[DTSO8:
Advanced Computer Architecture

Lesson

LINKOPING
UNIVERSITY

Outline

* Lab organization and goals

e SimpleScalar architecture and tools
* Lab 5: article review

* Exercises

Organization

* Assistant: Yungang Pan

* Web page
e http://www.ida.liu.se/~TDTS08
* Check the lab page!

mailto:yungang.pan@liu.se?subject=TDTS08-
http://www.ida.liu.se/~TDTS08

Organization

* Sign up in Webreg latest Sept. 9 (This Friday!).
e Deadline for the assignments:

Lab 1, Lab 2 Sept. 28

Lab 3, Lab 4 Oct. 19

Lab 5 Oct. 28

e Rules: Read them!

https://www.ida.liu.se/webreg3/TDTS08-2022-1/LAB
http://www.ida.liu.se/labs/eslab/lab_rules.shtml

Examination

Written report for each lab:

* Hand in the report, in PDF or DOC format
* Submit the report via Teams

< All teams EWd A1 Posts Files~ +

1 Meet

T Upload v B Editingridview & Share % Copylink <3 Sync - = All Documents ~ VW @

A1 A

TDTS08 Advanced Com... -
D Name Modified Modified By + Add column

This folder is empty

Labs

* Five labs:
1. Cache Memories (2 lab sessions)

2. Instruction Pipelining (2 lab sessions)

3. Superscalar Processors (2 lab sessions)

4. VLIW processors (2 lab sessions)

5. Article review on multiprocessor and multi-computer systems (no lab

session)

Theoretical knowledge :> Simulation :> Analysis

Remote

 Thinlinc client; thinlinc.edu.liu.se

« SSH client: ssh.edu.liu.se

Note! Two-step verification is required to use remote login.

https://www.student.liu.se/studentstod/itsupport/fjarrinloggning?l=en

ThinLinc

IE ThinLinc Client

Cendio

M ThinLinc
Sewer:[thinlinc.edu.liu.se]
Username:[]
Passwcrrd:[]
[_|End existing session l Options... l
l Exit l Advanced<< l l Connect /"_l

[Enter username and password to connect.]

ThinLinc

LINKOPINGS
Il.u UNIVERSITET
@ ~pplications @) @ = [~ [eminal

rmi

Press F8 for options

Environment

 Linux

e Simulations are started from a command line (i.e., terminal)
* To open a new terminal you can press ctrl+alt+t

* Get yourself familiarized with the terminal
* Ask Google first
* Ask your assistant

* Make sure you learn the basic commands (i.e., cd, Is, cp, ...)

Tool Setup

* Don’t forget the instructions in [ab0

* Instructions should be clear and easy to follow, but if you face
difficulties
* Don’t get frustrated :)
e Read again carefully (without skipping over the lines)
e Consult your assistant

Outline

* Lab organization and goals

e SimpleScalar architecture and tools
* Lab 5: article review

* Exercises

Architecture Simulation

Hardware

Software n
HW simulator

(software)
SimpleScalar —

PC, etc. T
Real HW

Sun ULTRAXx 10

SimpleScalar: Literature

e “The SimpleScalar Tool Set, Version 2.0”, by Doug Burger and Todd M.
Austin
* Very important preparation for the labs
* This is your main reference for the tool!

e “User’s and Hacker’s guide”, slides by Austin

http://users.ece.cmu.edu/~schen1/ece743/users_guide_v2.pdf
https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf

A Computer Architecture Simulator Primer

« What is an architectural simulator?

Q a tool that reproduces the behavior of a computing device

: — System Outputs
System Device

[nputs Simulator —> System Metrics

Why use a simulator?
QO leverage faster, more flexible S/W development cycle
o permits more design space exploration
o facilitates validation before H/'W becomes available
o level of abstraction can be throttled to design task

o possible to increase/improve system instrumentation

Source: https://www.cs.virginia.edu/~skadron/cs654/slides/hack gquide.pdf

https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf
https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf

Simulation Suite Overview

Sim-Fast Sim-Safe Sim-Profile Slm-Cache/ Sim-Outorder
Sim-Cheetah

- 420 lines - 350 lines - 900 lines - <1000 lines - 3900 lines

- functional - functional - functional | - functional - performance

- 4+ MIPS w/ checks - lot of stats | - cache stats - Q0O 1ssue
- branch pred.
- mis-spec.
- ALUs
- cache
-TLB
- 200+ KIPS

Performance
-
Detail

Source: https://www.cs.virginia.edu/~skadron/cs654/slides/hack gquide.pdf

https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf
https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf

Global Simulator Options

« supported on all simulators:

-h - print simulator help message

-d - enable debug message

-i - start up in DLite! debugger

-q - terminate immediately (use with -dumpconfig)
~config <file> - read configuration parameters from <file>

~dumpconfig <file> - save configuration parameters into <file>
» configuration files:

O to generate a configuration file:
o specify non-default options on command line
o and, include “-~dumpconfig <file>" to generate configuration file

O comments allowed in configuration files:
o text after “#” 1gnored until end of line

O reload configuration files using “-config <file>”

O config files may reference other configuration files

Source: https://www.cs.virginia.edu/~skadron/cs654/slides/hack gquide.pdf

https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf
https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf

ssh-vwl [~/TDTS08/simplescalar]> 1s

output. txt

ssh-vwl [~/TDTS08/simplescalar]> ./sim-cache -h

sim—-cache: SimpleScalar/PISA Tool Set version 3.0 of August, 2003.
Copyright (c) 199u4-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.

ALl Rights Reserved. This version of SimpleScalar is licensed for academic
non—-commercial use. No portion of this work may be used by any commercial
entity, or for any commercial purpose, without the prior written permission
of SimpleScalar, LLC (info@simplescalar.com).

Usage: /opt/simplescalar/simplesim-3.0/sim—-cache {-options} executable {arguments}

sim—-cache: This simulator implements a functional cache simulator. Cache
statistics are generated for a user-selected cache and TLB configuration,
which may include up to two levels of instruction and data cache (with any
levels unified), and one level of instruction and data TLBs. No timing
information is generated.

#

—option <args> <default> # description

#

—-config <string> <null> # load configuration from a file
—dumpconfig <string> <null> # dump configuration to a file
-h <true|false> true # print help message

-V <true|false> false # verbose operation

Sim-Cache: Multi-level Cache Simulator

« generates one- and two-level cache hierarchy statistics and profiles

« extra options (also supported on sim-outorder):

-cache:dl1l <config> - level 1 data cache configuration
-cache:dl2 <config> - level 2 data cache configuration
-cache:111 <config> - level 1 instruction cache configuration
~cache:112 <config> - level 2 instruction cache configuration
-tlb:dtlb <config> - data TLB configuration

~tlb:itlb <config> - Instruction TLB configuration

~-flush <config> - flush caches on system calls
-icompress - remaps 64-bit 1nst addresses to 32-bit equiv.
-pcstat <stat> - record statistic <stat> by text address

Source: https://www.cs.virginia.edu/~skadron/cs654/slides/hack gquide.pdf

https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf
https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf

Specitying Cache Configurations

 all caches and TLB configurations specified with same format:
<name>:<nsets>:<bsize>:<assoc>:<repl>

* where:
<name> - cache name (make this unique)
<nsets> - number of sets
<assoc> - associativity (number of “ways”)
<repl> - setreplacement policy
1 - for LRU
£ - for FIFO
r - for RANDOM

e examples:
111:1024:32:2:1 2-way set-assoc 64k-byte cache, LRU

Source: https://www.cs.virginia.edu/~skadron/cs654/slides/hack gquide.pdf

https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf
https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf

Specifying Cache Hierarchies

« specify all cache parameters in no unified levels exist, e.g.,

i1

l

dl

112

Y

d!

2

—-cache:111 111:128:64:1:1 -cache:112 112:128:64:4:1
—-cache:dll dll1:256:32:1:1 -cache:d1l2 dl12:1024:64:2:1

 to unify any level of the hierarchy, “point” an I-cache level into the
data cache hierarchy:

i1

dl

-cache:111 111:128:64:1:1 —-cache:112 dl2
—cache:dll dll1:256:32:1:1 -cache:d12 ul2:1024:64:2:1

Source: https://www.cs.virginia.edu/~skadron/cs654/slides/hack gquide.pdf

https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf
https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf

Sim-Cheetah: Multi-Config Cache Simulator

» generates cache statistics and profiles for multiple cache configurations
in a single program execution

« extra options:
~refs {inst,qata,mirica} - Specify reference stream to analyze

-C {fa,sa,dm} - cache config. 1.e., fully or set-assoc or direct
-R {lru, opt) - replacement policy

-a <sets> - log base 2 number of set in minimum config
-b <sets> - log base 2 number of set in maximum config
-1 <line> - cache line size 1n bytes

-n <assoc> - maximum associativity to analyze (log base 2)
-in <interval> - cache size interval for fully-assoc analyses

-M <size> - maximum cache size of interest

-c <size> - cache size for direct-mapped analyses

Source: https://www.cs.virginia.edu/~skadron/cs654/slides/hack gquide.pdf

https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf
https://www.cs.virginia.edu/~skadron/cs654/slides/hack_guide.pdf

An Example

e Labl, assighment 3

 Dump the default configuration of sim-cheetah
* Modify the configuration and simulate

* Plot the results (e.g. OpenOffice, Gnuplot, Matlab, Excel)

12

10

xS : A#sochﬁvﬁy1

: : : ; i -

Associativity 2

Miss ratio [%]

128 756 5T2 073 2048 2096 8192

16384

Outline

* Lab organization and goals

e SimpleScalar architecture and tools
* Lab 5: article review

* Exercises

Lab 5: Article Review

* Select an article on a multi-core, multiprocessor, multi-computer
system, or a graphics processor

* List of papers is available on the course page
* You may select other articles if your lab assistant agrees

* Review the selected article
* Write a review report on the article
* Self-learning based; No lab session allocated

* Read and understand the paper
* |f the course literature does not help you, investigate the referenced papers

Lab 5: Article Review (cont’d)

* Analyze the paper
e Classify the architecture (e.g. MIMD, SIMD, NUMA)

* Possible questions to ask
* Why has the actual method/approach been selected?
What are the advantages and disadvantages?
What is the application area?
What has been demonstrated?

Lab 5: Article Review (cont’d)

* Write a report
e ~1000 words
e Submit, in PDF format, to your lab assistant's urkund account

Outline

* Lab organization and goals

e SimpleScalar architecture and tools
* Lab 5: article review

* Exercises

Exercises

Prob
Prob

Prob

em 1. Review questions
em 2 and 3. Mandatory for lab 1
em 4 and 5. Additional exercises (if you feel up to the challenge)

Problem 1 (review questions)

1) What are the differences among direct mapping, associative mapping, and set-associative
mapping?

2) What is the distinction between spatial locality and temporal locality?

Cache placement policies (Direct-Mapped

Main Memory Memory Size = 16Khytes
A Block 0 Memory Block Size = 4 bytes
’z', Block 1 Cache Size = 256 bytes
Cach Ly I Block Size = 4 hytes
ache R ! Associativity = 1
Ta, 5:0 s s =
| g[5:0] Cache Line 0 r_: R : Number of Sets = 64
\ Pty |
| Tag[5:0] /< T Block 64
Cache Line 1 ok T
\ == Block 65
| LY |
| \ [
| ‘\I|~ |
| |
| N |
| \ [
: Y Block 255
| Tag|[5:0] ndh Block 256
Cache Line 62 e T
AY r |
W |
Tag[5:0 PN
| gl5:0] Cache Line 63 £ AN :
\\ b I
~ ~ |
b LY |
'\‘. \\
* Block 4094
"N Block 4095
\ [13:8] | [7:21 | 1101
. AN,

| I
Tag Index Offset

Cache placement policies (Fully-Associative

Main Memory
Block 0
.f'#;
,,-’-' Block 1
-
Cache P :“"j ,3: :
s
| Tag[11:0] A !
Cache Line 0 £ .7 |
S |
| Tag[11:0] _ Ao :
Cache Line 1 £ W, I
(A |
1 ' ““ =2 e
: \‘ W W ’ olc i
| A ! |
| ‘;gx J.ff |
I W |
| ,"\\,: |
' AN !
l i \\" |
| Y A\ 1
I L W 1
I ,’.r \a\“ |
I
Tag[11:0 ér i\
| el] Cache Line 63 m—m WY I
- -n‘: Block 4094
“~% Block 4095
[13:2] [1:0] |
— A
1 T
Tag offset

Memory Size = 16Kbytes
Memory Block Size = 4 bytes
Cache Size = 256 bytes
Block Size = 4 bytes
Number of Cache Lines = 64

Cache placement policies (Set-Associative

Main Memory
Cache _ o Block 0
- = -
Tag[6:0 - - Block 1
| gl6:0] Cache Line 0 3 ,-"’ ’;1" |
Set - LA {..." ’,t, |
LY - # |
| Tag[6:0] Cache Line 1 NNl !
ache Line 3 ~-ay ‘; o |
. Pl 4 - |
- N o ["'-.___“
| Tag[6:0] AN =~ Block 64
Cache Line 2 £ — el N
Set1 o S \\-"\ R Block 65
£ 5 - T
Tag[6:0 -
“‘l gl6:0] Cache Line 3 - o :
Y\ |
T Ny, |
| \\\ |
| \‘3{ Block 255
| P Block 256
| ’#’ o’l I
| 7 |
- ’
Tag[6:0 - s
| gle:0] Cache Line 62 r.‘.: e :
Set 31 A I
7 = |
| Tagl6:0] Cache Line 63 "—--....:.. o :
e Block 4095
\ [13:7] | [6:2] |[1:0]]
R -

T
Tag

1 |
Index Offset

Memory Size = 16Kbytes
Memory Block Size = 4 bytes
Cache Size = 256 hytes
Block Size = 4 bytes
Associativity = 2

Number of Sets = 32

Direct Mapping

Cache Address Structure

Memory Cache Parameters

Memory Size
Cache Size

Block Size |2B v

Cache Scheme
Direct Mapping @
Set Associative O

Set Size

Return to Main Menu

Address Bit Partitioning

| TAG | INDEX |OFFSET)
[24][23][22 |21 [[20[19 18] 17 1615 [[14 13][12fuaf[10f{ 9 [8]| 7] 6 [543]2t] 0 |
Byte
Compare Bits Set Select Bits Select
Bits

The Compare Bits are compared with the corresponding Tag Bits in the
Cache Directory.

The Set Select Bits are used to select a particular Set in the Cache.

The Byte Select Bits are used to select a particular byte in the accessed

block.
Memory size = 32MB = 2 25
Block size = 2Bytes = 2 1

Number of blocks in cache = Cache size/Block size = 64KB/2B = 21¢/2
1 _ 515
=2

Number of bits in Tag = Total bits - Index bits - Offset bits = 25-15-1 =
9

http://www.ecs.umass.edu/ece/koren/architecture/Cache/default.htm

Set Associative Mapping

Cache Address Structure

Memory Cache Parameters

Memory Size
Cache Size
Block Size

Cache Scheme
Direct Mapping O
Set Associative @

Set Size

Return to Main Menu

Address Bit Partitioning

TAG INDEX OFFSET
241123122 (|21{[20 ([19|18 |17 ({16 || 15| 14 |[13|[12{| 11|10/ 9 |8 || 7|6 (|S |4 | 3| 2|10
Compare Bits Set Select Bits Byte Select Bits

The Compare Bits are compared with the corresponding Tag Bits in the
Cache Directory.

The Set Select Bits are used to select a particular Set in the Cache.

The Byte Select Bits are used to select a particular byte in the accessed
block.

Memory size = 32MB =2 25
Block size = 32Bytes = 2 >

Number of sets in cache = Cache size/(Set size * Block size) = 64KB/(4
blocks * 32B) = 216/(22 * 25) = 2”

Number of bits in Tag = Total bits - Index bits - Offset bits = 25-9-5 =
11

http://www.ecs.umass.edu/ece/koren/architecture/Cache/default.htm

Question 2

Principle of Locality

Program instructions access a small proportion of their address space at any time

Question 2

Principle of Locality

Program instructions access a small proportion of their address space at any time

e Temporal locality

* |tems accessed recently are likely to be accessed again soon

Question 2

Principle of Locality

Program instructions access a small proportion of their address space at any time

e Temporal locality
* Items accessed recently are likely to be accessed again soon

e Spatial locality

* |tems near those accessed recently
are likely to be accessed soon

Question 2

Principle of Locality
Program instructions access a small proportion of their address space at any time

e Temporal locality
ltems accessed recently are likely to be accessed again soon

S5000

e Spatial locality
ltems near those accessed recently

are likely to be accessed soon

Spatial Locality

)
Temporal Locality

Address
z
(=)
=

(]

152000 180000 160000 AG4000

156000 157000
Cycle

75000 T T T
152000 154000 155000

154000 152000

Problem 2 (mandatory for lab 1)
Consider a machine with a byte addressable main memory of 228 bytes and block size of 4 bytes.
Assume that a direct mapped cache consisting of 8 lines is used with this machine.

1) How is an 8-bit memory address divided into tag, line number, and byte number?
2) Into what line would bytes with each of the following addresses be stored?

00011011
0011 0100
1101 0000
1010 1010

3) Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

4) How many total bytes of memory can be stored in the cache?

5) Why is the tag also stored in the cache?

Problem 2 (mandatory for lab 1)
Consider a machine with a byte addressable main memory off278 bytesjand block size of 4 bytes.
Assume that a direct mapped cache consisting of 8 lines is used with this machine.

1) How is an 8-bit memory address divided into tag, line number, and byte number?
2) Into what line would bytes with each of the following addresses be stored?

0001 1011
0011 0100
1101 0000
1010 1010

Problem 2 (mandatory for lab 1)
Consider a machine with a byte addressable main memory of 278 bytes and block size of 4 bytes.
Assume that a direct mapped cache consisting of 8 lines is used with this machine.

1) How is an 8-bit memory address divided into tag, line number, and byte number?
2) Into what line would bytes with each of the following addresses be stored?

0001 1011
0011 0100
1101 0000
1010 1010

Problem 2 (mandatory for lab 1)
Consider a machine with a byte addressable main memory of 278 bytes and block size of 4 bytes.
Assume that a direct mapped cache consisting of 8 lines is used with this machine.

1) How is an 8-bit memory address divided into tag, line number, and byte number?
2) Into what line would bytes with each of the following addresses be stored?

Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

How many total bytes of memory can be stored in the cache?
Why is the tag also stored in the cache?

Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

How many total bytes of memory can be stored in the cache?
Why is the tag also stored in the cache?

8 lines X 4 bytes

32 bytes

Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

How many total bytes of memory can be stored in the cache?
Why is the tag also stored in the cache?

3) Suppose the byte with address 1010 0001 is stored in the cache. What are the addresses of the
other bytes stored along with it?

4) How many total bytes of memory can be stored in the cache?
5) Why is the tag also stored in the cache?

Because we have a large main memory but a limited and finite set of cache lines. More than one
address go in a particular cache line. We need tag to identify which block is in the cache line.

Problem 3 (mandatory for lab 1)
Consider the following code:

cout << "Hello World”;

cin >> a;

for(i = 0; i < 50; i++)
cout<<i;

1) Give one example of the spatial locality in the code.
?) Give one example of the temporal locality in the code.

Problem 4 (additional)

Average memory-access time. A computer has a cache, main memory, and a disk used for virtual
memory. If a referenced word is in the cache, 15 ns are required to access it. If it is in main memory
but not in the cache, 70 ns are needed to load it into the cache, and then the reference is started
again. If the word is not in main memory, 10 ms are required to fetch the word from disk, followed
by 50 ns to copy it to the cache, and the reference is started again. The cache hit ratio is 0.95 and the
main memory hit ratio is 0.8. what is the average time in nanoseconds required to access a
referenced word on this system?

Problem 4 (additional)

Average memory-access time. A computer has a cache, main memory, and a disk used for virtual
memory. If a referenced word is in the cache, 15 ns are required to access it. If it is in main memory
but not in the cache, 70 ns are needed to load it into the cache, and then the reference is started
again. If the word is not in main memory, 10 ms are required to fetch the word from disk, followed
by 50 ns to copy it to the cache, and the reference is started again. The cache hit ratio is 0.95 and the
main memory hit ratio is 0.8. what is the average time in nanoseconds required to access a
referenced word on this system?

4

100 < s

95

Problem 4 (additional)

Average memory-access time. A computer has a cache, main memory, and a disk used for virtual
memory. If a referenced word is in the cache, 15 ns are required to access it. If it is in main memory
but not in the cache, 70 ns are needed to load it into the cache, and then the reference is started
again. If the word is not in main memory, 10 ms are required to fetch the word from disk, followed
by 50 ns to copy it to the cache, and the reference is started again. The cache hit ratio is 0.95 and the
main memory hit ratio is 0.8. what is the average time in nanoseconds required to access a
referenced word on this system?

"4 4x(70%107°)

100 < .1 1x(10x 1073 + 50 % 1077)

95 95x (15%1079)

Problem 4 (additional)

Average memory-access time. A computer has a cache, main memory, and a disk used for virtual
memory. If a referenced word is in the cache, 15 ns are required to access it. If it is in main memory
but not in the cache, 70 ns are needed to load it into the cache, and then the reference is started
again. If the word is not in main memory, 10 ms are required to fetch the word from disk, followed
by 50 ns to copy it to the cache, and the reference is started again. The cache hit ratio is 0.95 and the
main memory hit ratio is 0.8. what is the average time in nanoseconds required to access a
referenced word on this system?

"4 4x(70%107°)

/—
5 < 1%(10%x1073+50%107%) +4 % (70 * 107°) + 95 * (15 * 10™?)

100 < 1 1%(10%107°+50*107°) 100

95

Problem 5 (additional)

Performance enhancement using cache. A computer system contains a main memory of 32K 16-bit
words. It also has a 4K-word cache divided into four-line sets with 64 words per line. Assume that
the cache is initially empty. The processor fetches words from locations O, 1, 2, ..., 4351 in that order.
If then repeats this fetch sequence nine more times. The cache is 10 times faster than main memory.

Estimate the improvement resulting from the use of the cache. Assume an LRU policy for block
replacement

Problem 5 (additional)

Performance enhancement using cache. A computer system contains a main memory of 32K 16-bit
words. It also has a 4K-word cache divided into four-line sets with 64 words per line. Assume that
the cache is initially empty. The processor fetches words from locations O, 1, 2, ..., 4351 in that order.
If then repeats this fetch sequence nine more times. The cache is 10 times faster than main memory.
Estimate the improvement resulting from the use of the cache. Assume an LRU policy for block
replacement

4x1024 =4 x 64 x H#Hsets = #Hsets =16

set tag data tag data tag data tag data
64 word

w N = O

15

Cache structure

set

w N = O

15

tag data tag data tag data tag data
[0-63] [1024-1087] [2048-2111] [3072-4159]
[64-127]
[960-1023] [1984-2047] [3008-3071] [4032-4095]

Cache structure

set tag data tag data tag data tag data
0 [4096-4159] [1024-1087] [2048-2111] [3072-4159]
1 [4160-4223]
y) [4223-4287]
3 [4287-4351]
15 [960-1023] [1984-2047] [3008-3071] [4032-4095]

Cache structure

1st round: 4 x 16 + 4 misses
2nd-9th round: 4 x 4 + 4 misses

Speed-up:

_ 435100/45742 ~=9.5
Total misses: 4x 16 +4 + (4 x4 +4) x9 = 248

With cache: 248 x 10s + (4351 x 10 — 248) x 1s = 45742
Without cache: 4351 x 10 x 10s = 435100

