
Lesson Exercises

• You have a huge warehouse with EVERY movie ever made (hits, training films, etc.).
• Getting a movie from the warehouse takes 15 minutes.
• You can’t stay in business if every rental takes 15 minutes.
• You have some small shelves in the front office.

Office

Warehouse

Question 1

Here are some suggested improvements to the store:

1. Whenever someone rents a movie, just keep it in the front office for a while in case
someone else wants to rent it.

2. Watch the trends in movie watching and attempt to guess movies that will be rented
soon – put those in the front office.

3. Whenever someone rents a movie in a series (Star Wars), grab the other movies in
the series and put them in the front office.

4. Buy motorcycles to ride in the warehouse to get the movies faster

Office

Warehouse

Extending the analogy to locality for caches, which pair of changes most
closely matches the analogous cache locality?

Principle of Locality
Program instructions access a small proportion of their address space at any time

Question 1

Principle of Locality
Program instructions access a small proportion of their address space at any time

Question 1

Customers Individual movie Movie collection

• Temporal locality
• Items accessed recently are likely to be accessed again soon

Principle of Locality
Program instructions access a small proportion of their address space at any time

Question 1

Customers Individual movie Movie collection

• Temporal locality
• Items accessed recently are likely to be accessed again soon

• Spatial locality
• Items near those accessed recently

are likely to be accessed soon

Principle of Locality
Program instructions access a small proportion of their address space at any time

Question 1

Customers Individual movie Movie collection

• Temporal locality
• Items accessed recently are likely to be accessed again soon

• Spatial locality
• Items near those accessed recently

are likely to be accessed soon ?
?

Principle of Locality
Program instructions access a small proportion of their address space at any time

Question 1

Customers Individual movie Movie collection

• Temporal locality
• Items accessed recently are likely to be accessed again soon

• Spatial locality
• Items near those accessed recently

are likely to be accessed soon

Principle of Locality
Program instructions access a small proportion of their address space at any time

Question 1

Customers Individual movie Movie collection

• Temporal locality
• Items accessed recently are likely to be accessed again soon

• Spatial locality
• Items near those accessed recently

are likely to be accessed soon

Let’s go back to our question

Principle of Locality
Program instructions access a small proportion of their address space at any time

Question 1

Customers Individual movie Movie collection

Here are some suggested improvements to the store:

1. Whenever someone rents a movie, just keep it in the front office for a while in case
someone else wants to rent it.

2. Watch the trends in movie watching and attempt to guess movies that will be rented
soon – put those in the front office.

3. Whenever someone rents a movie in a series (Star Wars), grab the other movies in
the series and put them in the front office.

4. Buy motorcycles to ride in the warehouse to get the movies faster

Selection Spatial Temporal

A 2 1

B 4 2

C 4 3

D 3 1

E None of the above

Office

Warehouse

Extending the analogy to locality for caches, which pair of changes most
closely matches the analogous cache locality?

Here are some suggested improvements to the store:

1. Whenever someone rents a movie, just keep it in the front office for a while in case
someone else wants to rent it.

2. Watch the trends in movie watching and attempt to guess movies that will be rented
soon – put those in the front office.

3. Whenever someone rents a movie in a series (Star Wars), grab the other movies in
the series and put them in the front office.

4. Buy motorcycles to ride in the warehouse to get the movies faster

Selection Spatial Temporal

A 2 1

B 4 2

C 4 3

D 3 1

E None of the above

Office

Warehouse

Extending the analogy to locality for caches, which pair of changes most
closely matches the analogous cache locality?

For the following code, identify the variables that contribute to
temporal locality and the variables that contribute to spatial
locality. The variables are i, j, and the array A.

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Question 2

A is a matrix (two dimensional array)

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Question 2

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

How is A stored in the memory?

Question 2

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

address

A is a matrix (two dimensional array)

Memory

How is A stored in the memory?

Question 2

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]

address

A is a matrix (two dimensional array)

Memory

How is A stored in the memory?

Question 2

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]

address

A is a matrix (two dimensional array)

Memory

How is A stored in the memory?

Question 2

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

address

A is a matrix (two dimensional array)

Memory

How is A stored in the memory?

Question 2

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]

address

A is a matrix (two dimensional array)

Memory

How is A stored in the memory?

Question 2

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]

address

A is a matrix (two dimensional array)

Memory

How is A stored in the memory?

Question 2

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2] address

A[2,0]

A[2,1]

A[2,2]

A is a matrix (two dimensional array)

Memory

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

In each iteration, we access two
array slots – A[i][j] and A[j][i]

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 1: i = 0, j = 0

In each iteration, we access two
array slots – A[i][j] and A[j][i]

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 1: i = 0, j = 0

In each iteration, we access two
array slots – A[i][j] and A[j][i]

*

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 1: i = 0, j = 0

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 2: i = 0, j = 1

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 2: i = 0, j = 1

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 2: i = 0, j = 1

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 3: i = 0, j = 2

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 3: i = 0, j = 2

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 3: i = 0, j = 2

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 4: i = 1, j = 0

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 4: i = 1, j = 0

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 4: i = 1, j = 0

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

*

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 5: i = 1, j = 1

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

*

* *

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 6: i = 1, j = 2

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

*

* *
*

*

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 9: i = 3, j = 3

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

*

*
*

*
*

*

*

*

*

*

*

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 9: i = 3, j = 3

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

*

*
*

*
*

*

*

*

*

*

*

Regular access Irregular access

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

Iteration 9: i = 3, j = 3

In each iteration, we access two
array slots – A[i][j] and A[j][i]

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

*

*
*

*
*

*

*

*

*

*

*

Regular access Irregular access

Accessing A[i][j]
exhibits spatial
locality

Accessing A[j][i]
doesn’t exhibit
spatial locality

A[i][j] accesses A[j][i] accesses

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

What about i and j?

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

*

*
*

*
*

*

*

*

*

*

*

Regular access Irregular access

Accessing A[i][j]
exhibits spatial
locality

Accessing A[j][i]
doesn’t exhibit
spatial locality

A[i][j] accesses A[j][i] accesses

for (i = 0; i < 3; i++)

 for (j = 0; j < 3; j++)

 A [i] [j] = 5 + ;A [j] [i]

A[0,0]
A[0,1]
A[0,2]
A[1,0]
A[1,1]
A[1,2]
A[2,0]
A[2,1]
A[2,2]

Memory Cache

Iteration 1: i = 0, j = 0. -> A[0][0] Miss

for (i = 0; i < 3; i++)

 for (j = 0; j < 3; j++)

 = 5 + A [j] [i];A [i] [j]

A[0,0]
A[0,1]
A[0,2]
A[1,0]
A[1,1]
A[1,2]
A[2,0]
A[2,1]
A[2,2]

A[0,0] A[0,1] A[0,2] A[1,0]

Memory Cache

} Load

Iteration 1: i = 0, j = 0. ->
Iteration 2: i = 0, j = 1. ->

A[0][0]
A[1][0] A[0][1]

Hit

Hit

for (i = 0; i < 3; i++)

 for (j = 0; j < 3; j++)

 = 5 + A [j] [i];A [i] [j]

A[0,0]
A[0,1]
A[0,2]
A[1,0]
A[1,1]
A[1,2]
A[2,0]
A[2,1]
A[2,2]

A[0,0] A[0,1] A[0,2] A[1,0]

Memory Cache

Iteration 2: i = 0, j = 1. ->A[1][0] A[0][1] Hit

for (i = 0; i < 3; i++)

 for (j = 0; j < 3; j++)

 A [i] [j] = 5 + ;A [j] [i]

A[0,0]
A[0,1]
A[0,2]
A[1,0]
A[1,1]
A[1,2]
A[2,0]
A[2,1]
A[2,2]

A[0,0] A[0,1] A[0,2] A[1,0]
A[1,1] A[1,2] A[2,0] A[2,1]

Memory Cache

}
Load

Iteration 3: i = 0, j = 2. -> A[2][0] Miss

for (i = 0; i < 3; i++)

 for (j = 0; j < 3; j++)

 = 5 + A [j] [i];A [i] [j]

A[0,0]
A[0,1]
A[0,2]
A[1,0]
A[1,1]
A[1,2]
A[2,0]
A[2,1]
A[2,2]

A[0,0] A[0,1] A[0,2] A[1,0]
A[1,1] A[1,2] A[2,0] A[2,1]

Memory Cache

Iteration 3: i = 0, j = 2. -> A[0][2] Hit

Question 2

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

A [i] [j] = 5 + A [j] [i];

They exhibit temporal
locality because they are
accessed in each iteration

What about i and j?

* *
*

*
i = 0

i = 1

j = 0 j = 1

i = 2

j = 2

A[0,0]
A[0,1]
A[0,2]

A[1,0]
A[1,1]
A[1,2]

A[2,0]

A[2,1]

A[2,2]

*

*

*

*

*
*

*
*

*

*

*

*

*

*

Regular access Irregular access

Accessing A[i][j]
exhibits spatial
locality

Accessing A[j][i]
doesn’t exhibit
spatial locality

A[i][j] accesses A[j][i] accesses

Cache structure

set tag data
0

1

2

3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• How many sets are there in the cache?

tag data tag data tag data
32 bytes

… … … … … … … …

?

Question 3

Cache structure

set tag data
0

1

2

3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• How many sets are there in the cache?

tag data tag data tag data
32 bytes

… … … … … … … …

127

Total cache size = line size × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑜𝑜 𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎
16 × 1024 = 32 × 4 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑜𝑜 𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎 → 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑜𝑜 𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎 = 128

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many byte bits?

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many byte bits?

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many byte bits?

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many byte bits?

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many byte bits?

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

N bits = 2^N States

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many byte bits? Cache line is 32 bytes, so …

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

N bits = 2^N States

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many byte bits? Cache line is 32 bytes, so … 5 bits

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

2^5 = 32
N bits = 2^N States

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many byte bits? Cache line is 32 bytes, so … 5 bits

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Offset

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many set bits?

Offset

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many set bits? We have 128 sets, so 7 bits

Offset

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many set bits? We have 128 sets, so 7 bits

OffsetSet

Cache structure

set tag data
0

1

2

3

tag data tag data tag data
32 bytes

… … … … … … … …

127

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

OffsetSet

Cache structure

tag data tag data tag data tag data
32 bytes

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many tag bits?

OffsetSet

Cache structure

tag data tag data tag data tag data
32 bytes

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many tag bits? The remaining 20 bits.

OffsetSet

Cache structure

tag data tag data tag data tag data
32 bytes

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

How many tag bits? The remaining 20 bits.

OffsetSetTag

Cache structure

tag data tag data tag data tag data
32 bytes

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Which are the tag, index (set) and byte (offset) bits?

How many tag bits? The remaining 20 bits.

Cache structure

tag data tag data tag data tag data
32 bytes

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Note: Tag bits are
stored in the cache,
along with data bytes.
But set and offset bits
are not stored in the
cache; they are used to
find the location of the
byte in the cache.

Question 3

32-bit word memory: 0000 0000 0000 0000 0000 0000 0000 0000

OffsetSetTag

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[0]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[0]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[0] 0: 0000 0000 0000 0000 0000 0000 0000 0000

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[0]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[0] 0: 0000 0000 0000 0000 0000 0000 0000 0000
Address of A[0] 1: 0000 0000 0000 0000 0000 0000 0000 0001

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[0]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[0] 0: 0000 0000 0000 0000 0000 0000 0000 0000
Address of A[0] 1: 0000 0000 0000 0000 0000 0000 0000 0001

Set bits

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[0]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[0] 0: 0000 0000 0000 0000 0000 0000 0000 0000
Address of A[0] 1: 0000 0000 0000 0000 0000 0000 0000 0001

A[0]

Set bits

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

A[0]

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[1] 0: 0000 0000 0000 0000 0000 0000 0000 0100
Address of A[1] 3: 0000 0000 0000 0000 0000 0000 0000 0111

A[0]

Set bits

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[1] 0: 0000 0000 0000 0000 0000 0000 0000 0100
Address of A[1] 3: 0000 0000 0000 0000 0000 0000 0000 0111

A[0] A[1]

Set bits

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

What is the last element in the same line?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

What is the last element in the same line?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[?] 0: 0000 0000 0000 0000 0000 0000 0001 1100
Address of A[?] 3: 0000 0000 0000 0000 0000 0000 0001 1111

Set bits

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

What is the last element in the same line?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[?] 0: 0000 0000 0000 0000 0000 0000 0001 1100
Address of A[?] 3: 0000 0000 0000 0000 0000 0000 0001 1111

A[0-7]

Set bits

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[8]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[8] 0: 0000 0000 0000 0000 0000 0000 0010 0000
Address of A[8] 1: 0000 0000 0000 0000 0000 0000 0010 0001

A[0-7]

Set bits

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[8]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[8] 0: 0000 0000 0000 0000 0000 0000 0010 0000
Address of A[8] 1: 0000 0000 0000 0000 0000 0000 0010 0001

A[0-7]

Set bits

A[8-15]

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[8]?

Cache structure

tag data tag data tag data tag data

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[8] 0: 0000 0000 0000 0000 0000 0000 0010 0000
Address of A[8] 1: 0000 0000 0000 0000 0000 0000 0010 0001

A[0-7]

Set bits

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[1050] 0:

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[1050] 0:

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

byte number 1050 × 4 = 4200

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[1050] 0:

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

byte number 1050 × 4 = 4200
4200 = 0000 0000 0000 0000 0001 0000 0110 1000

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[1050] 0:

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

byte number 1050 × 4 = 4200
4200 = 0000 0000 0000 0000 0001 0000 0110 1000

Set 3

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[1050] 0:

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

byte number 1050 × 4 = 4200
4200 = 0000 0000 0000 0000 0001 0000 0110 1000

Set 3

A[1050]

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

Address of A[1050] 0:

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

byte number 1050 × 4 = 4200

A[1050]

Question 3

Line number = 4200 ÷ 32 = 131 Set number = 131 𝑛𝑛𝑎𝑎𝑚𝑚 128 = 3

Or: Set number = (Line number) mod (number of sets)

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

What are the other elements in the same line with A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

What are the other elements in the same line with A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

Address of A[1050] 0 = 0000 0000 0000 0000 0001 0000 0110 1000

Question 3

We have a byte-addressable 32-bit word memory. We also have a 4-way set associative cache,
where each cache line is 32 bytes. Total cache size is 16KB. Answer the following questions:

• Assume we have an array of 4K integers, A[4096]. Where is each of the following array
elements located in the cache? Suppose A[0] is at address 0 and integer is 4-bytes long.

What are the other elements in the same line with A[1050]?

Cache structure

tag data
0

0

0

0

tag data tag data tag data

0

… … … … … … … …

1111111

set
0000000
0000001
0000010
0000011

A[0-7]

A[8-15]

A[16-23]

A[24-31]

A[1016-1023]

Address of A[1050] 0 = 0000 0000 0000 0000 0001 0000 0110 1000

A[1048-1055]1

Question 3

	Lesson Exercises
	Question 1
	Slide Number 3
	Question 1
	Question 1
	Question 1
	Question 1
	Question 1
	Question 1
	Question 1
	Slide Number 11
	Slide Number 12
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 2
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3
	Question 3

