solution 2: App level, end-to-end check, retry on failure

Integrity

Check

Integrity

Check

Integrity

Check
App has to do a

check anyway!

Example: Reliable File Transfer
46

 Solution 1: Make the network reliable

 Solution 2: App level, end-to-end check, retry on failure

Please

Retry

Full functionality can be

built at App level

• In-network implementation…

 Doesn’t reduce host complexity

 Does increase network complexity

 Increased overhead for apps that don’t need
functionality

• But, in-network performance may be better

Conservative Interpretation
47

“Don’t implement a function at the lower levels of

the system unless it can be completely implemented

at this level” (Peterson and Davie)

Basically, unless you can completely remove the

burden from end hosts, don’t bother

Radical Interpretation
48

 Don’t implement anything in the network that can be

implemented correctly by the hosts

 Make network layer absolutely minimal

 Ignore performance issues

Moderate Interpretation
49

 Think twice before implementing functionality in the

network

 If hosts can implement functionality correctly, implement

it a lower layer only as a performance enhancement

 But do so only if it does not impose burden on

applications that do not require that functionality…

 …and if it doesn’t cost too much $ to implement

Reality Check, Again
50

 Layering and E2E principals regularly violated

Firewalls Transparent Proxies NATs

 Conflicting interests

 Architectural purity

 Commercial necessity

Takeaways
51

 Layering for network functions

 Helps manage diversity in computer networks

 Not optimal for everything, but simple and flexible

 Narrow waist ensures interoperability, enables innovation

 E2E argument (attempts) to keep IP layer simple

 Think carefully when adding functionality into the network

52

More slides …
53

Questions

 Is a socket between two IP addresses the right

abstraction?

 Mobile hosts?

 Replicated services?

 What does the network know about the traffic?

 Inferring the application from the port numbers?

 Is end-to-end error detection and correction the right

model?

 High loss environments?

 Expense of retransmitting over the entire path?

54

55

Organizing Network Functionality
56

 Networks are built from many components

 Networking technologies

 Ethernet, Wifi, Bluetooth, Fiber Optic, Cable Modem, DSL

 Network styles

 Circuit switch, packet switch

 Wired, Wireless, Optical, Satellite

 Applications

 Email, Web (HTTP), FTP, BitTorrent, VoIP

 How do we make all this stuff work together?!

Problem Scenario
57

Web Email Bittorrent

Ethernet 802.11 Bluetooth

VoIP

Cellular

• This is a nightmare scenario

• Huge amounts of work to add new apps or media

• Limits growth and adoption

More Problems
58

Bittorrent

Ethernet 802.11

Bittorrent

Application endpoints

may not be on the same

media

Solution: Use Indirection
59

Web Email Bittorrent

Ethernet 802.11 Bluetooth

VoIP

Cellular

Magical Network Abstraction Layer
• O(1) work to add new apps, media

• Few limits on new technology

API

API API API

Layered Network Stack
60

 Modularity

 Does not specify an implementation

 Instead, tells us how to organize functionality

 Encapsulation

 Interfaces define cross-layer interaction

 Layers only rely on those below them

 Flexibility

 Reuse of code across the network

 Module implementations may change

 Unfortunately, there are tradeoffs

 Interfaces hide information

 As we will see, may hurt performance…

Applications

Physical

Media

Layer N

Layer 1

Layer 2

…

Key Questions
61

 How do we divide functionality into layers?

 Routing

 Congestion control

 Error checking

 How do we distribute functionality across devices?

 Example: who is responsible for security?

Switch Switch
Router

 Security

 Fairness

 And many more…

Layer Features
62

 Service

 What does this layer do?

 Interface

 How do you access this layer?

 Protocol

 How is this layer implemented?

Application

Presentation

Session

Transport

Network

Data Link

Physical

Physical Layer
63

 Service

 Move information between two
systems connected by a physical link

 Interface

 Specifies how to send one bit

 Protocol

 Encoding scheme for one bit

 Voltage levels

 Timing of signals

 Examples: coaxial cable, fiber
optics, radio frequency transmitters

Application

Presentation

Session

Transport

Network

Data Link

Physical

Data Link Layer
64

 Service

 Data framing: boundaries between

packets

 Media access control (MAC)

 Per-hop reliability and flow-control

 Interface

 Send one packet between two hosts

connected to the same media

 Protocol

 Physical addressing (e.g. MAC address)

 Examples: Ethernet, Wifi, DOCSIS

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network Layer
65

 Service

 Deliver packets across the network

 Handle fragmentation/reassembly

 Packet scheduling

 Buffer management

 Interface

 Send one packet to a specific destination

 Protocol

 Define globally unique addresses

 Maintain routing tables

 Example: Internet Protocol (IP), IPv6

Application

Presentation

Session

Transport

Network

Data Link

Physical

Transport Layer
66

 Service

 Multiplexing/demultiplexing

 Congestion control

 Reliable, in-order delivery

 Interface

 Send message to a destination

 Protocol

 Port numbers

 Reliability/error correction

 Flow-control information

 Examples: UDP, TCP

Application

Presentation

Session

Transport

Network

Data Link

Physical

Session Layer
67

 Service

 Access management

 Synchronization

 Interface

 It depends…

 Protocol

 Token management

 Insert checkpoints

 Examples: none

Application

Presentation

Session

Transport

Network

Data Link

Physical

Presentation Layer
68

 Service

 Convert data between different
representations

 E.g. big endian to little endian

 E.g. Ascii to Unicode

 Interface

 It depends…

 Protocol

 Define data formats

 Apply transformation rules

 Examples: none

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application Layer
69

 Service

 Whatever you want :)

 Interface

 Whatever you want :D

 Protocol

 Whatever you want ;)

 Examples: turn on your smartphone

and look at the list of apps

Application

Presentation

Session

Transport

Network

Data Link

Physical

