[DTSO8:
Advanced Computer Architecture

Lesson

LINKOPING
UNIVERSITY

Outline

* Lab organization and goals

e SimpleScalar architecture and tools
* Lab 5: article review

* Exercises

Organization

e Assistant: Rouhollah Mahfouzi

* Web page
e http://www.ida.liu.se/~TDTS08
* Check the lab page!

http://www.ida.liu.se/department/contact/contactcard.en.shtml?rouma44
http://www.ida.liu.se/%7ETDTS08

Organization

* Sign up in Webreg latest Sep. 8 (Today!).

* Deadline for the assignments:

Lab 1, Lab 2 Sep. 24
Lab 3, Lab 4 Oct. 15
Lab 5 Oct. 27

e Rules: Read them!

https://www.ida.liu.se/webreg3/TDTS08-2020-1/LAB
http://www.ida.liu.se/labs/eslab/lab_rules.shtml

Examination

Written report for each lab:
* Hand in the report, in PDF or DOC format
e Submit the report via Teams

Labs

* Five labs:
1. Cache Memories (2 lab sessions)

2. Instruction Pipelining (2 lab sessions)

3. Superscalar Processors (2 lab sessions)

4. VLIW processors (2 lab sessions)

5. Article review on multiprocessor systems (no lab session)

Remote

 Thinlinc client: thinlinc.edu.liu.se

« SSH client: ssh.edu.liu.se

ThinLinc

IE ThinLinc Client

Cendio

M ThinLinc
Sewer:[thinlinc.edu.liu.se]
Username:[]
Passwcrrd:[]
[_|End existing session l Options... l
l Exit l Advanced<< l l Connect /"_l

[Enter username and password to connect.]

ThinLinc

LINKOPINGS
Il.u UNIVERSITET
@ ~pplications (@) @ = [~ [eminal

mil

Press F8 for options

How to ask questions during lab sessions?

* General channel [put yourself in queue by posting a message]

* Private Team for each subgroup
e Ask questions (video chat)
* Upload your lab reports

i= Microsoft Teams

Environment

* Linux

* Simulations are started from a command line (i.e., terminal)
* To open a new terminal you can press ctrl+alt+t

* Get yourself familiarized with the terminal
* Ask Google first
e Ask your assistant

* Make sure you learn the basic commands (i.e., cd, Is, cp, ...)

Tool Setup

* Don’t forget the instructions in lab0

* Instructions should be clear and easy to follow, but if you face
difficulties
* Don’t get frustrated :)
e Read again carefully (without skipping over the lines)
e Consult your assistant

Outline

* Lab organization and goals

e SimpleScalar architecture and tools
* Lab 5: article review

* Exercises

Architecture Simulation

Hardware

Software n
HW simulator

(software)
SimpleScalar —

PC, etc. T
Real HW

Sun ULTRAXx 10

SimpleScalar: Literature

e “The SimpleScalar Tool Set, Version 2.0”, by Doug Burger and Todd M.
Austin
* Very important preparation for the labs
* This is your main reference for the tool!

e “User’s and Hacker’s guide”, slides by Austin

http://www.simplescalar.com/docs/users_guide_v2.pdf
http://www.simplescalar.com/docs/hack_guide_v2.pdf

SimpleScalar Architecture

* Virtual architecture derived from MIPS
e Control (j, jr,..., beq, bne,...)
e Load/Store (lb, Ibu, ...)
* Integer Arithmetic (add, addu, ...)
* Floating Point Arithmetic (add.s, add.d, ...)
* Miscellaneous (nop, syscall, break)

SimpleScalar Architecture (cont’d)

e Several simulators

Won’t use these two!

* Sim-cache: Sim-safe + cache simulation and various timing properties
(simulation time, measured time, ...)

* Sim-cheetah: Simulation of multiple cache configurations
e Sim-outorder: Superscalar simulator

An Example

e Labl, assighment 3

 Dump the default configuration of sim-cheetah
* Modify the configuration and simulate

* Plot the results (e.g. OpenOffice, Gnuplot, Matlab, Excel)

12

10

3 R— ‘ — Aésociativiiy1

Miss ratio [%]

128 756 512 1024 2048 1096 819z 16384

Outline

* Lab organization and goals

* SimpleScalar architecture and tools
* Lab 5: article review

* Exercises

Lab 5: Article Review

* Select an article on a multi-core, multiprocessor, multi-computer
system, or a graphics processor

* List of papers is available on the course page
* You may select other articles if your lab assistant agrees

e Review the selected article
* Write a review report on the article
* Self-learning based; No lab session allocated

* Read and understand the paper
* |f the course literature does not help you, investigate the referenced papers

Lab 5: Article Review (cont’d)

* Analyze the paper
* Classify the architecture (e.g. MIMD, SIMD, NUMA)

* Possible questions to ask
* Why has the actual method/approach been selected?
What are the advantages and disadvantages?
What is the application area?
What has been demonstrated?

Lab 5: Article Review (cont’d)

* Write a report
e ~1000 words
e Submit, in PDF format, to your lab assistant's urkund account

Outline

* Lab organization and goals

e SimpleScalar architecture and tools
* Lab 5: article review

* Exercises

Exercises

Prob
Prob

Prob

em 1. Review questions
em 2 and 3. Mandatory for lab 1
em 4 and 5. Additional exercises (if you feel up to the challenge)

Problem 1 (review questions)

1) What are the differences among direct mapping, associative mapping, and set-associative
mapping?

2) What is the distinction between spatial locality and temporal locality?

Cache placement policies (Direct-Mapped

Main Memory Memory Size = 16Khytes
A Block 0 Memory Block Size = 4 bytes
’z', Block 1 Cache Size = 256 bytes
Cach Ly I Block Size = 4 hytes
ache R ! Associativity = 1
Ta, 5:0 s s =
| g[5:0] Cache Line 0 r_: R : Number of Sets = 64
\ Pty |
| Tag[5:0] /< T Block 64
Cache Line 1 ok T
\ == Block 65
| LY |
| \ [
| ‘\I|~ |
| |
| N |
| \ [
: Y Block 255
| Tag|[5:0] ndh Block 256
Cache Line 62 e T
AY r |
W |
Tag[5:0 PN
| gl5:0] Cache Line 63 £ AN :
\\ b I
~ ~ |
b LY |
'\‘. \\
* Block 4094
"N Block 4095
\ [13:8] | [7:21 | 1101
. AN,

| I
Tag Index Offset

Cache placement policies (Fully-Associative

Main Memory
Block 0
.f'#;
,,-’-' Block 1
-
Cache P :“"j ,3: :
s
| Tag[11:0] A !
Cache Line 0 £ .7 |
S |
| Tag[11:0] _ Ao :
Cache Line 1 £ W, I
(A |
1 ' ““ =2 e
: \‘ W W ’ olc i
| A ! |
| ‘;gx J.ff |
I W |
| ,"\\,: |
' AN !
l i \\" |
| Y A\ 1
I L W 1
I ,’.r \a\“ |
I
Tag[11:0 ér i\
| el] Cache Line 63 m—m WY I
- -n‘: Block 4094
“~% Block 4095
[13:2] [1:0] |
— A
1 T
Tag offset

Memory Size = 16Kbytes
Memory Block Size = 4 bytes
Cache Size = 256 bytes
Block Size = 4 bytes
Number of Cache Lines = 64

Cache placement policies (Set-Associative

Main Memory
Cache _ o Block 0
- = -
Tag[6:0 - - Block 1
| gl6:0] Cache Line 0 3 ,-"’ ’;1" |
Set - LA {..." ’,t, |
LY - # |
| Tag[6:0] Cache Line 1 NNl !
ache Line 3 ~-ay ‘; o |
. Pl 4 - |
- N o ["'-.___“
| Tag[6:0] AN =~ Block 64
Cache Line 2 £ — el N
Set1 o S \\-"\ R Block 65
£ 5 - T
Tag[6:0 -
“‘l gl6:0] Cache Line 3 - o :
Y\ |
T Ny, |
| \\\ |
| \‘3{ Block 255
| P Block 256
| ’#’ o’l I
| 7 |
- ’
Tag[6:0 - s
| gle:0] Cache Line 62 r.‘.: e :
Set 31 A I
7 = |
| Tagl6:0] Cache Line 63 "—--....:.. o :
e Block 4095
\ [13:7] | [6:2] |[1:0]]
R -

T
Tag

1 |
Index Offset

Memory Size = 16Kbytes
Memory Block Size = 4 bytes
Cache Size = 256 hytes
Block Size = 4 bytes
Associativity = 2

Number of Sets = 32

Question 2

Principle of Locality

Program instructions access a small proportion of their address space at any time

Question 2

Principle of Locality

Program instructions access a small proportion of their address space at any time

e Temporal locality

* Items accessed recently are likely to be accessed again soon

Question 2

Principle of Locality

Program instructions access a small proportion of their address space at any time

e Temporal locality

* Items accessed recently are likely to be accessed again soon

e Spatial locality

* Items near those accessed recently
are likely to be accessed soon

Question 2

Principle of Locality
Program instructions access a small proportion of their address space at any time

e Temporal locality
ltems accessed recently are likely to be accessed again soon

e Spatial locality
* Items near those accessed recently pata Localty)
are likely to be accessed soon remporal Localty

Address
z
(=)
=

(]

157000 152000 AG4000

180000 160000

152000 185000 156000
Cycle

FE000

154000 152000 152000

Problem 2 (mandatory for lab 1)
Consider a machine with a byte addressable main memory of 228 bytes and block size of 4 bytes.
Assume that a direct mapped cache consisting of 8 lines is used with this machine.

1) How is an 8-bit memory address divided into tag, line number, and byte number?
2) Into what line would bytes with each of the following addresses be stored?

00011011
0011 0100
1101 0000
1010 1010

3) Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

4) How many total bytes of memory can be stored in the cache?

5) Why is the tag also stored in the cache?

Problem 2 (mandatory for lab 1)
Consider a machine with a byte addressable main memory off278 bytesjand block size of 4 bytes.
Assume that a direct mapped cache consisting of 8 lines is used with this machine.

1) How is an 8-bit memory address divided into tag, line number, and byte number?
2) Into what line would bytes with each of the following addresses be stored?

0001 1011
0011 0100
1101 0000
1010 1010

Problem 2 (mandatory for lab 1)
Consider a machine with a byte addressable main memory of 278 bytes and block size of 4 bytes.
Assume that a direct mapped cache consisting of 8 lines is used with this machine.

1) How is an 8-bit memory address divided into tag, line number, and byte number?
2) Into what line would bytes with each of the following addresses be stored?

0001 1011
0011 0100
1101 0000
1010 1010

Problem 2 (mandatory for lab 1)
Consider a machine with a byte addressable main memory of 278 bytes and block size of 4 bytes.
Assume that a direct mapped cache consisting of 8 lines is used with this machine.

1) How is an 8-bit memory address divided into tag, line number, and byte number?
2) Into what line would bytes with each of the following addresses be stored?

Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

How many total bytes of memory can be stored in the cache?
Why is the tag also stored in the cache?

Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

How many total bytes of memory can be stored in the cache?
Why is the tag also stored in the cache?

8 lines X 4 bytes = 32 bytes

Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

How many total bytes of memory can be stored in the cache?
Why is the tag also stored in the cache?

3) Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

4) How many total bytes of memory can be stored in the cache?
5) Why is the tag also stored in the cache?

Because we have a large main memory but a limited and finite set of cache lines. More than one
address go in a particular cache line. We need tag to identify which block is in the cache line.

Problem 3 (mandatory for lab 1)
Consider the following code:

cout << "Hello World”;

cin >> a;

for(i = 0; i < 50; i++)
cout<<i;

1) Give one example of the spatial locality in the code.
?) Give one example of the temporal locality in the code.

Problem 4 (additional)

Average memory-access time. A computer has a cache, main memory, and a disk used for virtual
memory. If a referenced word is in the cache, 15 ns are required to access it. If it is in main memory
but not in the cache, 70 ns are needed to load it into the cache, and then the reference is started
again. If the word is not in main memory, 10 ms are required to fetch the word from disk, followed
by 50 ns to copy it to the cache, and the reference is started again. The cache hit ratio is 0.95 and the
main memory hit ratio is 0.8. what is the average time in nanoseconds required to access a
referenced word on this system?

Problem 4 (additional)

Average memory-access time. A computer has a cache, main memory, and a disk used for virtual
memory. If a referenced word is in the cache, 15 ns are required to access it. If it is in main memory
but not in the cache, 70 ns are needed to load it into the cache, and then the reference is started
again. If the word is not in main memory, 10 ms are required to fetch the word from disk, followed
by 50 ns to copy it to the cache, and the reference is started again. The cache hit ratio is 0.95 and the
main memory hit ratio is 0.8. what is the average time in nanoseconds required to access a
referenced word on this system?

4

100 < s

Problem 4 (additional)

Average memory-access time. A computer has a cache, main memory, and a disk used for virtual
memory. If a referenced word is in the cache, 15 ns are required to access it. If it is in main memory
but not in the cache, 70 ns are needed to load it into the cache, and then the reference is started
again. If the word is not in main memory, 10 ms are required to fetch the word from disk, followed
by 50 ns to copy it to the cache, and the reference is started again. The cache hit ratio is 0.95 and the
main memory hit ratio is 0.8. what is the average time in nanoseconds required to access a
referenced word on this system?

C 4 4% (70%1079)

100 < 1 1%(10%107°+50%107°)

(95 95x (15*107?)

Problem 4 (additional)

Average memory-access time. A computer has a cache, main memory, and a disk used for virtual
memory. If a referenced word is in the cache, 15 ns are required to access it. If it is in main memory
but not in the cache, 70 ns are needed to load it into the cache, and then the reference is started
again. If the word is not in main memory, 10 ms are required to fetch the word from disk, followed
by 50 ns to copy it to the cache, and the reference is started again. The cache hit ratio is 0.95 and the
main memory hit ratio is 0.8. what is the average time in nanoseconds required to access a
referenced word on this system?

C 4 4% (70%1079)

/—
5 < 1% (10 %1073 + 50 * 1079) + 4 % (70 * 1079) + 95 * (15 * 10™9)

100 < 1 1%(10%107°+50%107°) 100

Problem 5 (additional)

Performance enhancement using cache. A computer system contains a main memory of 32K 16-bit
words. It also has a 4K-word cache divided into four-line sets with 64 words per line. Assume that
the cache is initially empty. The processor fetches words from locations O, 1, 2, ..., 4351 in that order.
If then repeats this fetch sequence nine more times. The cache is 10 times faster than main memory.

Estimate the improvement resulting from the use of the cache. Assume an LRU policy for block
replacement

Problem 5 (additional)

Performance enhancement using cache. A computer system contains a main memory of 32K 16-bit
words. It also has a 4K-word cache divided into four-line sets with 64 words per line. Assume that
the cache is initially empty. The processor fetches words from locations O, 1, 2, ..., 4351 in that order.
If then repeats this fetch sequence nine more times. The cache is 10 times faster than main memory.
Estimate the improvement resulting from the use of the cache. Assume an LRU policy for block
replacement

4x1024 =4 x 64 x #sets =» #Hsets =16

set tag data tag data tag data tag data
64 word

w N = O

15

Cache structure

set

w N =, O

15

tag data tag data tag data tag data
[0-63] [1024-1087] [2048-2111] [3072-4159]
[64-127]
[960-1023] [1984-2047] [3008-3071] [4032-4095]

Cache structure

set tag data tag data tag data tag data
0 [4096-4159] [1024-1087] [2048-2111] [3072-4159]
1 [4160-4223]
2 [4223-4287]
3 [4287-4351]
15 [960-1023] [1984-2047] [3008-3071] [4032-4095]

Cache structure

1st round: 4 x 16 + 4 misses
2nd-9th round: 4 x 4 + 4 misses

Speed-up:

, 435100/45742 ~=9.5
Total misses: 4x 16 +4 + (4 x4 +4)x9 =248

With cache: 248 x 10s + (4351 x 10 — 248) x 1s = 45742
Without cache: 4351 x 10 x 10s = 435100

	TDTS08: �Advanced Computer Architecture
	Outline
	Organization
	Organization
	Examination
	Labs
	Remote
	ThinLinc
	ThinLinc
	How to ask questions during lab sessions?
	Environment
	Tool Setup
	Outline
	Architecture Simulation
	SimpleScalar: Literature
	SimpleScalar Architecture
	SimpleScalar Architecture (cont’d)
	An Example
	Outline
	Lab 5: Article Review
	Lab 5: Article Review (cont’d)
	Lab 5: Article Review (cont’d)
	Outline
	Exercises
	Slide Number 25
	Cache placement policies (Direct-Mapped)
	Cache placement policies (Fully-Associative)
	Cache placement policies (Set-Associative)
	Question 2
	Question 2
	Question 2
	Question 2
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

