
Computer Architecture
TDTS10

Erik Larsson
Department of Computer Science

Linköping University

Sweden

Outline

 Control unit
 Input/Output Devices and System Buses
 Programmed I/O, Interrupt-driven I/O, and Direct Memory Access
 RISC and CISC

2

CPU

3

Input
device

Output
deviceCPU Main

memory

Secondary
memory

4

Internal Structure of the CPU

Internal Structure of the CPU

5

Internal Structure of the CPU

 The CPU executes an instruction as a sequence of control
steps. In each control step one or several microoperations are
executed.

 Execution of a microoperation, one or several control signals
have to be issued;
 a) signals for transferring content of register R0 to R1:

R0out, R1in
 b) signals for adding content of Y to that of R0 (result in Z):

R0out, Add, Zin
 c) signals for reading a memory location; address in R3:

R3out, MARin, Read

 One clock pulse triggers the activities corresponding to one
control step -> for each clock pulse the control unit generates
the control signals corresponding to the microoperations to be
executed in the respective control step.

6

7

Microoperations and Control Signals

 instruction:
 ADD R1,R3 R1 <- R1 + R3

 control steps and control signals:
1. PCout, MARin, Read, Clear Y, Carry-in, Add, Zin

2. Zout, PCin

3. MBRout, IRin

4. R1out, Yin

5. R3out, Add, Zin

6. Zout, R1in, End

8

Instruction Execution

PCout, MARin, Read, Clear Y, Carry-in, Add, Zin

9

Microoperations and Control Signals

 instruction:
 ADD R1,R3 R1 <- R1 + R3

 control steps and control signals:
1. PCout, MARin, Read, Clear Y, Carry-in, Add, Zin

2. Zout, PCin

3. MBRout, IRin

4. R1out, Yin

5. R3out, Add, Zin

6. Zout, R1in, End

10

Instruction Execution

Zout, PCin

11

Microoperations and Control Signals

 instruction:
 ADD R1,R3 R1 <- R1 + R3

 control steps and control signals:
1. PCout, MARin, Read, Clear Y, Carry-in, Add, Zin

2. Zout, PCin

3. MBRout, IRin

4. R1out, Yin

5. R3out, Add, Zin

6. Zout, R1in, End

12

Instruction Execution

MBRout, IRin

13

Microoperations and Control Signals

 instruction:
 ADD R1,R3 R1 <- R1 + R3

 control steps and control signals:
1. PCout, MARin, Read, Clear Y, Carry-in, Add, Zin

2. Zout, PCin

3. MBRout, IRin

4. R1out, Yin

5. R3out, Add, Zin

6. Zout, R1in, End

14

Instruction Execution

R1out, Yin

15

Microoperations and Control Signals

 instruction:
 ADD R1,R3 R1 <- R1 + R3

 control steps and control signals:
1. PCout, MARin, Read, Clear Y, Carry-in, Add, Zin

2. Zout, PCin

3. MBRout, IRin

4. R1out, Yin

5. R3out, Add, Zin

6. Zout, R1in, End

16

Instruction Execution

R3out, Add, Zin

17

Microoperations and Control Signals

 instruction:
 ADD R1,R3 R1 <- R1 + R3

 control steps and control signals:
1. PCout, MARin, Read, Clear Y, Carry-in, Add, Zin

2. Zout, PCin

3. MBRout, IRin

4. R1out, Yin

5. R3out, Add, Zin

6. Zout, R1in, End

18

Instruction Execution

Zout, R1in, End

Implementation of instruction set
architecture (ISA)

19

ISA-level

Hardware

Microprogram
control

ISA-level

Hardware

20

Hardwired Control

21

Control Store Organization Summary

 The control unit coordinates the CPU by issuing in each clock
cycle the appropriate control signals.

 Control signals activates the microoperations
 Control units can be hardwired or microprogrammed.
 A hardwired control unit is a combinatorial circuit
 A microprogrammed control unit is implemented like another

CPU inside the CPU.
 Hardwired controllers are faster than microprogrammed.
 Microprogrammed controllers can implement advanced

instructions

22

Outline

 Control unit
 Input/Output Devices and System Buses

 Bus organization
 Arbitration, timing

 CPU interface

 I/O interface

 Programmed I/O, Interrupt-driven I/O, and Direct Memory Access
 RISC and CISC

23

Computer system

24

Input
device

Output
deviceCPU Main

memory

Secondary
memory

25

Input/Output Devices - Bus organization

26

Input/Output Devices - Bus organization

27 28

System Buses

 A bus - 50-100 separate lines/wires
 Classified into three functional groups:

 Data lines: moving data between system components.
 Address lines: are used to designate the source or destination of data.
 Control lines: are used to control bus access, synchronize operations,

and to propagate commands throughout the system.

 In order to avoid large buses -> multiplexed bus.
 Multiplexed bus:

 Advantage: Bus width can be reduced

 Disadvantage: The system becomes slower

29

Bus Arbitration

 Devices connected to a bus can be of two kinds:
 Master: is active and can initiate a bus transfer.

 Slave: is passive and waits for requests.

 Some devices can act both as master and as slave, depending
on the circumstances:
 CPU is typically a master.

 A coprocessor, however, can initiate a transfer of a parameter from
the CPU -> CPU acts like a slave.

 An I/O device usually acts like a slave in interaction with the CPU.

 Several devices can perform direct access to the memory, in which
case they access the bus like a master.

 The memory acts only like a slave.

30

Bus Arbitration

 Since only one unit at a time can transmit over the bus,
arbitration is needed.

 Arbitration mechanisms:
 Centralized arbitration: there is a single device, the bus arbiter, that

determines who goes next.
 Decentralized (distributed) arbitration: no arbiter is needed.

 Examples:
 PCI and ISA buses use a centralized arbitration scheme.
 SCSI buses use a decentralized scheme.

31

Bus Timing

 Timing refers to the way in which events are coordinated on the
bus:
 Synchronous timing: the occurrence of events on the bus is

determined by a clock.

 Asynchronous timing: the occurrence of one event on a bus follows
and depends on the occurrence of a previous event.

 Examples:
 PCI and ISA buses use synchronous timing.

 SCSI buses use asynchronous timing.

32

Synchronous Timing
Adopt to slowest device
Easy to design

Synchronous Timing

 The bus includes a clock line; all devices on the bus can read
the clock line.

 All events on the bus start at the beginning of a clock cycle.
 A bus sequence for a synchronous memory read.
 The CPU (master) issues a start signal to mark the presence of

address and control information on the bus: the read signal is
issued on the respective control line, and the memory address
is placed on the address lines.

 After a delay of two bus cycles, the memory (slave) places the
data on the data lines and issues an acknowledge signal on the
respective control line.

 Adopt to slowest device. Easy to design

33 34

Asynchronous Timing

Asynchronous Timing

 There is no clock line on the bus.
 Each event is caused by a prior event, not by the clock pulse. The

master will wait exactly as much as is needed for the slave to finish.
 If a master has to wait long for a certain slow slave, this does not

influence how much it will have to wait for.
 A bus sequence for an asynchronous memory read.

 1. CPU (master) asserted the address lines and issue read signal
 2 wait until lines are stable and then issue MSYN signal (Master

SYNchronization).

 3. memory (slave) sees the MSYN, performs the work and asserts the
SSYN (Slave SYNchronization) signal.

 4 When the master has noticed the SSYN, it knows that data is on the
lines and latches

35

Input/Output Devices - Bus organization

 CPU and memory connected by local bus
 Industry Standard Architecture (ISA) bus
 Peripheral Component Interconnect (PCI) bus
 Peripheral Component Interconnect Express (PCI Express)
 Accelerated Graphics Port (AGP)
 Small Computer System Interface (SCSI) bus
 Universal Serial Bus (USB)
 IEEE 1394 (Firewire (Apple), i.LINK (Sony) och DV

(Panasonic))
 Thunderbolt

36

Input/Output Devices - Bus organization

 A bus is a common electrical pathway between multiple devices.
In addition to such "system buses", there are buses also inside
the CPU (internal buses).

 System buses differ in the number and organization of lines,
arbitration, timing, and specific bus operations.

 Different buses are connected through adequate bridges (bridges
also perform buffering of information);

 Advantages of architectures with multiple buses:
 avoids bus conflicts;
 insulates CPU-to-memory traffic from I/O traffic;

 allows the system to support a variety of I/O devices tailored for
different bus standards.

 In order to connect a device to a bus, the device controller must fit
to the respective bus features.

37

Input/Output Devices - Bus organization

 Bus conflict -> bus arbiter decides on access.
 I/O devices are given preference over the CPU; usually devices

cannot be stopped -> forcing them to wait would result in loss
data.

 When no I/O is in progress, the CPU has all bus cycles for itself
to reference memory.

 When some I/O device is also running and requests the bus, it
gets it -> cycle stealing slows down the computer.

38

Outline

 Control unit
 Input/Output Devices and System Buses

 Bus organization
 Arbitration, timing

 CPU interface

 I/O interface

 Programmed I/O, Interrupt-driven I/O, and Direct Memory Access
 RISC and CISC

39 40

External Interface of the CPU Chip

External Interface of the CPU Chip
 The CPU pins can be divided into: address pins, data pins, and control pins.

 address pins: the address is output to the system bus on these pins, for read/write
operations. With m address pins, 2^m locations can be addresses.

 data pins: data bits are output/received to/from the system bus on these pins.
 with n data pins an n-bit word can be read written in a single operation.

 control pins:
 bus control: the CPU uses these pins to control the rest of the system and

tell it what it wants to do; control signals are propagated over the system
bus.

 interrupt pins: on these pins the CPU gets signals from I/O modules; they
usually indicate that an I/O operation has been completed;

 bus arbitration: are needed to regulate traffic on the system bus, to prevent
devices from trying to use it at the same time;

 coprocessor: facilitate communication with coprocessors, such as floating
point chips, graphic chips, etc.

41

Outline

 Control unit
 Input/Output Devices and System Buses

 Bus organization
 Arbitration, timing

 CPU interface

 I/O interface
 access, I/O processing

 Programmed I/O, Interrupt-driven I/O, and Direct Memory Access
 RISC and CISC

42

43

I/O Modules I/O Modules

 An I/O module has an interface to the device and to the system bus
 Major functions of an I/O module:

 control and timing of the operations;
 bus communication;
 device communication;

 data buffering;
 error detection.

 A possible sequence data transfer between a device and the CPU:
 CPU interrogates the status of I/O module (device).
 I/O module returns device status.

 If the device is OK and ready, the CPU requests the transfer of data by
means of a command to the I/O module.

 The I/O module issues commands to the device and obtains data.

44

45

Memory-mapped I/O

46

Isolated I/O

47

I/O Processing

 Techniques for I/O:
 Programmed I/O

 Interrupt-driven I/O
 Direct memory access

48

Programmed I/O

49

Interrupt-driven I/O

OS is involved

Interrupts

50

Fetch
Instruction

Execute
Instruction

Check and
process
interrupts

Interrupts
disabled

Interrupts
enabled

Process States

51

RunningReady

Waiting

New

Terminated

preemption

dispatch

I/O, wait
I/O,
event completion

admitted

exit

Context Switch

5238

Process A Process B

A running

B running

A running

Context switch

Context switch

Save state of A into PCBA

Load state of B from PCBB

Save state of B into PCBB

Load state of A from PCBA

53

Direct Memory Access (DMA)

54

Direct Memory Access (DMA)

Summary

 CPU, memory and I/O devices are connected by system buses.
 The CPU chip is connected through address, data, and control pins.
 A bus consists of data, address, and control lines
 Bus arbitration can be centralized or decentralized.
 Bus coordination can be synchronous or asynchronous.
 I/O modules interface an I/O device to the system bus.
 I/O device can be memory-mapped or isolated I/O.
 Techniques for I/O: programmed I/O, interrupt-driven I/O, and direct

memory access.

55

Outline

 Control unit
 Input/Output Devices and System Buses
 Programmed I/O, Interrupt-driven I/O, and Direct Memory Access
 RISC and CISC

 The problem and motivation
 Register file

 Instruction set
 Pipeline

56

Semantic gap

57

In order to improve the efficiency of software
development, new and powerful programming languages
have been developed (Ada, C, C++) Other languages like
Java also exists. The more advanced languages provide:
high level of abstraction, conciseness, power.

Semantic gap

 Problem: How should HLL be compiled and executed on an
architecture?

 Two directions:
 Complex instruction set computers (CISC) - complex architecture

with a large number of instructions and addressing modes to be
close to HLL

 Reduced instruction set computers (RISC) - simpler architecture
and few instructions and addressing modes so that execution is
faster

58

Motivation

59

OccurrenceOccurrence Machine-
instruction
weighted

Machine-
instruction
weighted

Memory-
reference
weighted

Memory-
reference
weighted

Pascal C Pascal C Pascal C
Assign
Loop
Call
If
Other

45% 38% 13% 13% 14% 15%
5% 3% 42% 32% 33% 26%

15% 12% 31% 33% 44% 45%
29% 43% 11% 21% 7% 13%
6% 1% 3% 1% 2% 1%

The source code
contains this amount
of instructions

For each type, this is
the amount of machine

instructions.

 Conclusions:
 There are many assign constructions (X=5, Y=X+Z, ...) in a HLL, but each such instruction

results in few machine instructions, often with few memory references.
 On the other hand, there are only few subroutine/procedure/etc (call/return) but each such

translates into a high number of machine instructions, with many memory references.

For each type, this is
the amount of memory

references.
Conclusions

 Common with simple (ALU and move) instructions
 Common with simple addressing modes
 Large frequency of operand accesses; on average each

instruction references 1.9 operands
 Most of the referenced operands are scalars (so they can be

stored in a register) and are local variables or parameters
 Optimizing the procedure CALL/RETURN mechanism promises

large benefits in speed

60

Outline

 Control unit
 Input/Output Devices and System Buses
 Programmed I/O, Interrupt-driven I/O, and Direct Memory Access
 RISC and CISC

 The problem and motivation
 Register file

 Instruction set
 Pipeline

61

Program execution analysis

 Procedure Calls
 Even if only 15% of the HLL instructions are CALL or RETURN,

they are executed most of the time, because of their complexity.

 A CALL or RETURN is compiled into a relatively long sequence of
machine instructions with a lot of memory references.

 Some statistics concerning procedure calls:
 Only 1.25% of called procedures have more than six parameters.

 Only 6.7% of called procedures have more than six local variables.
 Chains of nested procedure calls are usually short and only very

seldom longer than 6.

62

Alternative 1: Stack

63

T0

T1

2

T3

PUSH(Item 1)

6PUSH(Item 2) T2

POP

POP

instruction 1
call proc A
instruction 3
instruction 4
instruction 5
call proc A
instruction 7

procA:
instruction 11
instruction 12
instruction 13
return

T1

T0

T2
T3

 PUSH/POP: accesses the memory where the stack is

Alternative 2: Registers

64

High number of registers makes it
possible to store return address and
parameters in registers. Instead of
making use of time consuming memory
accesses (cache or main memory) to
store/load parameters, registers offers
a fast alternative

CWP: current window pointer
CWP

R0 Rn

Level i:

Level i+1

IN LOCAL OUT

Register Window

All registers

IN LOCAL OUT

Level i+2 IN LOCAL OUT

High number of registers

 Variables and intermediate results can be stored in registers
and do not require repeated loads and stores from/to memory.

 All local variables of procedures and the passed parameters
can be stored in registers

65

Outline

 Control unit
 Input/Output Devices and System Buses
 Programmed I/O, Interrupt-driven I/O, and Direct Memory Access
 RISC and CISC

 The problem and motivation
 Register file

 Instruction set
 Pipeline

66

67

RISC architecture

 Limited instruction set with simple instructions
 speeds up execution, hardwired (goal - 1 instruction per machine

cycle)
 Instructions use only few addressing modes

 register, direct, register indirect, displacement
 Instructions are of fixed length and uniform format

 ease load and decode, address field at same position
 Load-store architecture (register-to-register operands)

 without memory reference

 with memory reference

FI DI CA TR

FI DI EI
FI: Fetch Instruction
DI: Decode Instruction
EI: Execute Instruction
CA: Compute Address
TR:Transfer

Implementation of instruction set
architecture (ISA)

68

ISA-level

Hardware

Microprogram
control

ISA-level

Hardware

Simpler and faster
controller with RISC

Outline

 Control unit
 Input/Output Devices and System Buses
 Programmed I/O, Interrupt-driven I/O, and Direct Memory Access
 RISC and CISC

 The problem and motivation
 Register file

 Instruction set
 Pipeline

69

70

RISC architecture

 Load-store architecture (register-to-register operands)
 without memory reference

 with memory reference

FI DI CA TR

FI DI EI
FI: Fetch Instruction
DI: Decode Instruction
EI: Execute Instruction
CA: Compute Address
TR:Transfer

Pipelining

71

2*T

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI: Fetch Instruction
DI: Decode Instruction
CO: Calculate operand
FO: Fetch Operand
EI: Execute Instruction
WO: Write Operand

72

Pipeline Hazards

 Structural hazards
 Data hazards
 Control hazards

Pipeline hazards prevent the next instruction
The instruction is said to be stalled.
When an instruction is stalled, all instructions later in the
pipeline than the stalled instruction are also stalled.
Instructions earlier than the stalled one can continue.
No new instructions are fetched during the stall.

Structural hazards

73

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

ADD R4, X

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Structural hazards occur when a certain
resource (memory, functional unit) is
requested by more than one instruction at
the same time.

Structural hazards

74

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

ADD R4, X

Instruction 2

Instruction 3

Instruction 4

Instruction 5

FI

Penalty: 1 cycle

Load/store architecture - only load and store
instructions may operate on main memory. Other
instructions, such as add, do only operate on registers.

RISC pipeline - delayed load

75

FI DI EI

FI DI CA TR

FI DI EI

LOAD R1,X

ADD R2,R1

ADD R4,R3

R1 ready after TR
Two alternatives
Delay-stall or delay load

R1 ok

RISC pipeline - delayed load

76

FI DI EI

FI DI CA TR

FI DI EI

LOAD R1,X

ADD R4,R3

ADD R1,R2

load-delay slot

R1 ok

Comparing RISC and CISC

 Assume a program with 80% simple instructions and 20% complex
 CISC machine (cycle time is 100 ns (10-7 s)):

 simple instructions = 4 cycles
 complex instructions = 8 cycles

 RISC machine (cycle time is 75 ns (0.75 * 10-7 s)):
 simple instructions = 1 cycle
 complex operations = sequence of instructions (average 14) = 14 cycles

 How much time takes a program of 1 000 000 instructions?
 CISC: (106*0.80*4 + 106*0.20*8)*10-7 = 0.48 s
 RISC: (106*0.80*1 + 106*0.20*14)*0.75*10-7 = 0.27 s

77

Comparing RISC and CISC

 Complex operations take more time on the RISC, but their
number is small;

 because of its simplicity, the RISC works at a smaller cycle
time; with the CISC, simple instructions are slowed down
because of the increased data path length and the increased
control complexity.

78

CISC

 A large number of instructions
 Complex instructions and data types
 Many and complex addressing modes.
 High-level instructions map direct to instructions
 Microprogramming to implement instructions
 Memory bottleneck is a major problem:

 complex addressing modes and multiple memory

 accesses per instruction.

79

CISC

80

ISA1

Hardware

Microprogram
control

ISA-level

Hardware

ISA2

Microprogram
control

CISC

 Advantages:
 Easier to map high-level instruction to machine instruction

 Smaller programs; less memory
 Fewer instructions, lead to smaller execution time.

 Disadvantages
 A large instruction set is difficult to decode and execute
 Instructions may not match all high-level language exactly,

 Complex design tasks.

81 82

CISC processors

 VAX 11/780
 Nr. of instructions: 303

 Instruction size: 2 – 57 bytes
 Instruction format: not fixed

 Addressing modes: 22
 Number of general purpose registers: 16

 Pentium
 Nr. of instructions: 235
 Instruction size: 1 – 11 bytes
 Instruction format: not fixed

 Addressing modes: 11
 Number of general purpose registers: 8

CISC - Intel 486

 32-bit processor
 Registers

 8 general
 6 address
 2 status/control

 1 instruction pointer (program counter)

 On-chip floating point unit
 Micro-programmed control
 Instruction set:

 253 instructions
 Instruction size: 1-12 bytes

 Addressing modes: 11
83

RISC

 Limited instruction set
 Simple instructions and data types.
 Few and simple addressing modes
 Instructions are of fixed length
 Load-and-store architecture
 Hardwired controller to implement instructions

84

Limited instruction set, simple
instructions, few addressing modes,
and instructions of fixed length make
the control unit simpler and faster.

Load/store reduces pipeline penalties

85

RISC processors

 Sun SPARC
 Nr. of instructions: 52

 Instruction size: 4 bytes
 Instruction format: fixed

 Addressing modes: 2
 Number of general purpose registers: up to 520

 PowerPC
 Nr. of instructions: 206
 Instruction size: 4 bytes
 Instruction format: not fixed (but small differences)

 Addressing modes: 2
 Number of general purpose registers: 32

86

Summary

 Both RISCs and CISCs try to cover the semantic gap

 CISC approach: implements more and more complex instructions

 RISC approach: try to simplify the instruction set

 Main features of RISC architectures are:

 reduced number of simple instructions,
 few addressing modes,

 load-store architecture,
 instructions are of fixed length and format,

 a large number of registers is available.
 One main concerns for RISC - maximize the efficiency of pipelining.

 Present architectures often include both RISC and CISC features.

RISC Architectures

 MIPS
 SPARC
 PowerPC
 ARM

87

MIPS

 MIPS(Microprocessor without Interlocked Pipeline Stages)
 MIPS32, 32-bits, MIPS64, 64-bits
 32 general purpose registers (R0=0, R31=link register),

Program counter, 2 register for multiplication/division
 Load/store architecture
 Fixed-length instruction format (32 bits)

 Immediate (I-type): load and store instructions. The immediate
value is 16 bits.

 Jump (J-type): 26-bit target address is combined with higher-order
bits of PC to get absolute address

 Register (R-type): Arithmetic and logical instructions use the format
as well as instructions where the target address is specified
indirectly via a register.

88

MIPS instruction format

89

op

I-type

31 26|25 21|20 16|15 0

rs rt immediate value

op

J-type

31 26|25 0

target address

op

R-type

31 26|25 21|20 16|15 11|10 6|5 0

functionrs rt rd sa

MIPS memory structure

90

Reserved

Text
segment

Static

Dynamic

Stack
7FFF FFFF

1000 0000

400 0000

0

SPARC

 Scalable Processor ARCitecture (SPARC) developed by SUN
and is based on RISC II from University of California, Berkely.

 Open architecture (license). Different companies makes the
processor.

 64-bit since 1993.
 A user’s program sees 32 general purpose registers of 64-bits.

r31-r24 are in-registers, r23-r16 are local registers, r15-r8 out
registers and r7-r0 are global registers

 2 addressing modes
 Register Indirect with Immediate -> address=content of Rx +

constant (Rx can be any register and constant is 13-bit
displacement)

 Register Indirect with Index -> address=content of Rx + content of
Ry (Rx and Ry can be any register)

91

SPARC - instruction set

 Instruction length: 32 bits
 Only load and store access memory
 Opcode (2-bits) - more bits to detail specific opcode
 Arithmetic instructions:

 Add - add rs1, rs2, rd rd<-rs1+rs2
 Mul - mul rs1, rs2, rd rd<-rs1*rs2 (64 bits times 64 times -> 128 bits)

92

SPARC - procedure calls

93

Caller Callee Usage
%o0 %i0 First argument

%o1 %i1 Second argument

%o2 %i2 Third argument

%o3 %i3 Fourth argument

%o4 %i4 Fifth argument

%o5 %i5 Sixth argument

%o6 %i6 Stack pointer

%o7 %i7 Return adress

SPARC - instruction set

94

General format

op

31 30 29 25 24 19 18 14 13 12 5 4 0

rd op3 rs1 i rs2

Register-register instructions

op

31 30 29 25 24 19 18 14 13 0

rd op3 rs1 i

Register-immediate instructions

i=0

i=1

95

Immediate addressing

 ADD R4,#3 effect: R4<-R4+3

The operand is directly in
one of the fields of the
instruction word.

96

Direct addressing

 ADD R4,X effect: R4<-R4+[X]

The effective address of
the operand is in the
instruction word.

97

Register addressing

 ADD R4,R3 effect: R4<-R4+R3

Register addressing is
similar to direct
addressing, but the
address field refers to a
register rather than
main memory.

98

Memory indirect addressing

 ADD R4,(X) effect: R4<-R4+[[X]]

The instruction word contains the
effective address of a memory location
which actually contains the effective
address of the operand,

With indirect addressing a larger
 number of memory words can be
addressed than with direct
addressing

99

Register indirect addressing

 ADD R4,(R1) effect: R4<-R4+[R1]

Register indirect
addressing is similar to
indirect addressing, but
the address field refers
to a register rather then
to main memory.

100

Relative addressing Relative addressing is used in branch
instructions. The target of a branch is
usually near to the instruction executed ->
fewer bits are needed to store the
displacement than the effective address of
the target instruction.

SPARC - Window Management
 Up to 32 register windows where each window is 32 registers
 A constant NWINDOWS defines the number of windows
 A pointer CWP (Current Window Pointer) points at the active window

101

r31

r24
r23

r16
r15

r8
r7

r0
global registers

out registers

local registers

in registers
PC

63 0 63 0

PowerPC

 PowerPC, developed by IBM. Early attempts from 1975. In
early 1990, Motorola, Apple and IBM begun working on
PowerPC (power is a RISC instruction set architecture (ISA).

 PowerPC is a 64-bit architecture that can operate in 32-bit or
64-bit mode. Dynamic change between modes. Allows 32-bit
binaries (programs) to be executed.

102

PowerPC

103

Data cache

Fixed-point
Processing
Unit (FXU)

Floating-point
Processing
Unit (FPU)

Branch
Processing
Unit (BPU)

Address Instruction

Address Instruction

Main memory

Instruction
cache

DataAddress

DataAddress DataAddress

Status

PowerPC - register set

 32 general purpose registers for integer data
 32 general purpose registers for floating point data
 1 condition register - keeps conditions from FXU and FPU
 1 link register - keeps the return address of procedure calls

104

PowerPC - addressing modes

 Register indirect with immediate
 Effective address = content of rA or 0 + constant

 Register indirect with index
 Effective address = content of rA + content of rB

 Register indirect with immediate update
 Effective address = content of rA or 0 + constant
 rA = effective address

 Register indirect with index update
 Effective address = content of rA or 0 + content of rB

 rA = effective address

105

PowerPC - instruction set

106

op

0 5 6 10 11 15 16 20 21 22 30 31

rd ra rb OE rc

Register format
op

0 5 6 10 11 15 16 31

rd ra 16-bit immediate value

Immediate format
op

0 5 6 31

24-bit immediate value

Unconditional branch format

op

0 5 6 10 11 15 16 31

rd ra 16-bit displacement

Register indirect format

op

0 5 6 10 11 15 16 20 21 31

rd ra options

Load/store format

rb

ARM

 Acorn RISC Machine (ARM), later Advanced RISC Machine
 Embedded systems such as mobile phones
 First versions had 26-bit address space
 DSP-instructions, Single-Instruction Multiple Data (SIMD)

instructions
 37 registers; 31 general purpose + 6 program status

107

ARM - register set

 16 registers can at any time be accessed by the user,
depending on the mode of the processor

 The processor can be in 7 different modes

108

Processor Mode

Privileged ModeUser Mode

System Mode Exception Mode

Supervisor Abort Undefined Interrupt Fast Interrupt

User programs run in
user mode. Privileged
mode is for OS or
exceptions (something
unusual happened).

ARM

 9 addressing modes
 16 conditions possible on each instruction

 Equal (Z=1), Not Equal (Z=0), Carry (C=1), No Carry (C=0),
Negative (N=0), Not negative (N=1), Overflow (V=1), Not overflow
(V=0), Unsigned higher (C=1 and Z=0), Unsigned lower (C=0 and
Z=1), Signed greater than or equal (N=V), Signed less than (N!=V),
Signed greater than (Z=0 and N=V), Signed less than or equal (Z=1
or N!=V), Always, Never

109

Summary

 Instruction size: 4 bytes (MIPS, SPARC, PowerPC)
 Instruction sets for PowerPC and ARM are fairly advanced
 ARM has quite many addressing modes

110

Questions
 What does the control unit do?
 How can you implement the control unit?
 If execution of an instruction consists of fetch and execute, detail what

the control unit should do during fetch.
 What is RISC? CISC? Which to pick?
 What is typical for a CISC (RISC)?
 Name a few RISC processors (and a few CISC processors)
 What is the RISC philosophy to minimize “FO hazards”?
 What type of hazard is a “FO” hazard?
 How can I/O be handled?
 What is interrupt? How does it work?
 What is programmed I/O? Name disadvantages.
 Detail an instruction you would not see in a RISC machine
 Which alternative exists to handle subroutine and procedure calls

(which is best from performance (speed) point of view)
 Is fix-length instructions good or bad?

111
www.liu.se

