Lecture 9: MIMD Architectures

- Introduction and classification
- Symmetric multiprocessors
- NUMA architecture
- Clusters

Introduction

- A set of general purpose processors is connected together.
- In contrast to SIMD processors, MIMD processors can execute different programs on different processors.
 - Flexibility!
- MIMD processors work asynchronously, and don’t have to synchronize with each other.
- By 90s, SIMD lost ground, since general purpose microprocessors are now very cheap and powerful.
 - MIMD machines could be built from commodity (off-the-shelf) microprocessors with relatively little effort.
- MIMD architectures can be highly scalable, if an appropriate memory organization is used.
SIMD vs MIMD

- SIMD computers require less hardware than MIMD computers (single control unit).
- However, SIMD processors are specially designed, and tend to be expensive and have long design cycles.
- Not all applications are naturally suited to SIMD processors.
- Conceptually, MIMD computers cover SIMD need.
 - Having all processors executing the same program (single program multiple data streams - SPMD).
 - SPMD avoids the complexity of general concurrent programming.

MIMD Processor Classification

- **Centralized Memory**: Shared memory located at centralized location — consisting usually of several interleaved modules — the same distance from any processor.
 - Symmetric Multiprocessor (SMP)
 - Uniform Memory Access (UMA)
- **Distributed Memory**: Memory is distributed to each processor — improving scalability.
 - **Message Passing Architectures**: No processor can directly access another processor’s memory.
 - **Hardware Distributed Shared Memory (DSM)**: Memory is distributed, but the address space is shared.
 - Non-Uniform Memory Access (NUMA)
 - **Software DSM**: A level of OS built on top of message passing multiprocessor to give a shared memory view to the programmer.
MIMD with Shared Memory

- Tightly coupled, not scalable.
- Typically called Multi-processor.

MIMD with Distributed Memory

- Loosely coupled with message passing, scalable
- Typically called Multi-computer.
Shared-Address-Space Platforms

- Part (or all) of the memory is accessible to all processors.
- Processors interact by modifying data objects stored in this shared-address-space.

- UMA (uniform memory access) = the time taken by a processor to access any memory word in the system is identical.
- NUMA, otherwise.

Multi-Computer Systems

- A multi-computer system is a collection of computers interconnected by a message-passing network.
 - Clusters.

- Each processor is an autonomous computer
 - With its own local memory.
 - There is no a shared-address-space any longer.
 - They communicating with each other through the message passing network.

- Can be easily built with commodity microprocessors.
MIMD Design Issues

- Design issues related to an MIMD machine are very complex, since it involves both architecture and software issues.
- The most important issues include:
 - Processor design
 - Physical organization
 - Interconnection structure
 - Inter-processor communication protocols
 - Memory hierarchy
 - Cache organization and coherency
 - Operating system design
 - Parallel programming languages
 - Application software techniques

Lecture 9: MIMD Architectures

- Introduction and classification
 - Symmetric multiprocessors
- NUMA architecture
- Clusters
Symmetric Multiprocessors (SMP)

- A set of similar processors of comparable capacity.
- All processors can perform the same functions (symmetric).
- Processors are connected by a bus or other internal connection.
- Processors share the same memory.
 - A single memory or a pool of memory modules
- Memory access time is (approximately) the same for each processor.
- All processors share access to I/O.
 - Either through the same channels or different channels giving paths to the same devices
- Controlled by an integrated operating system:
 - Providing interaction between processors
 - Interaction at job, task, file and data element levels

SMP Example
SMP Advantages

- **High performance**
 - If similar work can be done in parallel (e.g., scientific computing).
- **Good availability**
 - Since all processors can perform the same functions, failure of a single processor does not stop the system.
- **Support incremental growth**
 - Users can enhance performance by adding additional processors.
- **Scaling**
 - Vendors can offer range of products based on different number of processors.

SMP based on Shared Bus

```
Processor 1
  L1 Cache
  L2 Cache

Processor 2
  L1 Cache
  L2 Cache

...  (shared bus)

Processor N
  L1 Cache
  L2 Cache

Main Memory

I/O Subsystem

I/O Adapter

Critical for performance
```
Shared Bus – Pros and Cons

- Advantages:
 - Simplicity.
 - Flexibility — Easy to expand the system by attaching more processors.

- Disadvantages:
 - Performance limited by bus bandwidth.
 - Each processor should have local cache
 - To reduce number of bus accesses
 - Can lead to problems with cache coherence
 - Should be solved in hardware (to be discussed later).

Multi-Port Memory SMP
Multi-Port Memory

- Direct access of memory modules by several processors.
- Better performance.
 - Each processor has dedicated path to memory module.
- All the ports can be active simultaneously.
 - With the restriction that only one write can be performed into a memory location at a time.
- Hardware logic required to resolve conflicts.
 - Permanently designated priorities to each memory port.
- Can configure portions of memory as private to one or more processors
 - Increased security.
- Write through cache policy necessary to alert other processors of memory updates.

Operating System Issues

- An SMP OS manages processor resources so that the user perceives a single system.
- It should appear as a single-processor multiprogramming system.
- In both SMP and uniprocessor, multiple processes may be active at one time.
 - OS is responsible for scheduling their execution and allocating resources.
- A user may construct applications that use multiple processes without regard to whether a single processor or multiple processors will be available.
- OS supports reliability and fault tolerance.
 - Graceful degradation.
IBM S/390 Mainframe SMP

S/390 - Key Components

- Processor unit (PU)
 - CISC microprocessor
 - Frequently used instructions hard wired
 - 64k L1 unified cache with 1 cycle access time
- L2 cache
 - 384k
- Bus switching network adapter (BSN)
 - Includes 2M of L3 cache
- Memory card
 - 8G per card
Lecture 9: MIMD Architectures

- Introduction and classification
- Symmetric multiprocessors
 - NUMA architecture
- Clusters

Memory Access Issues

- Uniform memory access (UMA), as in SMP:
 - All processors have access to all parts of memory.
 - Access time to all regions of memory is the same.
 - Access time for different processors is the same.

- Non-uniform memory access (NUMA)
 - All processors have access to all parts of memory.
 - Access time of processor differs depending on region of memory.
 - Different processors access different regions of memory at different speeds.
Motivation for NUMA

- SMP has practical limit to number of processors.
 - Bus traffic limits to between 16 and 64 processors.
 - A multi-port memory has limited number of inputs (ca. 10).
- In clusters each node has its own memory.
 - Applications do not see large global memory.
 - Coherence maintained by software not hardware (slow speed).
- NUMA retains SMP flavour while making large scale multiprocessing possible.
 - e.g. Silicon Graphics Origin NUMA machine (3000 Series Server) has 1024 MIPS processors (≥ 1 teraFLOPS peak performance!).
- Objective is to provide a transparent system-wide memory while permitting multiprocessor nodes each with its own bus or internal interconnection system.

A Typical NUMA Organization

- Each node is, in general, an SMP
- Each node has its own main memory
- Each processor has its own L1 and L2 cache
A Typical NUMA Organization

- Nodes are connected by some networking facility
- Each processor sees a single addressable memory space
 - Each location has a unique system-wide address

Memory request order:
- L1 cache (local to processor)
- L2 cache (local to processor)
- Main memory (local to node)
- Remote memory (going through the int. network)

All is done automatically and transparent to the processor.
- With very different access time!
NUMA — Pros and Cons

- Effective performance at higher levels of parallelism than SMP.
- However, performance can break down if too much access to remote memory. This can be avoided by:
 - Designing better L1 and L2 caches to reduce memory access.
 - Need also good temporal locality of software.
 - If software has good spatial locality, data needed for an application will reside on a small number of frequently used pages.
 - They can be initially loaded into the local memory.
 - Enhancing VM by including in OS a page migration mechanism to move a VM page to a node that is frequently using it.
- NUMA does not transparently look like a SMP.
 - Software changes needed to move OS and applications from SMP to NUMA.
 - Page allocation, process allocation and load balancing are needed.

Lecture 9: MIMD Architectures

- Introduction and classification
- Symmetric multiprocessors
- NUMA architecture
- Clusters
Loosely Coupled MIMD - Clusters

Cluster: A set of computers connected over a high-bandwidth local area network, and used as a parallel computer.

- A group of interconnected stand-alone computers
- Work together as a unified resource
- Give illusion of being one machine
- Each computer called a node
 - A node can also be a multiprocessor itself, such as an SMP.
- Message passing for communication between nodes

- NOW — Network of Workstations, homogeneous cluster.
- Grid — Computers connected over a wide area network.

Cluster Benefits

- Absolute scalability
 - Cluster with a very large number of nodes is possible.
- Incremental scalability
 - A user can start with a small system and expand it as needed, without having to go through a major upgrade.
- High availability
 - Fault tolerance by nature.
- Superior price/performance
 - Can be built with cheap commodity nodes.
- Supercomputing-class commodity components are available
- The promise of supercomputing to the average PC User?
Cluster Configurations

The simplest classification of clusters is based on whether the nodes share access to disks.

- Cluster with no shared disk.
 - Interconnection is by high-speed link
 - LAN — may be shared with other non-cluster computers
 - Dedicated interconnection facility

Cluster Configurations (Cont’d)

- Shared-disk cluster
 - Still connected by a message link
 - Disk subsystem directly linked to multiple computers
 - Disks should be made fault-tolerant
 - To avoid single point of failure in the system.

RAID (Redundant Array of Independent Disks) allows simultaneous access to data from multiple drives, with the help of multiple disk arrays and data distribution on multiple disks.
Parallelizing Computation

How to make a single application executing in parallel on a cluster:

- Paralleling compiler
 - Determines at compile time which parts can be executed in parallel.

- Parallelized application
 - Application written from scratch to be parallel.
 - Message passing to move data between nodes.
 - Hard to program.
 - Best end results.

- Parametric computing
 - If a problem is repeated execution of algorithm on different sets of data.
 - e.g. simulation using different scenarios.
 - Needs effective tools to organize and run.

Cluster Computer Architecture

- Sequential applications
- Parallel applications
- Parallel programming environment
- Cluster Middleware
 - (Single system image and availability infrastructure)
 - PC/workstation
 - Comm SW
 - Net. Interf. HW

- PC/workstation
 - Comm SW
 - Net. Interf. HW

- PC/workstation
 - Comm SW
 - Net. Interf. HW

- High-Speed Network/Switch
Cluster vs. SMP

- Both provide multiprocessor support to high demand applications.
- Both available commercially
 - SMP for longer time

SMP:
- Easier to manage and control
- Closer to single processor systems
 - Scheduling is the main difference
 - Less physical space
 - Lower power consumption

Clustering:
- Superior incremental and absolute scalability
- Superior availability
 - High degree of redundancy

Google Cluster of PCs

- Problem to solve:
 - Search queries
 - Tens of thousands per second from many different users.
 - A typical search query leads to
 - Read hundreds of megabytes of data located in many locations.
 - Tens of billions of CPU cycles

- Solution:
 - Cluster of commodity PCs
 - More than 15,000 nodes.
 - Rather than a smaller number of high-end servers.
 - Parametric computing
 - Same algorithm (PageRank to determine the relative importance of a web page).
 - Different sets of data.
Serving a Google Query

- User enters search query.
- DNS (Domain Name System) lookup:
 - Several clusters available worldwide
 - To handle catastrophic failures (earthquakes, power failures)
 - Selection of cluster
 - Closest (smallest roundtrip time) to the user
- Browser sends HTTP request.
- Load balancer selects a web server.
 - Hardware based
- Query execution.
 - Use inverted index to fine and locate the relevant documents.
- Web server returns result.

Summary

- Two most common MIMD architectures are symmetric multiprocessors and clusters.
 - SMP is an example of tightly coupled system with shared memories.
 - Cluster is a loosely coupled system with distributed memories.
- More recently, non-uniform memory access (NUMA) systems are also becoming popular.
 - More complex in terms of design and operation.
- Several organization styles can be also integrated into a single system.