
Computer Architecture

U h D B d l i Unmesh D. Bordoloi

1

2

The first electronic computersThe first electronic computers

ENIAC (Electronic Numerical Integrator and Calculator) –
The world’s first electronic computer

3

ENIACENIAC

ENIAC id d di i l j d  ENIAC provided conditional jumps and was
programmable, clearly distinguishing it from earlier
calculatorscalculators

 Programming was done manually by plugging cables and  Programming was done manually by plugging cables and
setting switches, and data was entered on punched cards.
Programming for typical calculations required from half g g yp q
an hour to a whole day

 ENIAC was a general-purpose machine, limited primarily
by a small amount of storage and tedious programming

4

ENIACENIAC

 J. Presper Eckert and John Mauchly at the Moore
School of the University of Pennsylvania

 Funded by the United States Army Funded by the United States Army

 B ti l d i W ld W II b t t  Became operational during World War II but was not
publicly disclosed until 1946

5

Von NeumannVon Neumann

 In 1944 J hn n Ne mann as attracted t the ENIAC r ject The  In 1944, John von Neumann was attracted to the ENIAC project. The
group wanted to improve the way programs were entered and discussed
storing programs as numbers; von Neumann helped crystallize the ideas
and wrote a memo proposing a stored-program computer called EDVAC p p g p g p
(Electronic Discrete Variable Automatic Computer).

 Herman Goldstine distributed the memo and put von Neumann’s name on p
it, much to the dismay of Eckert and Mauchly, whose names were omitted.
This memo has served as the basis for the commonly used term von
Neumann computer. Several early pioneers in the computer field believe
that this term gives too much credit to von Neumann who wrote up the that this term gives too much credit to von Neumann, who wrote up the
ideas, and too little to the engineers, Eckert and Mauchly, who worked on
the machines.

 For this reason, the term does not appear elsewhere in your textbook
book.

6

Why study Computer Architecture ?Why study Computer Architecture ?

7

Main goals of this courseMain goals of this course

 Understand and explain the main components of
a computer

 Make connections between programs and the
way they are executed on hardware way they are executed on hardware
infrastructure
E l t h th diff t d i h i  Evaluate how the different design choices
influence the performance of computer

 Understand the interaction between the different
components and their impact on performancep p p

8

Will be evaluated by Will be evaluated by …

 Labs

 Written exam: Ability to solve problems

 Written exam: Ability to explain the  Written exam: Ability to explain the
fundamental concepts

9

In the classroomIn the classroom
 Sometimes you will solve problems Sometimes, you will solve problems
 I will interact with you, but this will not be graded

 For this please be seated in a small group of 2 For this, please be seated in a small group of 2
or 3

Y l b  You may use your lab group

10

An experiment with TwitterAn experiment with Twitter
 Optional Optional
 Use #tdts10
 Use to ask doubts, or share interesting results,

when you do not feel like spamming the entire when you do not feel like spamming the entire
group
U l i l l h l i  Use also in classroom – only when solving
problems

11

ExaminationExamination
The course will have three obligatory The course will have three obligatory
exams/homework
 Exam Exam
 Lab

L bLab
This is obligatory and you can get a pass/fail

dgrade
Final Exam
There will be a final written exam. More details
will be shared later

1212

PersonnelPersonnel

Unmesh Bordoloi Kursledare (examinator)Unmesh Bordoloi- Kursledare (examinator)
 Epost: unmesh.bordoloi@liu.se

 Dimitar Nikolov (Teaching Assistant)
 Epost: dimitarnikolov@liu se Epost: dimitar.nikolov@liu.se

 Madeleine Dahlqvist (Kurssekreterare)
 Epost: madeline.hager.dahlqvist@liu.se

 Patrick Lambrix (Director of Studies)Patrick Lambrix (Director of Studies)
 Epost: patrick.lambrix@liu.se

1313

1414

TextbookTextbook

 The recommended textbook is:
 David A. Patterson and John L. Hennessy: J y

Computer Organization and Design - The
Hardware / Software Interface, 4th Edition, , ,
Morgan Kaufmann

 Available as e-book in the university library Available as e-book in the university library

1515

Other literatureOther literature

 William Stallings: Computer Organization and
Architecture, Prentice Hall International, Inc..

 Sven Eklund, Avancerad datorarkitektur,
Studentlitteratur, 1994.

 Andrew S. Tanenbaum, Structured Computer
Organization, 4th edition, Prentice Hall Organization, 4th edition, Prentice Hall
International, Inc., 1999.

 V C Hamacher et al : Computer Organization 4th  V. C. Hamacher, et al.: Computer Organization, 4th
edition, McGraw-Hill, 1996.

1616

Today Today

 4 hours!

 3 + 1 hour!

17

So So …

18

TechnologyTechnology
 Electronics technology continues to evolve
 Increased capacity and performance
 Reduced cost

Year Technology Relative performance/cost
1951 Vacuum tube 1
1965 T i t 351965 Transistor 35
1975 Integrated circuit (IC) 900
1995 Very large scale IC (VLSI) 2,400,0001995 Very large scale IC (VLSI) 2,400,000
2005 Ultra large scale IC 6,200,000,000

19

Yesterday’s fiction is now reality Yesterday’s fiction is now reality Yesterday s fiction is now reality Yesterday s fiction is now reality

Applications empowered by computers:Applications empowered by computers:

 Human genome projectHuman genome project

World Wide WebWorld Wide Web

 Search EnginesSearch Engines

 Social NetworksSocial Networks

20

Classes of ComputersClasses of Computers

21

Classes of ComputersClasses of Computers
 Desktop computers
 General purpose, variety of software
 Subject to cost/performance tradeoff

 Server computers
 Network basedNetwork based
 High capacity, performance, reliability
 Range from small servers to building sized Range from small servers to building sized

 Embedded computers
 Hidden as components of systems
 Stringent power/performance/cost constraints

22

Below your programBelow your programBelow your programBelow your program

 We constantly interact with these computersWe constantly interact with these computers
 E.g., via apps on iPhone or via a Word

ProcessorProcessor

 How does an application interact with the
hardware?

23

Language of the hardwareLanguage of the hardwareLanguage of the hardwareLanguage of the hardware

 The hardware understands on or off Hence, The hardware understands on or off. Hence,
the language of the hardware needs two
symbols 0 and 1 symbols 0 and 1.

C l f d bi di i bi Commonly referred to as binary digits or bits.

 2 letters do not limit what computers can do
(just like the finite letters in our languages)(j g g)

24

Language of the hardwareLanguage of the hardwareLanguage of the hardwareLanguage of the hardware

 Instructions are collections of bits that the Instructions are collections of bits that the
computer understands

 What our programs instruct the computer to
d h i i do are the instructions:

 Hundreds/thousands/millions of lines of code
(instructions) are hidden beneath our apps and () pp
programs

25

Hierarchical Layers of Program Codey g
 High-level language

L l f b i l  Level of abstraction closer to
problem domain

 Provides for productivity and Provides for productivity and
portability

 Assembly languagey g g
 Textual representation of

instructions
 Hardware representation
 Binary digits (bits)
 Encoded instructions and data

26

Below your programBelow your programBelow your programBelow your program
• Application software

– Written in high-level language

• System software
– Compiler: translates HLL code to

machine code
– Operating System: service code

• Handling input/output
• Managing memory and storage
• Scheduling tasks & sharing resources

H d• Hardware
– Processor, memory, I/O controllers

27

Under the CoversUnder the CoversUnder the CoversUnder the Covers

 Understanding the underlying hardware (the Understanding the underlying hardware (the
computer!) is the main focus of this course

 So, what are the main components of the
?computer?

28

Components of a Computer

 Same components for
ll ki d f all kinds of computer
 Desktop, server,

b dd dembedded

Anatomy of a ComputerAnatomy of a Computer

Output
device

Network
cable

Input InputInput
device

Input
device

30

Opening the BoxOpening the Box

 Motherboard Motherboard
 I/O connections

 Memory (DRAM)y ()

 CPU or central  CPU or central
processing unit

31

AMD Barcelona: 4 processor cores

32

Inside the Processor (CPU)Inside the Processor (CPU)

 Datapath: performs operations on data
 Control: sequences datapath, memory, Control: sequences datapath, memory, ...
 Cache memory
 Small fast SRAM memory for immediate access to

data

33

Abstractions

 Abstraction helps us deal with complexity Abstraction helps us deal with complexity
 Note abstraction in both hardware and

ftsoftware
 Hide lower-level detail

 Instruction set architecture (ISA)
 The hardware/software interface The hardware/software interface

 Implementation
 The details underlying and interface

34

Our Topics in this CourseOur Topics in this CourseOur Topics in this CourseOur Topics in this Course

 InstructionsInstructions
 Arithmetic

Th P The Processor
 Memory
 Input/Output
 Multi-cores and GPUsMulti cores and GPUs

35

PerformancePerformance

 Why is performance important?

 For purchasers: to choose between computers
F d k h l h For designers: to make the sales pitch

 Defining performance is not straightforward!
A l i h i l h h diffi l  An analogy with airplanes shows the difficulty

36

Defining Performance
 Which airplane has the best performance?

Boeing 747

Boeing 777

Boeing 747

Boeing 777

Douglas
DC-8-50

BAC/Sud
Concorde

Douglas DC-
8-50

BAC/Sud
Concorde

0 100 200 300 400 500

Passenger Capacity

0 2000 4000 6000 8000 10000

Cruising Range (miles)

BAC/Sud
Concorde

Boeing 747

Boeing 777

BAC/Sud
Concorde

Boeing 747

Boeing 777

0 500 1000 1500

Douglas
DC-8-50

Concorde

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-
8-50

Concorde

Passengers x mphCruising Speed (mph) Passengers x mph

37

Response Time and Throughput

 Response time

 As a user of a smart phone (embedded computer), or
l h h d f h b !laptop, the one that responds faster is the better!

 Response time = How long it takes to do a task?

 Response time = the total time required for the computer
to complete a task, including disk accesses, memory
accesses I/O activities operating system overheads CPU accesses, I/O activities, operating system overheads, CPU
execution time …

38

Response Time and Throughput

 Throughput
 If I am running a data center with several servers, faster

computer is the one that completes several tasks in one
day!day!

 Total work done per unit time
• e g tasks/transactions/ per hour• e.g., tasks/transactions/… per hour

 How are response time and throughput affected by
R l i h i h f i ? Replacing the processor with a faster version?

 Adding more processors?
L k i h b k f di i (P 28) Look in the textbook for a discussion (Page 28)

39

Relative PerformanceRelative Performance
 Define Performance = 1/Execution Time
 Performancex > Performancey

 1/Execution Time > 1/Execution Time  1/Execution Time x > 1/Execution Time y
 Execution Time y > Execution Time xy

n XY

YX

timeExecutiontimeExecution
ePerformancePerformanc

XY

40

Relative PerformanceRelative Performance
 Define Performance = 1/Execution Time
 “X is n time faster than Y”

P fP f
n XY

YX

time Executiontime Execution
ePerformancePerformanc

 Example: time taken to run a program
 10s on A, 15s on B
 Execution TimeB / Execution TimeA
= 15s / 10s = 1.5

 So A is 1.5 times faster than B

41

Measuring Execution TimeMeasuring Execution Time

El d  Elapsed time
 Total response time, including all aspects

• Processing, I/O, OS overhead, idle time
 Determines system performance

 CPU time
 Time spent processing a given jobTime spent processing a given job

• Discounts I/O time, other jobs’ shares
 Different programs are affected differently by CPU  Different programs are affected differently by CPU

and system performance

42

CPU Clocking

 Operation of digital hardware governed by a
 l kconstant-rate clock

 Clock period: duration of a clock cycle
 e g 250ps = 0 25ns = 250×10–12s e.g., 250ps = 0.25ns = 250×10 s

 Clock frequency (rate): cycles per second
4 0 GH 4000 MH 4 0 109H e.g., 4.0 GHz = 4000 MHz = 4.0×109Hz

43

CPU TimeCPU Time
TimeCycleClockCyclesClockCPUTimeCPU 

RCl k
Cycles Clock CPU

TimeCycleClockCyclesClockCPUTime CPU





Performance improved by
RateClock

p y
Reducing number of clock cycles
 Increasing clock rate Increasing clock rate
Hardware designer must often trade off clock rate

 l against cycle count

44

CPU Time ExampleCPU Time Example
 Computer A: 2GHz clock, 10s CPU time

D i i C B Designing Computer B
 Aim for 6s CPU time
 Can do faster clock but causes 1 2 × clock cycles compared to A Can do faster clock, but causes 1.2 × clock cycles compared to A

 How fast must Computer B clock be i.e., what is the clock
rate for Computer B?rate for Computer B?

B
B

RateClock
Cycles Clock CPUTime CPU 

BRateClock

45

CPU Time ExampleCPU Time Example
 Computer A: 2GHz clock, 10s CPU time

D i i C B Designing Computer B
 Aim for 6s CPU time
 Can do faster clock but causes 1 2 × clock cycles compared to A Can do faster clock, but causes 1.2 × clock cycles compared to A

 How fast must Computer B clock be?

B
B

RateClock
Cycles Clock CPUTime CPU 

BRateClock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock A

B

B
B




46

CPU Time ExampleCPU Time Example
 Computer A: 2GHz clock, 10s CPU time
 Designing Computer B

 We aim for 6s CPU time
W d f l k b 1 2 l k l We can do faster clock, but causes 1.2 × clock cycles

 How fast must Computer B clock be?

A
A

Cycles Clock CPUTimeCPU 
A

A
Rate Clock

Time CPU 

9
AAA

10202GHz10s
Rate ClockTime CPUCycles lock



C

10202GHz10s 

47

CPU Time ExampleCPU Time Example
 Computer A: 2GHz clock, 10s CPU time

D i i C B Designing Computer B
 Aim for 6s CPU time
 Can do faster clock but causes 1 2 × clock cycles Can do faster clock, but causes 1.2 × clock cycles

 How fast must Computer B clock be?

B
B

RateClock
Cycles Clock CPUTime CPU 

Cycles Clock1.2Cycles ClockRateClock AB 


BRateClock

4GHz102410201.2RateClock

6sTime CPU
Rate Clock

99
B

B





4GHz
6s6s

Rate Clock B 
48

Instruction Count and CPIInstruction Count and CPI
nInstructio per CyclesCount nInstructioCycles Clock 

Time Cycle ClockCPICount nInstructioTime CPU 

Rate Clock
CPICountnInstructio 



 Instruction Count for a program
 Determined by program, ISA and compilerDetermined by program, ISA and compiler

 Average cycles per instruction
 Determined by CPU hardware Determined by CPU hardware
 If different instructions have different CPI

Average CPI affected by instruction mixAverage CPI affected by instruction mix

49

CPI ExampleCPI Example
 Computer A: Cycle Time = 250ps, CPI = 2.0
 C B C l Ti 500 CPI 1 2 Computer B: Cycle Time = 500ps, CPI = 1.2
 Same ISA
Which is faster, and by how much?

ATime CycleACPICount nInstructioATime CPU 

50

CPI ExampleCPI Example
 Computer A: Cycle Time = 250ps, CPI = 2.0
 C B C l Ti 500 CPI 1 2 Computer B: Cycle Time = 500ps, CPI = 1.2
 Same ISA
Which is faster, and by how much?

ATimeCycleACPICountnInstructioATimeCPU 

TimeCycleCPICountnInstructioTimeCPU
500psI250ps2.0I

ATimeCycleACPICountnInstructioATime CPU





A is faster…

600psI500ps1.2I
BTimeCycleBCPICountnInstructioBTime CPU





1.2
500psI
600psI

ATime CPU
BTime CPU





 …by this much
A

51

Concluding Remarks

Cost/performance is improving
Due to underlying technology development

Hierarchical layers of abstractiony
 In both hardware and software

 Instruction set architecture Instruction set architecture
The hardware/software interface

E i i h b f Execution time: the best performance measure
Power is a limiting factorg
Use parallelism to improve performance

52

