TDTS10: Computer Architecture

Lesson 2021

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Exercises

Organization

Assistants

Group A, B: Rouhollah Mahfouzi

- Group C, D: Mina Niknafs
- Group E, F: Ali Sahraee
- Extra Assistant: Yungang Pan

Web page

- http://www.ida.liu.se/~TDTS10
- Check the lab page!

Organization

- <u>Sign up</u> in Webreg, TODAY
- Deadline for the assignments:

Lab 1	Nov. 18
Lab 2	Dec. 3
Lab 3	Dec. 14

• Rules: Read them!

Lab Schedule

A (by Rouhollah), C (by Mina), and E (by Ali)

Date	Time	Location*	Туре
Nov. 9	15:15-17:00	S2(A), S11(E), S14(C)	Lesson
Nov. 12	15:15-17:00	SU00(A), SU01(C), SU03(E)	Lab
Nov. 17	17:15-19:00	SU00(E), SU01(C), SU02(A)	Lab
Nov. 23	15:15-17:00	SU04(A), SU12(E), SU13(C)	Lab
Nov. 30	15:15-17:00	SU04(A), SU12(C), SU13(E)	Lab
Dec. 7	15:15-17:00	SU04(A), SU12(C), SU13(E)	Lab
Dec. 13	10:15-12:00	SU04(A), SU12(C), SU13(E)	Lab

*SU04(A) means that the students of group A should go to room SU04.

B (by Rouhollah), D (by Mina), and F (by Ali)

Date	Time	Location*	Type	
Nov. 9	15:15-17:00	S2(B), S11(F), S14(D)	Lesson	
Nov. 16	15:15-17:00	SU04(B), SU12(D), SU13(F)	Lab	
Nov. 18	08:15-10:00	SU10(F), SU11(D), SU12(B)	Lab	
Nov. 26	15:15-17:00	SU00(B), SU01(F), SU02(D)	Lab	
Dec. 3	15:15-17:00	SU00(B), SU01(F), SU02(D)	Lab	
Dec. 10	15:15-17:00	SU00(B), SU01(F), SU02(D)	Lab	
Dec. 14	13:15-15:00	SU04(B), SU12(F), SU13(D)	Lab	
*SU04(B) means that the students of group B should				

*SU04(B) means that the students of group B should go to room SU04.

Please only attend your own lab sessions (6 sessions)

Please check the lab location from these tables (available on webpage).

Examination

For each lab:

- 1. Demonstrate
 - Must be done during lab sessions
 - Both members must be present during demo
- 2. Report, Submitted via Teams

Labs

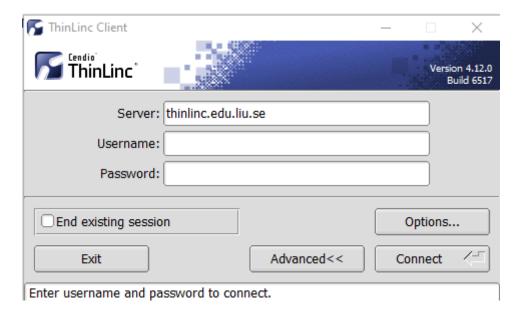
- Three labs:
 - 1. Cache Memories (2 lab sessions)
 - 2. Instruction Pipelining (2 lab sessions)
 - 3. Superscalar Processors (2 lab sessions)

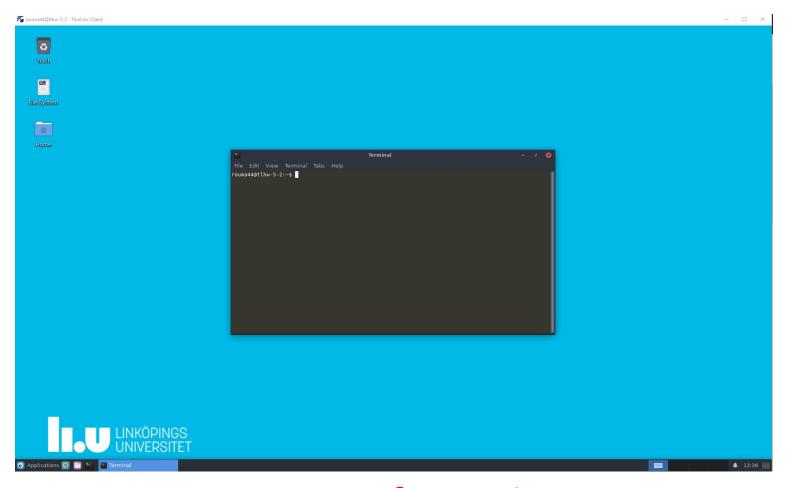
- Respond to last year comments:
 - Slightly more challenging Lab 2
 - Extra lab assistants

Goals

- Obtain knowledge about computer organization and architecture
- Insights in various trade-offs involved in the design of a processor
- Become familiar with a set of tools necessary for evaluation of computer architectures

Remote


• Thinlinc client: thinlinc.edu.liu.se


• SSH client: ssh.edu.liu.se

ThinLinc

ThinLinc

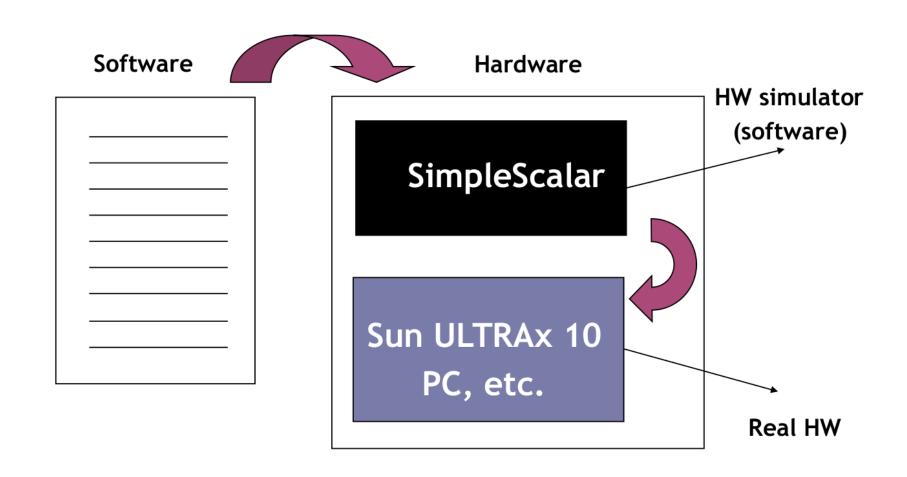
Press F8 for options

Backup subgroups on Teams

- Private Team for each subgroup
 - Can be used between lab partners
 - Upload your lab reports

Environment

- Linux
- Simulations are started from a command line (i.e., terminal)
 - To open a new terminal you can press ctrl+alt+t
- Get yourself familiarized with the terminal
 - Ask Google first
 - Ask your assistant
- Make sure you learn the basic commands (i.e., cd, ls, cp, ...)


Tool Setup

- Don't forget the instructions in lab0
- Instructions should be clear and easy to follow, but if you face difficulties
 - Don't get frustrated:)
 - Read again carefully (without skipping over the lines)
 - Consult your assistant

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Exercises

Architecture Simulation

SimpleScalar: Literature

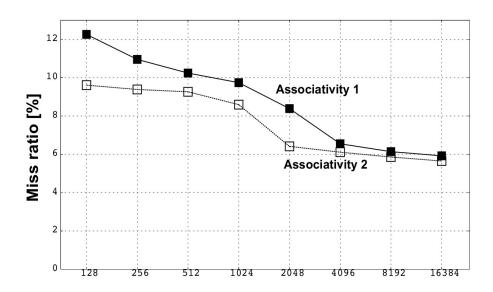
- "The SimpleScalar Tool Set, Version 2.0", by Doug Burger and Todd M. Austin
 - Very important preparation for the labs
 - This is your main reference for the tool!
- "User's and Hacker's guide", slides by Austin

SimpleScalar Architecture

- Virtual architecture derived from MIPS
 - Control (j, jr,..., beq, bne,...)
 - Load/Store (lb, lbu, ...)
 - Integer Arithmetic (add, addu, ...)
 - Floating Point Arithmetic (add.s, add.d, ...)
 - Miscellaneous (nop, syscall, break)

SimpleScalar Architecture (cont'd)

Several simulators


- Sim-fast: Fast, only functional simulation (no timing)
- Sim-safe: Sim-fast + memory checks

Won't use these two!

- Sim-cache: Sim-safe + cache simulation and various timing properties (simulation time, measured time, ...)
- Sim-cheetah: Simulation of multiple cache configurations
- Sim-outorder: Superscalar simulator

An Example

- Lab1, assignment 3
 - Dump the default configuration of sim-cheetah
 - Modify the configuration and simulate
 - Plot the results (e.g. OpenOffice, Gnuplot, Matlab, Excel)

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Let's solve some exercises on the first lab!
 - Lesson exercises